## Caucher Birkar, Professor of Mathematics in the Department of Pure Mathematics and Mathematical Statistics, has been awarded a Fields Medal at the International Congress of Mathematicians in Rio de Janeiro. Birkar has been awarded the highest honour in mathematics for his contributions to *algebraic geometry*.

### Exploring algebraic geometry

This area of mathematics does exactly what its name suggests: it tries to understand geometric objects using equations that describe them. It's an idea you might be familiar with from school. For example, the equation

$$y=2x+1$$ describes a line of slope $2$ which intersects the vertical axis of a standard Cartesian coordinate system at the point $(0,1)$. Similarly, the equation $$x^2+y^2=1$$ describes a circle of radius 1 around the point $(0,0)$ in our coordinate system. (This follows from Pythagoras' theorem, see the figure below).

The circle and the line are both examples of *algebraic curves * in the Euclidean plane: curves that are defined by algebraic equations. Going up a dimension, we can also consider *algebraic surfaces*. The sphere in 3D Euclidean space that is centred on the point $(0,0,0)$ and has radius $1$ is an example. In analogy with the circle in the dimension below, it's given by the algebraic equation $$x^2+y^2+z^2=1.$$ As you might already expect, a plane in 3D space is another example of an algebraic surface.

But we don't need to stop here: more complicated polynomial equations, perhaps defined over a wider class of numbers called *complex numbers*, give rise to the general notion of an *algebraic variety*. Algebraic curves and surfaces are examples of algebraic varieties, but in general algebraic varieties can be much more complex: they can even exist in higher dimensions which can't be visualised. That's not something that deters mathematicians, however, because they've long developed a way of doing geometry even when there are too many dimensions to imagine.

### Classifying the infinite zoo

Given the infinite zoo of algebraic varieties that exists, a good idea is to try and classify them into families, just as one would classify a collection of butterflies. Going back to our simple example above, you might want to classify them according to the type of their shapes: things that are like planes go into one family, things that are sphere-like go into another, and so on.

The stereographic projection relates each point of a sphere (apart from the one right at the top) to a point on its equatorial plane: for each point *p* on the sphere (apart from the one at the top) draw the line that connects it to the point right at the top. That line will intersect the equatorial plane at some point *q*. Image: Jean-Christophe Benoist.

But you might also allow yourself a little more flexibility. The projection shown in the figure shows how a sphere minus a point can be turned into a plane: essentially, you remove one point, then press the rest of the sphere flat and stretch it infinitely in all directions. It seems that the plane and the sphere are distantly related after all, and we might keep this in mind when classifying algebraic surfaces into families.

The projection we've just considered is an example of a *birational map*. Birational maps are defined in a much wider context and can be used to link up more complicated algebraic varieties than just spheres and circles. And there are good reasons for why we might link them up in this way. One is that not all algebraic varieties are as nice and smooth as the planes and spheres we thought about above. Some have awkward *singular points* (loosely speaking, pointy cusps) that make them hard to deal with. At least when you are dealing with algebraic varieties of a certain type (technically over a field of characteristic 0), the flexibility of birational maps allows you to link such an awkward variety to a *smooth projective variety* without any singular points. So even though your initial variety might be hard to deal with, at least you know it's birationally related to a nice one. So there really is some sense in considering varieties that are birationally related as being part of the same family.

Birkar works in the area of *birational geometry* which is all about classifying algebraic varieties in this way. In particular, mathematicians hope to show that every algebraic variety is birationally related to a particularly nice kind of variety that is made up of three basic building blocks. Showing that this is really the case involves solving two major problems called the *minimal model conjecture* and the *abundance conjecture*. It's in this area that Birkar has made major breakthroughs. To quote his full citation, Birkar is being awarded the Fields medal for "his proof of the boundedness of Fano varieties and for contributions to the minimal model program."

### A journey to the Fields medal

The Fields medals, often described as mathematics' equivalent to the Nobel Prize, are awarded every four years. Medallists must be under the age of 40 by the start of the year they receive the award, with up to four mathematicians honoured at a time. The Fields medal is the most prestigious award in mathematics: it follows earlier recognition of Birkar's work through previous awards, including a Philip Leverhulme Prize in 2010 for 'his outstanding contributions to fundamental research in algebraic geometry', describing him as 'one of the world's leaders in the field'.

Birkar was born in 1978 to farmers in Marivan, a Kurdish province in Iran, and went to school during the turmoils of the war between Iran and Iraq. "[War-ridden] Kurdistan was an unlikely place for a kid to develop an interest in mathematics", commented Birkar in his acceptance video shown at the ICM opening ceremony in Rio (which you can watch below). "I'm hoping that this news will put a smile on the faces of those 40 million people". It was his brother who taught him higher level mathematics that he didn’t encounter at school, and he went on to study mathematics at the University of Tehran. In 2000 he came to England, where he was eventually granted political asylum, becoming a British citizen, and completed his PhD at the University of Nottingham in 2004. He is now a Professor here in Cambridge at DPMMS. We are proud to have him as a colleague and extend our warmest congratulations.

Caucher Birkar from simonsfoundation.org on Vimeo.