
Career
- 2022-date: Professor of Applied Mathematics, DAMTP, University of Cambridge, UK
- 2016-2022: University Lecturer, DAMTP, University of Cambridge, UK
- 2016: PhD at MIT
Research
Convex optimisation and applications
Selected Publications
Please see my publications page
Teaching
See my personal webpage
Publications
Semidefinite Approximations of the Matrix Logarithm.
– Found. Comput. Math.
(2018)
19,
259
(doi: 10.1007/s10208-018-9385-0)
A lower bound on the positive semidefinite rank of convex bodies.
– CoRR
(2018)
2,
126
(doi: 10.1137/17m1142570)
On representing the positive semidefinite cone using the second-order cone
– Mathematical Programming
(2018)
175,
109
(doi: 10.1007/s10107-018-1233-0)
Adversarial vulnerability for any classifier
– Advances in Neural Information Processing Systems
(2018)
abs/1802.08686,
1178
Equivariant Semidefinite Lifts of Regular Polygons
– Mathematics of Operations Research
(2017)
42,
472
(doi: 10.1287/moor.2016.0813)
Equivariant Semidefinite Lifts of Regular Polygons.
– Math. Oper. Res.
(2017)
42,
472
(doi: 10.1287/moor.2016.0813)
Lieb's concavity theorem, matrix geometric means, and semidefinite optimization
– Linear Algebra and its Applications
(2017)
513,
240
(doi: 10.1016/j.laa.2016.10.012)
Sparse sums of squares on finite abelian groups and improved semidefinite lifts
– Math. Program.
(2016)
160,
149
(doi: 10.1007/s10107-015-0977-z)
Sparse sum-of-squares certificates on finite abelian groups.
– Mathematical Programming
(2016)
160,
149
(doi: 10.1007/s10107-015-0977-z)
Rational and real positive semidefinite rank can be different.
– Oper. Res. Lett.
(2016)
44,
59
(doi: 10.1016/j.orl.2015.11.012)
- <
- 2 of 4