
Professor of Probability
Research Interests: Random walks, Brownian motion, mixing times of Markov chains, Poisson Brownian motions, rearrangement inequalities.
Publications
Intersection and mixing times for reversible chains
          – Electronic Journal of Probability  
  
          (2017)  
  
          22,   
  
          ARTN 12  
  
          (doi: 10.1214/16-ejp18)  
  
  Martingale defocusing and transience of a self-interacting random walk
          – Annales de l Institut Henri Poincaré Probabilités et Statistiques  
  
          (2016)  
  
          52,   
  
          1009  
  
          (doi: 10.1214/14-aihp667)  
  
  Uniformity of the late points of random walk on ${\mathbb {Z}}_{n}^{d}$ Z n d for $d \ge 3$ d ≥ 3
          – Probability Theory and Related Fields  
  
          (2016)  
  
          167,   
  
          1001  
  
          (doi: 10.1007/s00440-016-0697-1)  
  
  Total variation cutoff in a tree
          – Annales de la Faculté des sciences de Toulouse : Mathématiques  
  
          (2016)  
  
          24,   
  
          763  
  
          (doi: 10.5802/afst.1463)  
  
  Random walks colliding before getting trapped
          – Electronic Journal of Probability  
  
          (2016)  
  
          21,   
  
          (doi: 10.1214/16-ejp4414)  
  
  Dimension of fractional Brownian motion with variable drift
          – Probability Theory and Related Fields  
  
          (2015)  
  
          165,   
  
          771  
  
          (doi: 10.1007/s00440-015-0645-5)  
  
  Minkowski dimension of Brownian motion with drift
          – Journal of Fractal Geometry Mathematics of Fractals and Related Topics  
  
          (2014)  
  
          1,   
  
          153  
  
          (doi: 10.4171/jfg/4)  
  
  Hunter, Cauchy rabbit, and optimal Kakeya sets
          – Transactions of the American Mathematical Society  
  
          (2014)  
  
          366,   
  
          5567  
  
    
  A permuted random walk exits faster
          – ALEA : Latin American Journal of Probability and Mathematical Statistics  
  
          (2014)  
  
          11,   
  
          185  
  
  On recurrence and transience of self-interacting random walks
          – Bulletin of the Brazilian Mathematical Society, New Series  
  
          (2013)  
  
          44,   
  
          841  
  
          (doi: 10.1007/s00574-013-0036-4)  
  
  - <
- 2 of 3
