** Professor of Mathematical Sciences **

*Research Interests: * Analysis (partial differential equations, functional inequalities, stochastic processes), foundation of statistical mechanics, kinetic theory

## Publications

Uniqueness of the Non-Equilibrium Steady State for a $1$d BGK model in
kinetic theory

– Acta Applicandae Mathematicae

(2019)

1

(DOI: 10.1007/s10440-019-00290-0)

Long time behavior in locally activated random walks

– Communications in Mathematical Sciences

(2019)

17,

1071

(DOI: 10.4310/cms.2019.v17.n4.a11)

Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation

– Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

(2019)

19,

253

(DOI: 10.2422/2036-2145.201702_001)

Approach to the Steady State in Kinetic Models with Thermal Reservoirs at Different Temperatures

– Journal of Statistical Physics

(2018)

172,

522

(DOI: 10.1007/s10955-018-2074-1)

Landau Damping in Finite Regularity for Unconfined Systems with Screened Interactions

– Communications on Pure and Applied Mathematics

(2018)

71,

537

(DOI: 10.1002/cpa.21730)

Factorization of Non-Symmetric Operators and Exponential H-Theorem

– Mémoires de la Société mathématique de France

(2017)

2017,

1

(DOI: 10.24033/msmf.461)

Exponential Decay to Equilibrium for a Fiber Lay-Down Process on a Moving Conveyor Belt.

– SIAM Journal on Mathematical Analysis

(2017)

49,

3233

(DOI: 10.1137/16M1077490)

Landau damping: paraproducts and Gevrey regularity

– Annals of PDE

(2016)

2,

4

(DOI: 10.1007/s40818-016-0008-2)

Towards an $H$-theorem for granular gases

– Journal of Statistical Mechanics: Theory and Experiment

(2015)

2015,

P11009

On measure solutions of the Boltzmann equation, Part II: Rate of convergence to equilibrium

– Journal of Differential Equations

(2015)

258,

3742

(DOI: 10.1016/j.jde.2015.01.039)

- 1 of 10