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SECTION I

1E Linear Algebra
What is the adjugate of an n× n matrix A? How is it related to A−1? Suppose all

the entries of A are integers. Show that all the entries of A−1 are integers if and only if
detA = ±1.

2D Complex Analysis or Complex Methods
Classify the singularities (in the finite complex plane) of the following functions:

(i)
1

(cosh z)2
;

(ii)
1

cos(1/z)
;

(iii)
1

log z
(−π < arg z < π) ;

(iv)
z

1
2 − 1

sinπz
(−π < arg z < π) .

3F Geometry
Let l1 and l2 be ultraparallel geodesics in the hyperbolic plane. Prove that the li

have a unique common perpendicular.

Suppose now l1, l2, l3 are pairwise ultraparallel geodesics in the hyperbolic plane.
Can the three common perpendiculars be pairwise disjoint? Must they be pairwise
disjoint? Briefly justify your answers.

4A Variational Principles
(a) Define what it means for a function g : R → R to be convex. Assuming g′′ exists,

state an equivalent condition. Let f(x) = x log x, defined on x > 0. Show that f(x) is
convex.

(b) Find the Legendre transform f∗(p) of f(x) = x log x. State the domain of f∗(p).
Without further calculation, explain why (f∗)∗ = f in this case.
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5A Fluid Dynamics
A two-dimensional flow is given by

u = (x,−y + t) .

Show that the flow is both irrotational and incompressible. Find a stream function

ψ(x, y) such that u =
(
∂ψ
∂y ,−

∂ψ
∂x

)
. Sketch the streamlines at t = 0.

Find the pathline of a fluid particle that passes through (x0, y0) at t = 0 in the form
y = f(x, x0, y0) and sketch the pathline for x0 = 1, y0 = 1.

6C Numerical Analysis
Determine the nodes x1, x2 of the two-point Gaussian quadrature

∫ 1

0
f(x)w(x) dx ≈ a1f(x1) + a2f(x2), w(x) = x,

and express the coefficients a1, a2 in terms of x1, x2. [You don’t need to find numerical
values of the coefficients.]

7H Statistics
Let x1, . . . , xn be independent and identically distributed observations from a

distribution with probability density function

f(x) =

{
λe−λ(x−µ), x > µ,

0, x < µ,

where λ and µ are unknown positive parameters. Let β = µ + 1/λ. Find the maximum
likelihood estimators λ̂, µ̂ and β̂.

Determine for each of λ̂, µ̂ and β̂ whether or not it has a positive bias.
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8H Optimization
State sufficient conditions for p and q to be optimal mixed strategies for the row

and column players in a zero-sum game with payoff matrix A and value v.

Rowena and Colin play a hide-and-seek game. Rowena hides in one of 3 locations,
and then Colin searches them in some order. If he searches in order i, j, k then his search
cost is ci, ci + cj or ci + cj + ck, depending upon whether Rowena hides in i, j or k,
respectively, and where c1, c2, c3 are all positive. Rowena (Colin) wishes to maximize
(minimize) the expected search cost.

Formulate the payoff matrix for this game.

Let c = c1+c2+c3. Suppose that Colin starts his search in location i with probability
ci/c, and then, if he does not find Rowena, he searches the remaining two locations in
random order. What bound does this strategy place on the value of the game?

Guess Rowena’s optimal hiding strategy, show that it is optimal and find the value
of the game.
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SECTION II

9E Linear Algebra
If V1 and V2 are vector spaces, what is meant by V1⊕V2? If V1 and V2 are subspaces

of a vector space V , what is meant by V1 + V2?

Stating clearly any theorems you use, show that if V1 and V2 are subspaces of a
finite dimensional vector space V , then

dimV1 + dimV2 = dim(V1 ∩ V2) + dim(V1 + V2).

Let V1, V2 ⊂ R4 be subspaces with bases

V1 = 〈(3, 2, 4,−1), (1, 2, 1,−2), (−2, 3, 3, 2)〉
V2 = 〈(1, 4, 2, 4), (−1, 1,−1,−1), (3, 1, 2, 0)〉.

Find a basis 〈v1,v2〉 for V1 ∩V2 such that the first component of v1 and the second
component of v2 are both 0.

10G Groups, Rings and Modules
(i) Consider the group G = GL2(R) of all 2 by 2 matrices with entries in R and

non-zero determinant. Let T be its subgroup consisting of all diagonal matrices, and N

be the normaliser of T in G. Show that N is generated by T and

(
0 1
1 0

)
, and determine

the quotient group N/T .

(ii) Now let p be a prime number, and F be the field of integers modulo p. Consider
the group G = GL2(F ) as above but with entries in F , and define T and N similarly.
Find the order of the group N .
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11F Analysis II
Define what it means for a sequence of functions kn : A → R, n = 1, 2, . . ., to

converge uniformly on an interval A ⊂ R.

By considering the functions kn(x) = sin(nx)√
n

, or otherwise, show that uniform

convergence of a sequence of differentiable functions does not imply uniform convergence
of their derivatives.

Now suppose kn(x) is continuously differentiable on A for each n, that kn(x0)
converges as n → ∞ for some x0 ∈ A, and moreover that the derivatives k′n(x) converge
uniformly on A. Prove that kn(x) converges to a continuously differentiable function k(x)
on A, and that

k′(x) = lim
n→∞

k′n(x).

Hence, or otherwise, prove that the function

∞∑

n=1

xn sin(nx)

n3 + 1

is continuously differentiable on (−1, 1).

12G Metric and Topological Spaces
Consider the sphere S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}, a subset of R3, as a

subspace of R3 with the Euclidean metric.

(i) Show that S2 is compact and Hausdorff as a topological space.

(ii) Let X = S2/ ∼ be the quotient set with respect to the equivalence relation
identifying the antipodes, i.e.

(x, y, z) ∼ (x′, y′, z′) ⇐⇒ (x′, y′, z′) = (x, y, z) or (−x,−y,−z).

Show that X is compact and Hausdorff with respect to the quotient topology.
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13E Complex Analysis or Complex Methods
Suppose p(z) is a polynomial of even degree, all of whose roots satisfy |z| < R.

Explain why there is a holomorphic (i.e. analytic) function h(z) defined on the region
R < |z| < ∞ which satisfies h(z)2 = p(z). We write h(z) =

√
p(z).

By expanding in a Laurent series or otherwise, evaluate

∫

C

√
z4 − z dz

where C is the circle of radius 2 with the anticlockwise orientation. (Your answer will be
well-defined up to a factor of ±1, depending on which square root you pick.)

14B Methods
(i) Let f(x) = x, 0 < x 6 π. Obtain the Fourier sine series and sketch the odd and

even periodic extensions of f(x) over the interval −2π 6 x 6 2π. Deduce that

∞∑

n=1

1

n2
=

π2

6
.

(ii) Consider the eigenvalue problem

Ly = −d2y

dx2
− 2

dy

dx
= λy, λ ∈ R

with boundary conditions y(0) = y(π) = 0. Find the eigenvalues and corresponding
eigenfunctions. Recast L in Sturm-Liouville form and give the orthogonality condition for
the eigenfunctions. Using the Fourier sine series obtained in part (i), or otherwise, and
assuming completeness of the eigenfunctions, find a series for y that satisfies

Ly = xe−x

for the given boundary conditions.

Part IB, Paper 1 [TURN OVER



8

15B Quantum Mechanics
A particle with momentum p̂ moves in a one-dimensional real potential with

Hamiltonian given by

Ĥ =
1

2m
(p̂+ isA)(p̂ − isA), −∞ < x <∞

where A is a real function and s ∈ R+. Obtain the potential energy of the system. Find
χ(x) such that (p̂− isA)χ(x) = 0. Now, putting A = xn, for n ∈ Z+, show that χ(x) can
be normalised only if n is odd. Letting n = 1, use the inequality

∫ ∞

−∞
ψ∗(x)Ĥψ(x)dx > 0

to show that

∆x∆p > ~
2

assuming that both 〈p̂〉 and 〈x̂〉 vanish.

16D Electromagnetism
Briefly explain the main assumptions leading to Drude’s theory of conductivity.

Show that these assumptions lead to the following equation for the average drift velocity
〈v(t)〉 of the conducting electrons:

d〈v〉
dt

= −τ−1〈v〉 + (e/m)E

where m and e are the mass and charge of each conducting electron, τ−1 is the probability
that a given electron collides with an ion in unit time, and E is the applied electric field.

Given that 〈v〉 = v0e
−iωt and E = E0e

−iωt, where v0 and E0 are independent of t,
show that

J = σE . (∗)
Here, σ = σs/(1 − iωτ), σs = ne2τ/m and n is the number of conducting electrons per
unit volume.

Now let v0 = ṽ0e
ik·x and E0 = Ẽ0e

ik·x, where ṽ0 and Ẽ0 are constant. Assuming
that (∗) remains valid, use Maxwell’s equations (taking the charge density to be everywhere
zero but allowing for a non-zero current density) to show that

k2 =
ω2

c2
ǫr

where the relative permittivity ǫr = 1 + iσ/(ωǫ0) and k = |k|.
In the case ωτ ≫ 1 and ω < ωp, where ω2

p = σs/τǫ0, show that the wave decays
exponentially with distance inside the conductor.
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17A Fluid Dynamics
Starting from the Euler momentum equation, derive the form of Bernoulli’s equation

appropriate for an unsteady irrotational motion of an inviscid incompressible fluid.

Water of density ρ is driven through a horizontal tube of length L and internal radius
a from a water-filled balloon attached to one end of the tube. Assume that the pressure
exerted by the balloon is proportional to its current volume (in excess of atmospheric
pressure). Also assume that water exits the tube at atmospheric pressure, and that gravity
may be neglected. Show that the time for the balloon to empty does not depend on its
initial volume. Find the maximum speed of water exiting the pipe.

18C Numerical Analysis
Define the QR factorization of an m×n matrix A and explain how it can be used to

solve the least squares problem of finding the vector x∗ ∈ Rn which minimises ‖Ax − b‖,
where b ∈ Rm, m > n, and the norm is the Euclidean one.

Define a Givens rotation Ω[p,q] and show that it is an orthogonal matrix.

Using a Givens rotation, solve the least squares problem for

A =




2 1 1
0 4 1
0 3 2
0 0 0


 , b =




2
3
1
2


 ,

giving both x∗ and ‖Ax∗ − b‖.
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19H Statistics
Consider the general linear model Y = Xθ + ǫ where X is a known n× p matrix, θ

is an unknown p×1 vector of parameters, and ǫ is an n×1 vector of independent N(0, σ2)
random variables with unknown variance σ2. Assume the p× p matrix XTX is invertible.
Let

θ̂ = (XTX)−1XTY

ǫ̂ = Y −Xθ̂.

What are the distributions of θ̂ and ǫ̂? Show that θ̂ and ǫ̂ are uncorrelated.

Four apple trees stand in a 2 × 2 rectangular grid. The annual yield of the tree at
coordinate (i, j) conforms to the model

yij = αi + βxij + ǫij, i, j ∈ {1, 2},

where xij is the amount of fertilizer applied to tree (i, j), α1, α2 may differ because of
varying soil across rows, and the ǫij are N(0, σ2) random variables that are independent
of one another and from year to year. The following two possible experiments are to be
compared:

I :
(
xij

)
=

(
0 1
2 3

)
and II :

(
xij

)
=

(
0 2
3 1

)
.

Represent these as general linear models, with θ = (α1, α2, β). Compare the variances of
estimates of β under I and II.

With II the following yields are observed:

(
yij

)
=

(
100 300
600 400

)
.

Forecast the total yield that will be obtained next year if no fertilizer is used. What is the
95% predictive interval for this yield?
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20H Markov Chains
A Markov chain has state space {a, b, c} and transition matrix

P =




0 3/5 2/5
3/4 0 1/4
2/3 1/3 0


 ,

where the rows 1,2,3 correspond to a, b, c, respectively. Show that this Markov chain is
equivalent to a random walk on some graph with 6 edges.

Let k(i, j) denote the mean first passage time from i to j.

(i) Find k(a, a) and k(a, b).

(ii) Given X0 = a, find the expected number of steps until the walk first completes
a step from b to c.

(iii) Suppose the distribution of X0 is (π1, π2, π3) = (5, 4, 3)/12. Let τ(a, b) be the
least m such that {a, b} appears as a subsequence of {X0,X1, . . . ,Xm}. By comparing the
distributions of {X0,X1, . . . ,Xm} and {Xm, . . . ,X1,X0} show that Eτ(a, b) = Eτ(b, a)
and that

k(b, a)− k(a, b) =
∑

i∈{a,b,c}
πi
[
k(i, a) − k(i, b)

]
.

END OF PAPER
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