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SECTION I

1F Analysis II

Let V be the vector space of continuous real-valued functions on [−1, 1]. Show that
the function

‖f‖ =
∫ 1

−1

|f(x)| dx

defines a norm on V .

Let fn(x) = xn. Show that (fn) is a Cauchy sequence in V . Is (fn) convergent?
Justify your answer.

2D Methods

Consider the path between two arbitrary points on a cone of interior angle 2α.
Show that the arc-length of the path r(θ) is given by∫

(r2 + r′2cosec2 α)1/2 dθ ,

where r′ = dr
dθ . By minimizing the total arc-length between the points, determine the

equation for the shortest path connecting them.

3E Further Analysis

(a) Let f : C → C be an analytic function such that |f(z)| 6 1 + |z|1/2 for every z.
Prove that f is constant.

(b) Let f : C → C be an analytic function such that Re (f(z)) > 0 for every z.
Prove that f is constant.

4F Geometry

Show that any isometry of Euclidean 3-space which fixes the origin can be written
as a composite of at most three reflections in planes through the origin, and give (with
justification) an example of an isometry for which three reflections are necessary.
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5H Optimization

Two players A and B play a zero-sum game with the pay-off matrix

B1 B2 B3

A1 4 −2 −5
A2 −2 4 3
A3 −3 6 2
A4 3 −8 −6

Here, the (i, j) entry of the matrix indicates the pay-off to player A if he chooses move Ai

and player B chooses move Bj . Show that the game can be reduced to a zero-sum game
with 2× 2 pay-off matrix.

Determine the value of the game and the optimal strategy for player A.

6B Numerical Analysis

Given (n + 1) distinct points x0, x1, . . . , xn, let

`i(x) =
n∏

k=0
k 6=i

x− xk

xi − xk

be the fundamental Lagrange polynomials of degree n, let

ω(x) =
n∏

i=0

(x− xi),

and let p be any polynomial of degree ≤ n.

(a) Prove that
∑n

i=0 p(xi)`i(x) ≡ p(x).

(b) Hence or otherwise derive the formula

p(x)
ω(x)

=
n∑

i=0

Ai

x− xi
, Ai =

p(xi)
ω′(xi)

,

which is the decomposition of p(x)/ω(x) into partial fractions.

7G Linear Mathematics

Let α be an endomorphism of a finite-dimensional real vector space U and let β be
another endomorphism of U that commutes with α. If λ is an eigenvalue of α, show that
β maps the kernel of α − λ ι into itself, where ι is the identity map. Suppose now that
α is diagonalizable with n distinct real eigenvalues where n = dim U . Prove that if there
exists an endomorphism β of U such that α = β2, then λ > 0 for all eigenvalues λ of α.
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8C Fluid Dynamics

Show that the velocity field

u = U +
Γ× r
2πr2

,

where U = (U, 0, 0), Γ = (0, 0,Γ) and r = (x, y, 0) in Cartesian coordinates (x, y, z),
represents the combination of a uniform flow and the flow due to a line vortex. Define and
evaluate the circulation of the vortex.

Show that ∮
CR

(u · n)u dl → 1
2Γ×U as R →∞,

where CR is a circle x2 + y2 = R2, z = const. Explain how this result is related to the lift
force on a two-dimensional aerofoil or other obstacle.

9G Quadratic Mathematics

Let f(x, y) = ax2 + bxy + cy2 be a binary quadratic form with integer coefficients.
Explain what is meant by the discriminant d of f . State a necessary and sufficient
condition for some form of discriminant d to represent an odd prime number p. Using
this result or otherwise, find the primes p which can be represented by the form x2 + 3y2.

10A Special Relativity

What are the momentum and energy of a photon of wavelength λ?

A photon of wavelength λ is incident on an electron. After the collision, the photon
has wavelength λ′. Show that

λ′ − λ =
h

mc
(1− cos θ),

where θ is the scattering angle and m is the electron rest mass.
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SECTION II

11F Analysis II

State and prove the Contraction Mapping Theorem.

Let (X, d) be a bounded metric space, and let F denote the set of all continuous
maps X → X. Let ρ : F × F → R be the function

ρ(f, g) = sup{d(f(x), g(x)) : x ∈ X} .

Show that ρ is a metric on F , and that (F, ρ) is complete if (X, d) is complete. [You may
assume that a uniform limit of continuous functions is continuous.]

Now suppose that (X, d) is complete. Let C ⊆ F be the set of contraction mappings,
and let θ : C → X be the function which sends a contraction mapping to its unique fixed
point. Show that θ is continuous. [Hint: fix f ∈ C and consider d(θ(g), f(θ(g))), where
g ∈ C is close to f .]

12D Methods

The transverse displacement y(x, t) of a stretched string clamped at its ends x = 0, l
satisfies the equation

∂2y

∂t2
= c2 ∂2y

∂x2
− 2k

∂y

∂t
, y(x, 0) = 0,

∂y

∂t
(x, 0) = δ(x− a) ,

where c > 0 is the wave velocity, and k > 0 is the damping coefficient. The initial
conditions correspond to a sharp blow at x = a at time t = 0.

(a) Show that the subsequent motion of the string is given by

y(x, t) =
1√

α2
n − k2

∑
n

2e−kt sin
αna

c
sin

αnx

c
sin /(

√
α2

n − k2 t)

where αn = πcn/l.

(b) Describe what happens in the limits of small and large damping. What critical
parameter separates the two cases?
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13E Further Analysis

(a) State Taylor’s Theorem.

(b) Let f(z) =
∑∞

n=0 an(z−z0)n and g(z) =
∑∞

n=0 bn(z−z0)n be defined whenever
|z−z0| < r. Suppose that zk → z0 as k →∞, that no zk equals z0 and that f(zk) = g(zk)
for every k. Prove that an = bn for every n > 0.

(c) Let D be a domain, let z0 ∈ D and let (zk) be a sequence of points in D that
converges to z0, but such that no zk equals z0. Let f : D → C and g : D → C be analytic
functions such that f(zk) = g(zk) for every k. Prove that f(z) = g(z) for every z ∈ D.

(d) Let D be the domain C\{0}. Give an example of an analytic function f : D → C
such that f(n−1) = 0 for every positive integer n but f is not identically 0.

(e) Show that any function with the property described in (d) must have an essential
singularity at the origin.

14F Geometry

State and prove the Gauss–Bonnet formula for the area of a spherical triangle.
Deduce a formula for the area of a spherical n-gon with angles α1, α2, . . . , αn. For what
range of values of α does there exist a (convex) regular spherical n-gon with angle α?

Let ∆ be a spherical triangle with angles π/p, π/q and π/r where p, q, r are integers,
and let G be the group of isometries of the sphere generated by reflections in the three
sides of ∆. List the possible values of (p, q, r), and in each case calculate the order
of the corresponding group G. If (p, q, r) = (2, 3, 5), show how to construct a regular
dodecahedron whose group of symmetries is G.

[You may assume that the images of ∆ under the elements of G form a tessellation
of the sphere.]

15H Optimization

Explain what is meant by a transportation problem where the total demand equals
the total supply. Write the Lagrangian and describe an algorithm for solving such a
problem. Starting from the north-west initial assignment, solve the problem with three
sources and three destinations described by the table

5 9 1 36
3 10 6 84
7 2 5 40

14 68 78

where the figures in the 3×3 box denote the transportation costs (per unit), the right-hand
column denotes supplies, and the bottom row demands.
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16B Numerical Analysis

The functions H0,H1, . . . are generated by the Rodrigues formula:

Hn(x) = (−1)nex2 dn

dxn
e−x2

.

(a) Show that Hn is a polynomial of degree n, and that the Hn are orthogonal with
respect to the scalar product

(f, g) =
∫ ∞

−∞
f(x)g(x)e−x2

dx .

(b) By induction or otherwise, prove that the Hn satisfy the three-term recurrence
relation

Hn+1(x) = 2xHn(x)− 2nHn−1(x) .

[Hint: you may need to prove the equality H ′
n(x) = 2nHn−1(x) as well.]

17G Linear Mathematics

Define the determinant det(A) of an n × n complex matrix A. Let A1, . . . , An

be the columns of A, let σ be a permutation of {1, . . . , n} and let Aσ be the matrix
whose columns are Aσ(1), . . . , Aσ(n). Prove from your definition of determinant that
det(Aσ) = ε(σ) det(A), where ε(σ) is the sign of the permutation σ. Prove also that
det(A) = det(At).

Define the adjugate matrix adj(A) and prove from your definitions that A adj(A) =
adj(A) A = det(A) I, where I is the identity matrix. Hence or otherwise, prove that if
det(A) 6= 0, then A is invertible.

Let C and D be real n × n matrices such that the complex matrix C + iD is
invertible. By considering det(C + λ D) as a function of λ or otherwise, prove that there
exists a real number λ such that C + λ D is invertible. [You may assume that if a matrix
A is invertible, then det(A) 6= 0.]

Deduce that if two real matrices A and B are such that there exists an invertible
complex matrix P with P−1 A P = B, then there exists an invertible real matrix Q such
that Q−1 A Q = B.
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18C Fluid Dynamics

State the form of Bernoulli’s theorem appropriate for an unsteady irrotational
motion of an inviscid incompressible fluid in the absence of gravity.

Water of density ρ is driven through a tube of length L and internal radius a by
the pressure exerted by a spherical, water-filled balloon of radius R(t) attached to one end
of the tube. The balloon maintains the pressure of the water entering the tube at 2γ/R in
excess of atmospheric pressure, where γ is a constant. It may be assumed that the water
exits the tube at atmospheric pressure. Show that

R3R̈ + 2R2Ṙ2 = − γa2

2ρL
. (†)

Solve equation (†), by multiplying through by 2RṘ or otherwise, to obtain

t = R2
0

(
2ρL

γa2

)1/2 [
π

4
− θ

2
+

1
4

sin 2θ

]
,

where θ = sin−1(R/R0) and R0 is the initial radius of the balloon. Hence find the time
when R = 0.

19G Quadratic Mathematics

Let U be a finite-dimensional real vector space endowed with a positive definite
inner product. A linear map τ : U → U is said to be an orthogonal projection if τ is
self-adjoint and τ2 = τ .

(a) Prove that for every orthogonal projection τ there is an orthogonal decomposi-
tion

U = ker(τ)⊕ im(τ).

(b) Let φ : U → U be a linear map. Show that if φ2 = φ and φφ∗ = φ∗ φ, where φ∗

is the adjoint of φ, then φ is an orthogonal projection. [You may find it useful to prove
first that if φφ∗ = φ∗ φ, then φ and φ∗ have the same kernel.]

(c) Show that given a subspace W of U there exists a unique orthogonal projection
τ such that im(τ) = W . If W1 and W2 are two subspaces with corresponding orthogonal
projections τ1 and τ2, show that τ2 ◦ τ1 = 0 if and only if W1 is orthogonal to W2.

(d) Let φ : U → U be a linear map satisfying φ2 = φ. Prove that one can define a
positive definite inner product on U such that φ becomes an orthogonal projection.
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20A Quantum Mechanics

The radial wavefunction for the hydrogen atom satisfies the equation

−~2

2m

1
r2

d

dr

(
r2 d

dr
R(r)

)
+

~2

2mr2
`(` + 1)R(r)− e2

4πε0r
R(r) = ER(r) .

Explain the origin of each term in this equation.

The wavefunctions for the ground state and first radially excited state, both with
` = 0, can be written as

R1(r) = N1 exp(−αr)
R2(r) = N2(r + b) exp(−βr)

respectively, where N1 and N2 are normalization constants. Determine α, β, b and the
corresponding energy eigenvalues E1 and E2.

A hydrogen atom is in the first radially excited state. It makes the transition to
the ground state, emitting a photon. What is the frequency of the emitted photon?
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