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1C (a) State the divergence theorem for a vector field u(x, y, z) in R3, defining all the
symbols you use. [3]

(b) By setting u = aψ, where a is a constant vector and ψ is a scalar field, show

∫

V
∇ψ dV =

∫

S
ψ dS . [3]

(c) By setting u = a×A, where a is a constant vector and A is a vector field, show

∫

V
∇×A dV =

∫

S
n̂×A dS ,

where n̂ is the unit outward normal to the surface S enclosing the volume V . [3]

(d) Consider the vector field P defined via P = r (∇ ·w) where w is another vector
field and r = (x, y, z) is the position vector. Confirm that Pi = ∇j(riwj)− wi and hence
establish that for any scalar field ψ(r),

∫

V
ri∇2ψ dV =

∫

S
ri∇jψ dSj −

∫

S
ψ dSi . [3]

(e) Similarly show that for any tensor field Σkj(r),

∫

V
ri∇j∇kΣkj dV =

∫

S
ri∇kΣkj dSj −

∫

S
Σki dSk . [4]

(f) By finding a suitable Σkj , or otherwise, show that

∫

V
r ∇ ·

(
(∇2ψ)∇ψ

)
dV

can be written as a surface integral for any scalar field ψ(r). [5]
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2C In a simple 1D model of a bacterial colony within a region x ∈ (0, L), the cell
density ρ(x, t) obeys

∂ρ

∂t
= D

∂2ρ

∂x2
+ γρ ,

where D is a constant diffusivity and γ is a constant cell division rate. The boundary
conditions at the region edges are ρ(0, t) = ρ(L, t) = 0 (such that cells leaving the region
by diffusion never return).

(a) Using separation of variables, find a general solution in the form

ρ(x, t) =
∞∑

n=1

anψn(x)e
−λnt ,

where appropriately normalized eigenfunctions ψn and eigenvalues λn should be found
explicitly. [5]

(b) By finding the coefficients an, construct the solution with initial condition
ρ(x, 0) = ρ0δ(x− x0) where x0 ∈ (0, L) and ρ0 > 0. [4]

(c) Show that with the initial condition as in (b), there exists a critical division rate
γc(D,L) (which you should find explicitly) such that for γ < γc the density decays to zero
everywhere but for γ > γc it attains unbounded positive values as t→ ∞. [6]

(d) Show that the result in (c) applies for any initial density profile described by a

function ρ(x, 0) such that ρ(x, 0) ⩾ 0 ∀x ∈ (0, L) and
∫ L
0 ρ(x, 0) dx > 0. [5]

3B Consider the linear second order differential equation

Ly(x) = g(x) with Ly(x) =
d2

dx2
y(x) + 2a

d

dx
y(x) + (a2 + b2)y(x) ,

for a function y(x) defined on 0 ⩽ x < ∞. Here a and b are positive constants and g is
bounded.

(i) Find the most general solution to Ly(x) = 0. [5]

(ii) Consider now the initial conditions

y(0) = 0 ,
dy

dx
(0) = 0 .

Find the Green’s function associated to L for these initial conditions. [10]

With this, write the solution to Ly(x) = g(x). [2]

(iii) Assume that |g(x)| < Ce−sx where C and s are positive constants and s > a. Prove
that y(x) → 0 as x→ ∞. [3]
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4A The Fourier transform f̃(k) of a function f(x) may be defined by

f̃(k) =

∫ ∞

−∞
e−ikx f(x) dx ,

where f(x) is sufficiently well behaved for this integral to converge.

(a) Define the inverse of this Fourier transform. [2]

(b) Prove Parseval’s theorem, which states that

∫ ∞

−∞
|f(x)|2 dx =

1

2π

∫ ∞

−∞
|f̃(k)|2 dk .

[You may assume that
∫∞
−∞ eimx dx = 2π δ(m), where δ(m) is the Dirac δ-function.] [6]

(c) Compute the Fourier transform of the function

f(x) =

{
sin(x) when |x| < π/2 ,

0 otherwise .
[6]

(d) Hence show that the integral

∫ ∞

0

u2 cos2 u

(u2 − π2

4 )2
du =

π

4
. [6]

Natural Sciences IB, Mathematics Paper 1



5

5A A matrix A is said to be anti-Hermitian if A† = −A.

(a) Prove that the eigenvalues of an anti-Hermitian matrix are purely imaginary. [2]

(b) Let A be anti-Hermitian and I be the identity matrix. Explain why the matrix
I +A is invertible. [2]

Matrices U and V are defined by

U = exp(A) ≡
∞∑

n=0

An

n!
and V = (I −A)(I +A)−1 ,

where A is anti-Hermitian and (I +A)−1 is the inverse of I +A.

(c) Show that U and V are unitary. [8]

(d) Express the eigenvalues of U and V in terms of the eigenvalues of A. [You may
assume there exists an invertible matrix M such that MAM−1 is diagonal.] [4]

(e) Compute U and V in the case A =

(
0 1
−1 0

)
. [4]

6A

(a) Prove that eigenvectors of a real symmetric n× n matrix Q can be chosen to form
an orthonormal basis of Rn. [You may assume without proof that the eigenvalues
and eigenvectors of Q are real.] [4]

(b) For each real number α, let Σα be the surface in R3 given by

5x2 − 3y2 − 3z2 + 6xz = α .

By considering a suitable real symmetric matrix, show there is a new orthonormal
basis with associated coordinates (u, v, w) such that Σα is given by

λu2 + µv2 + νw2 = α

for constants λ, µ, ν which you should determine. [You are not required to determine
the explicit form of the basis change (x, y, z) 7→ (u, v, w).] [6]

(c) Sketch the surfaces Σ1, Σ0 and Σ−1 in the (u, v, w) coordinate system. Use separate
axes for each sketch. [6]

(d) Find the (x, y, z) coordinates of the point(s) on Σ−1 that are closest to the origin. [4]
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7B

(a) (i) Show that ∣∣∣∣
z + ib

z − ib

∣∣∣∣ = P ,

where b and P are positive constants, defines a circle in the complex plane.
Find the centre and radius of the circle in terms of b and P . [4]

(ii) Consider a real function V (x, y) in two-dimensions in the half-plane y > 0,
which satisfies

∇2V = 0

outside a circle of radius R centred on y = y0 and x = 0, with y0 > R. The
boundary conditions on the function are

V (x, y) =

{
0 , at y = 0 ,
V0 , on the circle .

Show that

V (x, y) =
V0

cosh−1(y0/R)
ln

∣∣∣∣
x+ iy + ib

x+ iy − ib

∣∣∣∣

for a suitable value of b that you should determine. [7]

[Hint: To determine V (x, y), consider looking at the real part of the complex

function f(z) = ln

(
z + ib

z − ib

)
.]

(b) Consider the Gamma function, defined via the integral

Γ(z) =

∫ ∞

0
tz−1e−tdt ,

for Re(z) > 0.

(i) From this definition, show that Γ(1) = 1. [2]

(ii) For z > 0, using integration by parts, show that

Γ(z + 1) = zΓ(z) . [3]

(iii) Assuming the identity in part (b.ii) is true for all z ∈ C, show that Γ(z) has
poles at all non-positive integers. Determine the order of each pole. [4]
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8B Consider the following second order differential equation

d

dx

(
x(x−m)

d

dx
y(x)

)
+
m3ω2

x−m
y(x) + (x2 +m(x+m))ω2y(x) = 0 , (⋆)

where m and ω are real, positive constants.

(a) Identify all singular points of this differential equation and determine whether they
are regular or irregular. [3]

(b) Consider a series solution to (⋆) around x = m of the form

y(x) =
∞∑

n=0

an (x−m)n+ν , (†)

where a0 ̸= 0. Determine the two candidate values of ν for which a series solution
of the form (†) may exist. [4]

(c) Show that the Wronskian of two linearly independent solutions of (⋆), up to an
overall constant, is of the form

W (x) = exp

(
−
∫ x

p(u)du

)
,

for some function p(u) that you should determine. [3]

(d) Around x = 0, show that one of the solutions to (⋆) can take the form

y1(x) =

∞∑

n=0

bn x
n ,

where b0 ̸= 0. [3]

Use W (x) in part (c) and y1 to write an integral expression that gives the other
linearly independent solution y2. [3]

For small values of x, show that

y2(x) = c0 log(x) + . . . ,

with c0 a constant. [4]
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9C (a) State the Euler-Lagrange equations resulting from minimization of the integral

F =

∫ T

0
f(x, y, ẋ, ẏ) dt, (∗)

with respect to a path (x(t), y(t)) in the (x, y)-plane whose initial coordinates (x(0), y(0))
and final coordinates (x(T ), y(T )) are fixed. [3]

(b) Show that any term in f of the form d
dtg(x, y) has no effect on these equations. [3]

(c) Now let the path (x(t), y(t)) satisfy the constraint equation
∫ T
0 u(x, y)dt = 0.

Give the relevant modification to the Euler-Lagrange procedure and briefly describe how
any Lagrange multiplier λ is to be determined. [4]

(d) An agricultural vehicle moves across a region of the (x, y) plane of variable
terrain, such that the fuel F it consumes obeys (∗) with

f(x, y, ẋ, ẏ) = α(1 + βx)(1 + γ1ẋ+ γ2ẏ) +
δ1
2
ẋ2 +

δ2
2
ẏ2 ,

where α, β, γ1, γ2, δ1, δ2 are positive constants. The driver of the vehicle seeks a path
of fixed duration T from (x, y) = (0, 0) to (S, S) such that F is minimized. Find the
Euler-Lagrange equations for this problem. (You are not asked to solve these.) [4]

(e) The driver now decides it would be simpler to instead take the straight-line path
for which x− y = 0 throughout. The duration T is fixed, as before. Determine x(t) such
that F is minimized for this path. [6]
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10C Consider the Sturm-Liouville eigenproblem for a self-adjoint operator L:

Lyn = λnwyn ,

where Ly ≡ −(py′)′ + qy ,

for complex functions y(x) of a real variable x in the interval a ⩽ x ⩽ b, with real functions
p(x), q(x), w(x).

(a) Show that the eigenvalues λn are real, and that the eigenfunctions yn can be
chosen real. State without proof the orthonormality relation obeyed by the yn. [5]

(b) Derive the result (for real yn)

w(ξ)

∞∑

n=1

yn(ξ)yn(x) = δ(x− ξ) .

Derive an expression for the Green’s function G(x; ξ) of L which obeys

LG(x; ξ) = δ(x− ξ) ,

subject to the same boundary conditions as are obeyed by y(x). [5]

(c) Now take (a, b) = (0, 1) with the following boundary conditions on y:

y(0) = 0 ;
y′(1)
y(1)

=
1

α
, (∗)

where α is a positive real constant. By considering the case Ly = −y′′ and w = 1, show
that any real function f(x) on the interval 0 ⩽ x ⩽ 1, obeying boundary conditions as in
(∗), can be written as the “pseudo-Fourier” series

f(x) =
∞∑

n=1

an sin(qnx) ,

where qn is the n-th positive root of tan q = αq. Give an expression for the coefficients
an. [7]

(d) Using integration by parts confirm explicitly the orthogonality relation

∫ 1

0
sin(qnx) sin(qmx) dx = 0 for n ̸= m,

with qn as defined in part (c). [3]

END OF PAPER
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