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SECTION A

1

(a) Calculate the modulus of the vector (1, 2, 1)⊤. [1]

(b) Calculate the angle between the vectors (1, 2,−1)⊤ and (0,−1, 1)⊤. [1]

2

Find the gradient and y-intercept for the tangent to the curve

y = x2 + lnx

at the point where x = 1. [2]

3

Differentiate f(x) = exp(2− x2) with respect to x and find the maximum value of
f(x). [2]

4

(a) Calculate the sum of the odd integers from 5 to 55 inclusive. [1]

(b) Calculate the sum of the infinite geometric series with first term 4 and common [1]ratio 1
3 .

5

Solve the following inequality for x:

x ⩾ (x− 1)2. [2]

6

(a) How many real solutions exist for the following simultaneous equations?

{
x2 + y2 = 1 ,

y = (x− 1)2 .
[1]

(b) What are they? [1]
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7

Simplify the following equation

2 secx− tanx =
√
3

and then solve it for x in the range 0 ⩽ x < π/2. [2]

8

Find the radius and the coordinates of the centre of the following circle:

4x2 − 8x+ 4y2 + 4y = 11 . [2]

9

Find the values of a and n such that, for sufficiently small nonzero |x|,

(1 + ax)n = 1− 2x+ 3x2 + . . . . [2]

10

(a) Calculate the indefinite integral of x cosx. [1]

(b) Calculate the area between the x-axis and the curve y = sinx in [1]the interval 0 ⩽ x ⩽ π.
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SECTION B

11Z

(a) Show that for any two complex numbers, z1 and z2,

(i) (z1 + z2)
∗ = z∗1 + z∗2 , [1]

(ii) (z1z2)
∗ = z∗1z

∗
2 , [1]

where z∗ is the complex conjugate of z.

(b) By considering the complex numbers z1 = 1 + iA and z2 = 1 + iB, where A and B
are real, derive the arctangent addition formula:

arctan(A) + arctan(B) = arctan

(
A+B

1−AB

)
.

[You may assume that the arguments of all complex numbers used in the derivation
lie between −π/2 and π/2.] [2]

(c) Show that for any two complex numbers z1 and z2, the quantity Q = z1z
∗
2 does not

change if both z1 and z2 are rotated by an angle α around the origin of the complex
plane. [2]

(d) Treating z1 and z2 as vectors in the complex plane, give an interpretation of

(i) the real part of Q = z1z
∗
2 , [1]

(ii) the imaginary part of Q = z1z
∗
2 . [1]

(e) Show that for real x and y obeying x = cos y, the following relation holds:

y = ±i ln
(
x+ i

√
1− x2

)
+ 2nπ ,

for integer n. [6]

(f) For θ ̸= 2pπ, where p is an integer, show that

N−1∑

n=0

cosnθ =
cos (N−1)θ

2 sin Nθ
2

sin θ
2

.

What value does the sum take when θ = 2pπ? [6]
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12S

An axisymmetric dumbbell (see figure) consists of a cylindrical handle and two
identical end pieces (grey) shaped as truncated spheres with the caps removed for smooth
attachment to the handle as shown in the figure. The truncated spheres have radii βa and
their centres are distance αa from the centre of the dumbbell. The length of the handle
is 2γa. The positive constants α, β and γ satisfy α − β < γ < α, and the constant a has
the dimension of length. The dumbbell is made of material of uniform density ρ.

2aa

2ga

ba ba

(a) Show that the radius of a circular cross-section of the cylindrical handle is

a
√
β2 − (α− γ)2. [1]

(b) Calculate the mass of the handle using multiple integration in cylindrical polar
coordinates. [3]

(c) Calculate the mass of each end piece (a truncated sphere) using multiple integration
in suitably chosen cylindrical polar coordinates. [7]

(d) Repeat the calculation in part (c) using multiple integration in suitably chosen spherical
polar coordinates. [8]

(e) Calculate the total mass of the dumbbell. [1]
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13Y

(a) Find the general solution of the differential equation

dy

dx
=

4y2

x2
− x2y2 . [6]

Determine the solution in each of the following cases:

(i) y(1) = 1 , [1]

(ii) y(2) = 0 . [1]

(b) Consider the following differential form,

µ(x)
(
xy − 16x− x3

)
dx+ µ(x)

(
16 + x2

)
dy ,

where µ(x) is an unknown real-valued differentiable function.

(i) Find a function µ(x) for which this differential form is exact. [6]

(ii) Hence or otherwise, find in explicit form the general solution of the equation

(
xy − 16x− x3

)
+
(
16 + x2

) dy

dx
= 0 . [6]
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14R

(a) A right-angled triangle of area A has sides of length a, b and c, where c is the
hypotenuse. Small changes da and db are made to the sides a and b, respectively.
Find expressions for the fractional change of the hypotenuse dc/c and the fractional
change in the area of the triangle dA/A in terms of a, b and their changes. Find the
fractional change in area if a increases by 1% and b decreases by 2%. [6]

(b) Consider a function z(x, y) defined implicitly by the equation

x− αz = φ(y − βz),

where α and β are real constants and φ is an arbitrary differentiable function. Show
that z(x, y) satisfies

α
∂z

∂x
+ β

∂z

∂y
= 1 . [6]

(c) Consider a function z(x, y) that satisfies z(λx, λy) = λnz(x, y) for an arbitrary real
positive λ and an integer n. Show that

x
∂z

∂x
+ y

∂z

∂y
= nz

and

x2
∂2z

∂x2
+ 2xy

∂2z

∂x∂y
+ y2

∂2z

∂y2
= n(n− 1)z . [8]

15T

(a) State Taylor’s theorem by giving the series expansion about x = a of a function f(x)
that is (n + 1)-times differentiable, showing the first n + 1 terms, together with an
expression for the remainder term Rn+1. [4]

(b) Taking f(x) = lnx and n = 2, use the Taylor series expansion of f(x) about x = 1
to obtain an approximate value for ln(1.1). Explain whether your answer is an
overestimate or an underestimate, and give an upper bound on the error. [4]

(c) Using any method, obtain the first 3 non-zero terms in the Taylor series expansions of

(i) (coshx)−1/2 about x = 0 ; [6]

(ii) esinx about x = π/2 . [6]

[You may quote and use standard Taylor series expansions of known functions.]
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16W

A box contains white and black balls. Initially, a fraction x of the balls are white
and the remaining balls are black. An integer number of balls, k > 0, is taken from the
box without replacement. Let pw be the probability that these balls taken from the box
are all white.

(a) Consider a particular case of x = 1
2 and k = 2.

(i) Show that the total number of balls in the box is N = 2(1−2pw)
1−4pw

. [4]

(ii) Find in terms of pw the probability, pd, that the balls taken from the box are of
different colours. [2]

(b) Consider a more general case of 0 ⩽ x ⩽ 1 and k = 2.

(i) Find pd in terms of x and pw. [3]

(ii) Given that both balls taken from the box are of the same colour, find the
probability that they are black. Express your answer in terms of x [3]and pw.

(c) Let x = 1
2 .

(i) For k = 3, it is given that the probability pw that all three balls are white is
pw = 2

19 . Find N , the total number of balls in the box. [3]

(ii) From the box containingN balls, withN found in part c(i), k = 12 balls are taken
without replacement. Find the probability that 4 of them are white. Express
your answer in the form of a fraction,

(
N1

m1

)(
N2

m2

)
(
N
k

) ,

where you need to find the integers N1, N2, m1 and m2. [5]
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17R

Evaluate the following integrals:

(a)

∫ 9

4

dx√
x− 1

; [4]

(b)

∫ π/3

π/4

1 + tan2 x

(1 + tanx)2
dx ; [5]

(c)

∫
e2x − 2ex

e2x + 1
dx ; [4]

(d)

∫
dx

1 + 3 cos2 x
. [7]
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18V

(a) Let A =



4 0 0
0 2 4
0 4 2


 and B =



2 1 1
1 2 1
1 4 1


.

(i) Compute the eigenvalues and normalised eigenvectors of A. [9]

(ii) Compute the inverse ofB and hence find all the solutions x of the matrix equation

Bx =



1
2
3


 . [5]

(b) A 3×3 matrix M represents a linear transformation and has eigenvalues 1, 1, and −1.

The eigenvectors are



1
0
0


,



0
1
0


, and



0
0
1


 but they do not necessarily correspond

to the eigenvalues in that order.

(i) Give a geometric interpretation of all the transformations that M could repres-
ent. [4]

(ii) Calculate M2



x
y
z


. [2]
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19T*

(a) Determine the 100th derivative of x2ex. [3]

(b) (i) State the ϵ, δ definition of what it means for a function f(x) to be continuous at
x = a. [2]

(ii) Let p be a real number and let

f(x) =

{
|x|p cos(1/x) if x ̸= 0 ,

0 if x = 0 .

For what values of p is f(x) continuous at x = 0? For those values, give a proof
of continuity at x = 0 using the ϵ, δ definition. [5]

(iii) For what values of p is f(x) differentiable at x = 0? What is f ′(0) for those
values of p? [3]

(c) Determine whether the following series are convergent:

(i)
∞∑

n=1

n4

3n
; [3]

(ii)
∞∑

n=1

n2 + 2n

n3 + 3n2 + 1
. [4]

Give brief justification of your answers.

[You may assume standard results for the convergence of series of the form
∑∞

n=1 n
−p.]
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20V*

(a) Write down the formula for

d

dx

[∫ b(x)

a(x)
f(x, t)dt

]
,

assuming that all relevant functions are differentiable and integrable. The derivation
is not required. [2]

(b) The function h(x) is defined by

h(x) =

∫ πx2

x

(
2x2t+ x sin t

)
dt .

Find dh
dx by

(i) using the formula quoted in part (a), [5]

(ii) evaluating the integral and then differentiating with respect to x. [3]

(c) Let

g(x) = exp

(∫ 1

0

tx − 1

ln t
dt

)
.

(i) Derive a first-order differential equation for g(x). [4]

(ii) Specify the range of x for which this equation is valid. [2]

(iii) Determine g(0) and use this as a boundary condition to solve the differential
equation derived in part c(i). [2]

(iv) Find d3

dx3

[∫ −1
x

(∫ −1
x1

g(x2)dx2

)
dx1

]
. [2]

END OF PAPER
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