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SECTION A
1

Determine the numerical values of the coefficients of x4 and x5 in the expansion of

(1 + x)8 .

[2]

2

Given that x =
3

2
is a root of the cubic polynomial

2x3 − 5x2 + x + 3 ,

find the other two roots.
[2]

3

Find all solutions for x and y of the simultaneous equations

{
x+ y = 1 ,

x− x2 + 2y2 = 2 .

[2]

4

Find the radius and the coordinates of the centre of the circle

x2 + y2 + 2x+ 4y = 4 .

[2]

5

Find the values of the parameters A and φ, with A > 0 and 0 6 φ < 2π, such that

cos t+
√
3 sin t = A sin(t+ φ)

for all real values of t.
[2]
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6

Find integers p and q such that

10∑

n=1

2−(n/2) =
p+ q

√
2

32
.

[2]

7

Find the stationary values of the function

f(x) = exp

(
x

1 + x2

)

and the values of x at which they occur.
[2]

8

Given that
x + y + ex + ey = c ,

where c is a constant, find
dy

dx
in terms of x and y.

[2]

9

Show that ∫ 3

2

2x+ 1

x(x+ 1)
dx = lnn

for some integer n that you should determine.
[2]

10

Calculate the finite area enclosed between the graphs y = 2x and y = 4x e−x.
[2]
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SECTION B
11Y

(a) Find the real and imaginary parts of

(i)
(3− 2i)(4 + 3i) ,

[2]

(ii)
3− 2i

4 + 3i
.

[2]

(b) Find and sketch the set of points in the Argand diagram that satisfy the following
equations with z = x+ iy:

(i)
Re(z2) = Im(z2) ,

[4]

(ii)
Im(z2)

z2
= −i .

[4]

(c) Solve, for real x, the equation

coshx = sinhx+ 2 sechx .

[4]

(d) Find all distinct solutions for z of the equation

cosh z = i .

[4]
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12V

(a) (i) A solid metal object has height H and a circular base of radius R. The radius
of the horizontal cross-section of the object at height z above the base reduces
with z (0 6 z 6 H) according to the formula Re−z/H . Additionally, the cross-
section is a sector of the circle: the full circle (2π radians) at the base but
reducing linearly with height to π radians at height z = H. The figure shows
the horizontal cross-section of the object at the base, at the mid-height, and at
the top. Find the volume of the object. [7]

(ii) Material is removed from the middle of the object by cutting a hole of the
same shape and height, but only 80% of the radius, from inside the object. The
removed metal is reformed as a solid sphere of the same volume. Find the radius,
a, of the sphere in terms of R and H. [3]

(b) A second object has a triangular base in the (x, y)-plane. One edge of the triangular
base runs along the x-axis from −L to +L and the third vertex is at (x, y, z) = (0, D, 0).
The object is symmetric about the (y, z)-plane and attains its maximum height
(measured along the z-axis) at (x, y, z) = (0, 0, H). The cross-section remains
triangular but the width of the object (parallel to the x-axis) varies according to

w(z) = 2L
(
1 − z

2H

)1/2
. The depth of the object (parallel to the y-axis) decreases

linearly with height from D at z = 0 to 0 at z = H.

(i) Sketch the projections of the object on to the (x, y)-plane, the (x, z)-plane and
the (y, z)-plane. [4]

(ii) Calculate the volume of the object. [6]
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13Y

(a) Find explicitly the general solution y(x) of the differential equation

x2
dy

dx
+ xy2 = 4y2 .

[4]

(b) Find explicitly the solution y(x) of the differential equation

dy

dx
− y tanx = 1

subject to the condition
y(π/4) = 3 .

[4]

(c) For the differential equation

dy

dx
=
y

x
+ tan

(y
x

)
,

find explicitly:

(i) the general real-valued solution for y(x), [7]

(ii) the particular solution satisfying y(1) = π/3, [2]

(iii) the particular solution satisfying y(1) = 2π/3. [3]
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14R

(a) Consider the differential form P dx+Qdy, where

P (x, y) =
1 +

√
1 + y2

a
√
x

, Q(x, y) =
y
√
x√

1 + y2
,

x > 0 and a is a non-zero real parameter. Find all values of the parameter a for which
this differential form can be written as an exact differential, i.e. P dx + Qdy = dv,
of some function v(x, y). Hence find the most general function v(x, y) for the
corresponding value(s) of a. [6]

(b) The differential of the volume V of a geometrical figure is given by

dV = (2πrh) dr + (πr2) dh ,

where r and h are non-negative parameters and the volume vanishes when these
parameters are zero. Find an expression for the fractional change in volume dV/V for
fractional changes in the parameters dr/r and dh/h. Find dV/V if r increases by 1%
and h increases by 2%. [4]

(c) Consider the function u(x, y) = xφ(y/x), where φ is a differentiable function of its
argument and x 6= 0. Show that u satisfies

x
∂u

∂x
+ y

∂u

∂y
= u .

[4]

(d) Consider the function u(x, y) which is twice-differentiable in its arguments and in
arguments ξ and η obtained by the following linear transformation of x and y:

ξ = ax− by , η = bx+ ay ,

where a and b are real constants and a2 + b2 = 1. Show that

∂2u

∂x2
+
∂2u

∂y2
=
∂2u

∂ξ2
+
∂2u

∂η2
.

[6]
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15S

Find, by any method, the first three non-zero terms in the Taylor series expansions
about x = 0 of the following functions. [You may quote standard power series without
proof.]

(a) x sinh(x2) [4]

(b) ln
(
1 + ln(1 + x)

)
[8]

(c) sin6 x [8]

16X

Measurements of a continuous random variable X show that the values obtained
always lie in the range 0 6 x 6 1. The probability F (x) of finding values less than or
equal to x is given, for 0 6 x 6 1, by

F (x) = A

(
x3

3
− x4

4

)
.

(a) Calculate the value of A. [2]

(b) Sketch F (x) in the range −1 6 x 6 2 . [3]

(c) Find the probability density function f(x) for X. [2]

(d) Sketch f(x) in the range −1 6 x 6 2 . [3]

(e) The mode is the value of x at which the probability density has its maximum value.
Calculate the mode and mark it on your sketch. [2]

(f) The median is the value of x at which F (x) = 1/2. Is the median greater than or less
than the mode? [2]

(g) Calculate the mean, E[X], and the standard deviation, σ . [3]

(h) What is the probability that X takes a value between E[X]−σ and E[X] +σ? Leave
your answer in terms of rational fractions but do not try to evaluate them. [3]
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17Z

(a) State what is meant for two real-valued functions f(x) and g(x) to be orthogonal on
an interval −L 6 x 6 L. [2]

(b) The basis set of trigonometric functions

cos
nπx

L
, sin

nπx

L
,

for non-negative integer n, are orthogonal over the interval −L < x 6 L. It is given
that the function h(x) can be written as a linear combination of such functions, i.e.

h(x) =
a0
2

+
∞∑

n=1

[
an cos

nπx

L
+ bn sin

nπx

L

]
.

Give expressions for the appropriate coefficients of the expansion of h in terms of this
basis as integrals involving the function h. [2]

(c) A function h(x) is defined as

h(x) = x2 for − 1 < x 6 1 .

Find the expansion of h in terms of the trigonometric functions defined in part (b),
with L = 1. [6]

(d) Hence find the expansion, in terms of the trigonometric functions defined in part (b),
of the function g(x), where

g(x) = x for − 1 < x 6 1 .

[2]

(e) Using your results from parts (c) and (d) above, deduce integers A and B such that

π =
∞∑

n=0

A(−1)n

2n+ 1
and π4 =

∞∑

n=1

B

n4
.

[8]

[You might find it useful to note that for a function defined as in part (b) we have

1

L

∫ L

−L

(
h(x)

)2
dx =

a20
2

+

∞∑

n=1

(
a2n + b2n

)
.]
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18T

Let

A =




2α+ γ γ 2β
2β α β + γ
β + γ α+ 3β α+ γ




be a matrix depending on the real parameters α, β, γ . Let c and b be the vectors

c =




1
1
1


 and b =




4
4
6


 .

(a) Find the values of the parameters α, β, γ such that

Ac = b . (†)

If there is more than one solution for α, β, γ express β and γ in terms of α. [8]

(b) Express the matrix A that satisfies (†) in terms of α and denote the answer by Aα. [2]

(c) Compute det(Aα) . [5]

(d) Show that the matrix Aα is non-singular for every real α. [2]

(e) Show that for every real α the matrix Aα has at least one real eigenvalue which is
positive. [3]
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19W*

(a) State without proof the ratio test for series convergence. [2]

(b) By using any test for series convergence, determine whether the following series
converge or diverge:

(i)
∞∑

k=0

1

1 + k2
, [2]

(ii)
∞∑

k=0

a2k+1

2k + 1
, where a > 0 . [3]

(c) State l’Hôpital’s rule for evaluation of limits of functions. [3]

(d) By using any method, find the following limits for real variable x and real parameter a:

(i) lim
x→0+

x lnx , [2]

(ii) lim
x→a

xx − aa

x− a
, where a > 0 , [2]

(iii) lim
x→∞

(
1 + ax +

(
a2

2

)x) 1
x

, where a > 0 . [6]
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20X*

(a) Explain how the method of Lagrange multipliers is used to find the stationary points of
a function f(x, y, z, . . .) subject to a constraint g(x, y, z, . . .) = r for some constant r.
Include some discussion of the theoretical or geometrical basis for the method. Explain
how a second constraint could be taken into account. [6]

(b) The diagram shows the trajectory of a particle travelling between fixed points A and B.
The particle travels at speed c/

√
2 above the fixed horizontal line and at speed c/2

below the line. Distances are as shown in the diagram and the problem is to find
angles θ and φ so as to minimise the travel time.

  

d1

d2

D

θ

ϕ

c
√2

c
2

speed=

speed=

A

B

(i) Use the method of Lagrange multipliers to find a relation between θ and φ. How
is this relation affected if the distance parameters D, d1 and d2 change? [6]

(ii) Use the Lagrange constraint to find an implicit equation for sin θ for the case
D = 2, d1 =

√
3, d2 = 1. Solve this equation for sin θ given the hint that cosec θ

is equal to an integer. [4]

(iii) For the values of the distance parameters defined in part (ii), calculate the
values of θ, φ, the distance travelled, and the time taken. Make a sketch of this
special case to approximate scale. [4]

END OF PAPER

Natural Sciences IA, Mathematics Paper 1


