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1A The interior of a paraboloidal body is defined parametrically in the Cartesian
coordinate system x = (x, y, z) with

x = uv cosφ,

y = uv sinφ,

z =
1

2
(u2 − v2),

where 0 6 u 6 v, 0 6 v < 1 and −π 6 φ < π.

(a) Sketch this body and describe its key characteristics. [4]

(b) Using (u, v, φ) as a coordinate system, determine the Cartesian components of the
vectors hu, hv and hφ such that the Cartesian differential dx is given by

dx = hudu+ hvdv + hφdφ.

Determine also the corresponding scale factors. Is the coordinate system (u, v, φ)
orthogonal (you must justify your answer)? [8]

(c) Determine the Jacobian for this coordinate transformation. [2]

(d) Evaluate the integral

I =

∫

S
F · dS,

where S is the surface of the paraboloidal body, dS is an element of vector area and
F = ∇Ω with Ω = x3 + (x2 + y2)z. [6]
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2A

A linear wave with constant frequency ω can be described in a suitably rotated and
rescaled orthogonal coordinate system (x, y) by the pair of equations

∂b

∂t
+ ω

∂ψ

∂y
+ ε

(
∂ψ

∂x
− ∇̃2b

)
= 0,

∂

∂t
∇̃2ψ − ω ∂b

∂y
− ε ∂b

∂x
= 0,

where b = b(x, y, t), ψ = ψ(x, y, t), ε� 1 is a constant parameter and

∇̃2 = ε2
∂2

∂x2
+

∂2

∂y2
.

(a) Use the substitutions
b = (b0 + εb1 + · · · )e−iωt,

ψ = (ψ0 + εψ1 + · · · )e−iωt,

to rewrite this system in the form

P +Qε+O(ε2) = 0,

R+ Sε+O(ε2) = 0.

Here, bi and ψi (for i = 0, 1, . . .) depend only on x and y and the functions P , Q, R
and S may involve bi, ψi and/or derivatives of these. [5]

(b) Show that P = R = 0 if

b0 = −i∂ψ0

∂y
.

[3]

(c) Set P = Q = R = S = 0 and eliminate bi to determine a differential equation for
ψ0. Show that this differential equation is satisfied when

(
2
∂

∂x
+ i

∂3

∂y3

)
ψ0 = f(x), (‡)

where f(x) is an arbitrary function of x. [6]

(d) Assuming that f(x) = 0 and using separation of variables, find the solution to (‡)
for which ψ0(x = 0, y) = eiky and ψ0 → 0 as x→∞, where k is a real constant. [6]
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3B Consider the second-order differential equation

d2y(x)

dx2
+
α

x

dy(x)

dx
+

(α− 1)2

4x2
y(x) = f(x) , (†)

with α a real constant.

(a) Find the general solution y(x) to (†) for the case f(x) = 0. [6]

(b) Construct the Green’s function G(x, ξ) for (†) in the region x > 0 subject to the
boundary conditions

G(0, ξ) =
dG(x, ξ)

dx

∣∣∣∣
x=0

= 0 .

[8]

(c) Use your Green’s function to solve (†) for the case f(x) = x in the region x > 0,
subject to the boundary conditions

y(0) =
dy(x)

dx

∣∣∣∣
x=0

= 0 ,

with α > −5. [6]
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4C

The Fourier transform f̃(k) of a function f(x) is given by

f̃(k) =

∫ ∞

−∞
f(x)e−ikx dx.

(a) Prove that the Fourier transform of the convolution

h(x) = f ∗ g :=

∫ ∞

−∞
f(t)g(x− t) dt

is given by h̃(k) = f̃(k) g̃(k), where f̃ and g̃ are the Fourier transforms of f and g,
respectively. [4]

(b) Let

f(x) =

{
1, |x| < 1

2 ,

0, otherwise;
g(x) =

{
1− |x|, |x| < 1,

0, otherwise.

Show that

f̃(k) =
2

k
sin

k

2
, g̃(k) =

4

k2
sin2 k

2
,

hence find the convolution of f with itself. [10]

(c) State Parseval’s identity and use the results from part (b) to evaluate

∫ ∞

−∞

sin4 x

x4
dx .

[6]
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5C

(a) What does it mean for an n × n matrix A to be diagonalizable? Show that A is
diagonalizable if and only if it has n linearly independent eigenvectors. [4]

(b) Diagonalize the matrix

M =



a b− a c− b
0 b c− b
0 0 c


 ,

where a, b, c are arbitrary real numbers. [6]

(c) Let I be the identity matrix. Then, for a matrix A such that Ak → 0 as k → ∞,
where 0 is the zero matrix, the following equality is true: (I −A)−1 =

∑∞
k=0A

k.

Find necessary and sufficient conditions on a, b, c ∈ R that ensure Mk → 0 as
k →∞, hence determine for such M the entries of the matrix (I −M)−1. [7]

(d) For a set of n linearly independent vectors (xi)
n
i=1, let B = (Bi,j)

n
i,j=1 be the matrix

with the entries
Bi,j = xT

i xj .

Prove that the quadratic form associated with the matrix B,

Q(c) := cTBc ,

is positive definite, that is to say, Q(c) > 0 for all non-zero c ∈ Rn. [3]

Natural Sciences IB, Mathematics Paper 1



7

6C

(a) Define a skew-Hermitian matrix and show that its eigenvalues are purely imaginary.
Define a unitary matrix and show that its eigenvalues have modulus 1. [4]

(b) Show that if A is skew-Hermitian with distinct eigenvalues (λi)
n
i=1, then its eigen-

vectors are orthogonal and
A = UDU †,

where D = diag (λ1, . . . , λn) and U is unitary. [4]

(c) Let exp(A) be the matrix exponent,

exp(A) :=
∞∑

k=0

Ak

k!
.

Using (b) or otherwise, show that if A is skew-Hermitian with distinct eigenvalues,
then U = exp(A) is unitary. [4]

(d) Suppose that a unitary matrix U can be written as U = A + iB, where A and B
are real antisymmetric matrices, each with n distinct eigenvalues. Show that A and
B have the same eigenvectors and determine the eigenvalues of A and B in terms
of eigenvalues of U . [8]

7C

(a) Write down the Cauchy-Riemann equations for an analytic function f(z) = u(x, y)+
iv(x, y), where z = x + iy, hence show that curves of constant u and curves of
constant v intersect at right angles. [3]

(b) Show that if g(z) is analytic and |g(z)| is constant, then g is constant. [6]

(c) For |z| <∞, find and classify the singularities of the following functions:

(i) cot z , (ii) cot
1

z
, (iii) ecot z .

[4]

(d) Find the power series expansion (with real coefficients) about z = 1 of the function

f(z) =
2z

z2 + 1
.

Determine the radius of convergence of this series. [7]
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8B

(a) Define an ordinary point and a regular singular point of the ordinary differential
equation

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0 .

What are the implications for the existence of a series solution at such points? [6]

(b) Consider the differential equation

d

dx

[
(1− x)

dy

dx

]
+
[
c2 (1− x) + λ

]
y = 0 , (†)

with c > 0 and λ real.

(i) Identify the singular point(s) of (†). [2]

(ii) Show that a series solution of (†) is

y1 = (1− x)σ
+∞∑

n=0

an(1− x)n ,

where you should determine σ and find the recurrence relation for an. Why
can only one solution of this form be found? [6]

(iii) Give the general solution of (†) in terms of an explicit integral involving y1
and the Wronskian. [2]

(iv) Hence show that any solution of (†) that is linearly independent of y1 must
behave like a logarithm of 1− x near x = 1. [4]

9A

(a) Using Fermat’s principle, derive the second-order differential equation for the
trajectory y = ξ(x) of a light ray passing through a medium described by refractive
index n(x, y). Formulate this expression so that there are no derivatives in any
denominators. [7]

(b) A designer needs to determine the shape y(x) of a barrier to be built between the
points (x, y) = (0, 0) and (1, 0). The designer has been told to maximise the area
A =

∫ 1
0 y dx, but ensure that the cost

C =

∫ 1

0

(
y +

(
dy

dx

)2
)
dx

matches the budget B. Using calculus of variations, determine the optimal shape
y(x) and the area A > 0 enclosed. [13]
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10B

The Sturm–Liouville eigenvalue equation is

−
[
p(x)ψ′(x)

]′
+ q(x)ψ(x) = λw(x)ψ(x) , (?)

where p(x) > 0, q(x) > 0 and w(x) > 0 for a 6 x 6 b, and primes denote differentiation
with respect to x.

(a) Show that for particular boundary conditions (which you must specify) finding the
eigenvalues λ in (?) is equivalent to finding the stationary values of the functional

Λ[ψ(x)] =

∫ b

a

[
p(x)ψ′(x)

2
+ q(x)ψ(x)2

]
dx

∫ b

a
w(x)ψ(x)2 dx

.

[6]

(b) A general function ψ̃ can be written as

ψ̃(x) =
+∞∑

n=0

an ψn(x) ,

where an are constants and ψn (n = 0, 1, 2, . . .) are orthonormal eigenfunctions of
(?) with ordered eigenvalues (λ0 6 λ1 6 λ2 6 . . .). Show that

Λ[ψ̃(x)] =
λ0 +

∑+∞
n=1 |bn|2 λn

1 +
∑+∞

n=1 |bn|2
,

where bn = an/a0. Explain how this result allows estimation of the lowest eigenvalue
λ0. [6]

(c) Consider the particular case of the Mathieu equation

−ψ′′(x) + cos(πx)ψ(x) = λψ(x) ,

for 0 6 x 6 1 with the boundary conditions ψ(0) = ψ(1) = 0. Estimate the lowest
eigenvalue λ0 using the trial function ψ̃(x) = sin(πx) + α sin(2πx), with α ∈ R. [8]

END OF PAPER
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