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1A

(a) The inner product of two functions f(x) and g(x), defined on the closed interval
a 6 x 6 b, is

〈f |g〉 =

∫ b

a
f∗(x) g(x)w(x) dx

where w(x) > 0. Consider the operator

L = − 1

w(x)

[
d

dx

(
p(x)

d

dx

)
− q(x)

]
with a 6 x 6 b , (?)

and where p(x), q(x), w(x) are real functions with p(x) > 0.

(i) Derive the boundary conditions under which L is self-adjoint over the range
a 6 x 6 b, with respect to the inner product defined above. [3]

(ii) Show that the eigenvalues of L are real and that any two eigenfunctions of
L with distinct eigenvalues are orthogonal. [4]

(iii) Derive the solution to the inhomogeneous equation

Ly = f

as an eigenfunction expansion assuming that y(x) and f(x) satisfy the
boundary conditions derived in part (i). You may assume that L does
not have zero eigenvalues. [3]

(b) Consider the eigenvalue problem

Ly ≡ − 1

x4
d2y

dx2
+

2

x5
dy

dx
− a y = λ y , (†)

where a is a positive constant and y(0) = y(1) = 0 with 0 6 x 6 1.

(i) Show that L in (†) can be written as in (?) and identify the functions p(x),
q(x) and w(x). [4]

(ii) Find the eigenvalues and orthonormal eigenfunctions of L.

[Hint: Consider the substitution z = x3

3 .] [6]
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2A

(a) Consider solutions to the three dimensional Laplace equation,

∇2Ψ(r) = 0 ,

in a volume V with boundary surface S. Assume that Ψ(r) satisfies a Dirichlet boundary
condition Ψ(r) = f(r) on S, with f defined on S. Using the divergence theorem show that
the solution Ψ(r) is unique. [10]

(b) The function Φ(x, y) defined on the square domain 0 6 x 6 π, 0 6 y 6 π, satisfies

∇2Φ(x, y) +
(
m2 + p2

)
Φ(x, y) = 0 ,

where ∇2 is the two dimensional Laplace operator and m and p are integers. Let S denote
the boundary of the integration domain with unit normal n.

For each of the following, using separation of variables find one non-zero solution
for Φ(x, y) such that:

(i) Φ(x, y) vanishes on S. [6]

(ii) n · ∇Φ(x, y) vanishes on S. [4]
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3A

(a) The modified Bessel function of the second kindKm(r) satisfies the differential equation

r2
d2Km(kr)

dr2
+ r

dKm(kr)

dr
− (m2 + k2r2)Km(r) = 0 .

In three dimensions the function Φ(r) is defined as

Φ(r) = Ar−pKm(kr) ,

where r = |r| and A, k, p and m are real constants. By considering the region r 6= 0,
determine the values of p and m for which Φ(r) satisfies the equation

∇2Φ(r)− k2Φ(r) = δ3(r) , (†)

where in spherical polar coordinates

∇2Φ(r) =
1

r2
∂

∂r

(
r2
∂Φ(r)

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Φ(r)

∂θ

)
+

1

r2 sin2 θ

∂2Φ(r)

∂2φ
. [10]

(b) The functional form of this solution is

Φ(r) = A

√
π

2k

e−kr

r
.

Using the divergence theorem and the behaviour of equation (†) near the origin determine
the value of A.

[Hint: Consider integrating equation (†) over a small region containing the origin.] [6]

(c) Now consider the equation

∇2Ψ(r, r′)− k2Ψ(r, r′) = δ3(r− r′) .

Using the method of images determine the Green’s function Ψ(r, r′) for a domain D with
Dirichlet boundary conditions on z = 0 and where D is the half-space of R3 with z > 0. [4]
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4A

(a) State and prove Cauchy’s theorem. [You may assume the Cauchy-Riemann equations.] [4]

(b) Use contour integration to determine the value of

∫ +∞

0

x1/n

a2 + x2
dx

where a is real and positive, and n > 1. State clearly the location of any branch cut
required. [8]

(c) By applying the calculus of residues show that for 0 < a < 1

∫ 2π

0

1

a2 + tan2 θ
dθ =

C

a(1 + a)
,

where C is a constant you should determine.

[Hint: You may use

res
z=±

√
1−a
1+a

f(z) =
1

2(1− a2)a
,

with

f(z) =
1

z

(1 + z2)2

a2(1 + z2)2 − (1− z2)2
.

] [8]
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5B

(a) The Fourier transform and its inverse for a function f(t) are given by

f̃(ω) =

∫ ∞

−∞
f(t)e−iωtdt , f(t) =

1

2π

∫ ∞

−∞
f̃(ω)eiωtdω .

(i) Compute the Fourier transforms of the functions f1(t) = eiω0t and
f2(t) = sin(ω0t), where ω0 is a real constant. [2]

(ii) Compute the inverse Fourier transform of the convolution (f̃ ∗ g̃)(ω) in terms of
f(t) and g(t). [2]

(iii) Show that the Fourier transform of the Heaviside function

H(t) =

{
1 for t > 0
0 for t < 0

,

is H̃(ω) = A
ω +Bδ(ω), where δ denotes the Dirac delta function, and A and B are

constants you should determine.

[Hint: Compute the inverse Fourier transform of 1
ω . You may use∫∞

0
sinx
x dx = π

2 .] [4]

(iv) Compute the Fourier transform of f(t) = H(t) sin(ω0t). [3]

(b) Consider the differential equation

∂2y

∂t2
=
∂2y

∂x2
+ F (t)δ(x− x0) , (†)

for the function y(t, x) on the domain 0 6 x 6 L, −∞ < t <∞, with boundary conditions
y(t, 0) = y(t, L) = 0, and where x0 is a constant with 0 < x0 < L.

(i) Apply a Fourier transform in the time domain, treating x as a constant parameter
in this process, to show that equation (†) can be rewritten as

∂2ỹ(ω, x)

∂x2
= −ω2ỹ(ω, x)− F̃ (ω)δ(x− x0) ,

where you may assume that the individual Fourier transforms ỹ and F̃ exist. [2]

(ii) Define bn(ω) = 2
L

∫ L
0 ỹ(ω, x) sin(knx)dx for positive integer n and kn = nπ

L . Show
that

bn(ω) = αn
F̃ (ω)

k2n − ω2
,

where αn is a constant (depending on n) which you should determine. [4]

[QUESTION CONTINUES ON THE NEXT PAGE]
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(iii) Use the coefficient functions bn(ω) to show that

y(t, x) = C

∞∑

n=1

sin(knx0) sin(knx)

∫ ∞

−∞

F̃ (ω)eiωt

k2n − ω2
dω ,

is a solution to equation (†), where C is a constant that you should determine. [3]
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6B

(a) Let {ei} and {e′i} with i = 1, 2, 3 denote two sets of orthonormal basis vectors.

(i) Write down the transformation law for a tensor Sa1a2...an of order n under an
orthogonal basis transformation

e′i = Lijej .

What are the possible values of the determinant of the transformation matrix,
detL? [2]

(ii) Let εijk denote the Levi-Civita symbol. Use the transformation law for pseudo-
tensors to show that under an orthogonal transformation, ε′ijk = εijk . [5]

(b) Consider an infinitesimally thin mass distribution of parallelogram shape in the (x1, x2)
plane defined by the corner points (−2D,−D), (0, D), (2D,D) and (0,−D), as shown in
the figure. The mass density is ρ(x1, x2, x3) = σδ(x3), D and σ are positive real constants,
and δ denotes the Dirac delta function.
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(i) Calculate the inertia tensor Iij =
∫

(xkxkδij−xixj) ρdV of this mass distribution. [8]

(ii) Determine the moments of inertia and the principal axes of this mass distribution. [5]
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7B

(a) Consider the one-dimensional motion of three equal point masses m connected to each
other and fixed walls at either end by four equal springs as shown in the figure.
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The masses, springs and walls are all aligned along the X axis, and the masses have
equilibrium positions X0

1 , X0
2 and X0

3 . The masses can move along the X direction with
displacements xi(t) = Xi(t)−X0

i and each spring responds to a change in length ∆x with
a restoring force F = −k∆x where k is a positive constant.

(i) Write down the Lagrangian in the form L = 1
2Tij ẋiẋj − 1

2Vijxixj for this system,
where summation over i and j is assumed. Be sure to give explicit expressions for
the matrices T and V. [3]

(ii) Determine the three normal mode frequencies in terms of k and m by solving the
characteristic equation det(V−ω2T) = 0. Determine the generalized eigenvectors
associated with these normal mode frequencies. [4]

(iii) Write down the general solution for the motion of the masses in terms of the
eigenvectors and normal mode frequencies. Specify explicitly the free parameters
of this general solution. [2]

(b) Consider the same arrangement as in part (a) but now with N equal masses m
connected to each other and the two fixed walls by N + 1 springs with spring constant k.
The equilibrium positions of the masses are X0

i , i = 1, . . . , N .

(i) Write down the Lagrangian for this system and the resulting matrix V − ω2T. [2]

(ii) Show that the determinant DN = det(V − ω2T) can be evaluated from a
recurrence relation for DN in terms of DN−1 and DN−2. [2]

(iii) Using the ansatz DN = βN , show that the recurrence relation is solved by
DN = c1β

N
1 +c2β

N
2 , where β1+β2 = 2k−mω2 and β1β2 = k2. Use the expressions

for DN for small N to determine the coefficients c1 and c2 in terms of β1 and β2.
[Hint: Show that we can set D0 = 1.] [4]

(iv) Using this expression for DN , show that the characteristic equation DN = 0 leads
to the condition (β1/β2)

N+1 = 1. Based on your derivation, briefly explain how
many distinct solutions to the characteristic equation you would expect for a given
N . [You do not need to compute these solutions.] [3]
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8C Let G be the set of matrices of the form
(

coshx − sinhx
− sinhx coshx

)
,

where x is real.

(a) Show that G forms a group under matrix multiplication. [4]

(b) Define the terms coset, normal subgroup and quotient group, showing that the
latter is indeed a group. [5]

(c) Let G′ be the group generated by elements of G and the matrices

T =

(
1 0
0 −1

)
, P =

(
−1 0
0 1

)
.

Show that G is a normal subgroup of G′. Identify the quotient group G′/G and give its
standard name, justifying your answers. [7]

(d) Is the set of elements generated by T and P also a normal subgroup of G′?
Justify your answer. [4]
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9C

The dihedral group Dn, i.e. the group of symmetries of a regular polygon with n
sides (for n > 3), is generated by elements R and m, where R is of order n, m2 = I and
Rm = mR−1.

(a) Derive the full set of elements of the group, showing that your answer is complete
and that no elements are listed twice. Describe the actions of R and m geometrically. [5]

(b) Obtain the conjugacy classes of Dn, distinguishing the cases of odd and even n. [8]

(c) List all of the proper normal subgroups of Dn in the case when n is prime (and
therefore odd). Justify that your list is complete. [7]
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10C

In parts (c), (d) and (e) of this question you may quote without proof any general
results from the lectures, provided these are clearly stated.

(a) Define a representation, faithful representation and irreducible representation
(irrep) of a group G. [3]

(b) If D is a representation of a group G, prove that D(g−1) = [D(g)]−1 for any
g ∈ G. [3]

(c) Consider the nonabelian group H = {1,−1,+i,−i,+j,−j,+k,−k} with i2 =
j2 = k2 = ijk = −1. Find all the conjugacy classes of H. Deduce the number of
inequivalent irreps and state their dimensions. [5]

(d) Given that the one-dimensional irreps of H have character = 1 for the group
elements ±1, construct the character table for H. [5]

(e) Consider the 4-dimensional representation D of H given by,

D(1) =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , D(−1) =




−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 .

D(i) =




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


 , D(j) =




0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0


 , D(k) =




0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0


 .

Find the multiplicity with which each irrep appears in the decomposition of D into irreps. [4]

END OF PAPER
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