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(a) For a vector field A in three dimensions, show that
Vx(VxA)=V(V-A)-V3A.

(b) State the divergence theorem, taking care to define all the quantities which
appear.

(c) Oblate spheroidal coordinates (p,u,v) are related to Cartesian coordinates
(z,y,2) by

x = coshp cosu cosv,
= coshp cosu sinv,

z = sinhpsinu,

where p > 0, —7/2 < u < 7/2 and 0 < v < 27. Show that these coordinates are
orthogonal. Show that the volume element can be expressed as

dV = cosh p cosu (sinh? p + sin? u) dpdudv .

(d) Describe the surfaces of constant p, the surfaces of constant u and the surfaces

/A-ndS,
s

where A = (232, 32, 2) in Cartesian coordinates, S is the open surface p = R = constant
with z > 0, and n is the outward pointing unit normal to the surface.

of constant v.

(e) Calculate the integral
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Consider the three-dimensional heat equation for a temperature field ¢ (¢, r, 0) in an axially
symmetric configuration

100 10 (,00\ 1 1 0 (. 00
cot r2or\| or)  r2smeos \>" a0 )

where x > 0 is a constant, » > 0 and 0 < 0 < 7.

(a) By using separation of variables, write down ordinary differential equations for the
radial, angular and temporal dependence of ).

(b) Consider the spherically symmetric case for which (¢, 7) is a function of ¢ and r only.
Assuming that

ro0) =sin | "D |2 g ) <o,

Ty —Tr—

with ry > r_ > 0, determine ¢ (¢,r) in the interval r_ < r < rg.
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Consider the linear second order differential equation

d2

B S ()

Ly(x) = f(x) with L= ax) e

for a function y(x) on the interval a < x < b with boundary conditions y(a) = y(b) = 0.
Here, on the interval a < x < b, the functions «, 8 and v are continuous and bounded, «
is non-zero and f is bounded.

(a) Describe how the Green’s function G(z;¢) is defined for this differential equation and
how it can be used to construct a solution y(x) of Ly(x) = f(x).

(b) Show that the Green’s function satisfies the continuity and jump conditions, i.e. that
for any £ with a < £ < b,

(i)  G(=z;¢) is continuous at x = &,

(ii) lim d¢ im dc b
a—met dz ame- dz a(z)

I’

where x — €1 (x — £7) denotes the limit towards £ from above (below).

(c) Use the continuity and jump conditions to construct the Green’s function for the
differential equation

d*y  dy
oz 2 tw=f@), 0<e<i, y(0)=y(3)=0 (1)

(d) Use this Green’s function to construct the solution of Eq. (}) for f(z) =e”.
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The Fourier transform and its inverse for a function f(x) are given by

f(k) = /_OO f(x)e ™ dg flz) = % /_OO F(k)eike dk

(a) Show that an absolutely integrable function f(z) and its Fourier transform f(k) obey

Parseval’s theorem o 1 [
2 F(1)|2
de = — k)|“dk.
| it@Pas= o [ i)

—00 —0o0

(b) Compute the Fourier transform of f(x) = 2cos?(ax), where a > 0 is a real constant.
[e.e]

[You may use that 2wé(k) = / e_ikmd:p.}

—00

(c) Let @ > 0 be a real constant and

CcoS T for —a<z<a
0 elsewhere
Show that the Fourier transform of f(z) is given by

z.. _ Akcosa sin(ak) + psina cos(ak)

f(k)_ ]{72—1 ’

where A and p are numerical constants you should compute. Determine how the behaviour
of f(k) in the limit |k| — oo depends on the value of a and briefly interpret this dependence.
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(a) The matrix
cos¢p —sing 0
R,(¢)=| sing cos¢p O )
0 0 1

rotates a vector about the z-axis by an angle ¢. Show that, when acting on a vector v as
v/ = R, (¢)v, this matrix preserves the length |v'| = |v].

(b) Find the eigenvalues of R,(¢) and determine the values of ¢ for which the eigenvalues
are real. Interpret this result geometrically.

(c) Find a matrix Ry (6) which rotates a vector about the y-axis by an angle .

(d) A new rotation matrix Rq(6, ¢) = R;(¢)Ry(0) is formed from the product of R,(¢)
and Ry (). Determine if Rq(0, ¢) is

(i) orthogonal,

(ii) unitary,

(iii) Hermitian.
(e) Is the matrix

M = R1(97 d)) - RlT(97 d)) )

Hermitian, anti-Hermitian, or neither?

(f) Find the values of § and ¢ in the ranges 0 < # < 7 and 0 < ¢ < 27 for which R1(6, ¢)
maps the vector v = (0,0,1) to v/ = (0,1,0). For these values of § and ¢ does the matrix
R (0, ¢) = Ry(0)R,(¢) also map v to v'?

() Find the general form of a new matrix R(6, ¢) = D'R1 (6, ¢)D which maps the vector
v = (0,0,¢) to v/ = (0,b,0), where D and D’ are diagonal matrices and the values of ¢
and ¢ are the same as in part (f).
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(a) Prove that the eigenvalues of an Hermitian matrix are real. Prove also that the
eigenvectors corresponding to distinct eigenvalues of an Hermitian matrix are orthogonal.

(b) Define a unitary matrix. Show that if px is an eigenvalue of a unitary matrix then
lul=1.

(c) Let I denote the identity matrix and A be an n x n complex Hermitian matrix, with
a set of n linearly independent eigenvectors e; so that

A €; = /\j €; .
For real and positive a, show that (A + aiI) is invertible, and that
V=(A—-ial)(A+ial)™!

is unitary. What are the eigenvalues and eigenvectors of V 7

(d) Let U be a unitary matrix, and assume that 1 is not an eigenvalue, so that I — U is
invertible. Show that the matrix

B=iI+U)I-U)"!

is Hermitian.
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(a) An analytic function of the complex number z = e can be written as
f(2) = u(r,0) +iv(r,0)

where u and v are real functions. Show that the Cauchy-Riemann equations for u(r,6)
and v(r, #) in polar coordinates with r > 0 are

1% ov 8u718v

- - _Z — = 4
r 06 or ’ or  rob 4]
(b) For u(r, @) of the form
u(r,0) = r" cos(nb) ,

where n is a positive integer, use the Cauchy-Riemann equations from part (a) and the
boundary condition f(0) =0 to determine the form of v(r, ), and hence f(z). [4]

(c) Find and classify the zeroes of
f(2) = cos’(z)
Does this function have a pole or essential singularity as |z| — co? [4]

(d) For each of the following functions, find the series expansion about z = 0,
g(z) = > anz", giving an expression for a,, and determine the radius of convergence.
n

(i)

1
g(Z) - 20 1z ’
where z( is a complex constant,
(i)
sin(z)
= 8
9z) = T2 3
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Consider the differential equation

d’y , dy
4% (1 4 2)—5 — da— =
where y(x) is a real function of a real variable x.

(a) Identify all singular points of this differential equation and determine whether they
are regular.

(b) Consider a series solution of equation () of the form

y(@) =Y ana™, )
n=0

where ag # 0. Derive the recurrence relation for the coefficients ai by inserting the series
expansion into equation ().

(c) Determine the two candidate values of o for which a series solution of the form (f)
may exist.

(d) Using the result of part (b), determine the recurrence relation for the larger of the two
candidate values of o, making sure that you simplify the result as much as possible. Write
down the resulting series solution. How many free parameters does this solution have?

(e) Express the series solution from part (d) in closed form. [Hint: You may find it helpful
to Taylor expand In(1 + x).]

(f) Show that for the smaller of the candidate values of o, the series () can be terminated
such that ap = 0 for £ > 1. Write down the solution y(z) of equation (}) corresponding
to this case.
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(a) State the Fuler-Lagrange equation for extremizing the functional

8
F[y]Z/ f(y,y/s2)dz,

where y = y(z) and ¢ = dy/dzx.

(b) If f(y,y’) has no explicit dependence on x, find a first-integral of the problem, i.e. a
nonzero quantity h constructed from f for which dh/dx = 0.

(c) Consider a circular cylinder of radius R with its axis parallel to the ground. Now
consider a ramp which is the inner surface of the half-cylinder formed when this cylinder
is cut in a horizontal plane along its axis and the top half is removed. Work in cylindrical
polar coordinates (7,6, z) with § = 0 pointing vertically downwards, as in the figure below,
and the z-axis along the axis of the cylinder.

(i)

Assuming that z(#) is a single-valued function of 6, show that the length of a
path z(#) along the ramp is given by

02
Llz] = VR?+27d6.
01

Find z(0) for the shortest path between a point on the edge of the ramp at
(2,0) = (z1,—7/2) and a point on the opposite edge of the ramp at (zq,7/2)
with z9 > 2.

Now suppose that a skater initially at rest at (z,0) = (z1,—m/2) wants to
reach (z2,7/2) in the shortest possible time. Assuming conservation of energy
(neglecting any resistive forces), show that the time taken for a path z(#) along
the ramp is
02 2 2
T[2] = 1 / R+ 27 0
V2gR Jo, cos 0

where g is the acceleration due to gravity. Find an expression for dz/df for the
path which minimizes T. [You do not need to solve this equation for z(#).] In
which direction should the skater head initially?
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5=—$(M@£>—“@i‘“@’ )

where a, l~), ¢ are real functions and a(z) > 0 for « < = < . Explain how this can be
related to a Sturm-Liouville operator

£ =@l = -3 (a@o@)y; ) - v, ®
where a(z)w(z) > 0 for a < x < §, specifying how a(z), w(x), ¢(x) are related to L. [4]

(b) Consider a Sturm-Liouville operator £ of the form (1), where the weight function
w(z) > 0 for = in the range a < = < B. The eigenvalue equation for real functions y(x)
defined for a < x < B is

Ly(x) = dw(z)y(z),
with boundary conditions y(a)y(a) = y(B8)y(8) = 0, where § = %. Show that the lowest

eigenvalue Ay can be obtained by minimizing a functional of the form

Al = 5

over functions y satisfying the relevant boundary conditions, where F' and GG are functionals
that depend linearly on £ and w respectively. Specify the precise form of F' and G. [4]
(c) Consider functions y(x) defined for 0 < z < 1 that satisfy
d*y dy
1 — 22)—= + Ay =
( +x)dx2 + 3+ x)dx+ y=20,

with y(0) = 0 and (1) = 0. By applying the results of part (a), rewrite this as a Sturm-
Liouville eigenvalue equation. Hence obtain an upper bound on the lowest eigenvalue A
for such functions by considering a trial function of the form z exp(—zx). [9]

(d) Explain how you could attempt to improve this bound by considering functions
of the following forms:

(i) xexp(—z)+ Cz™ exp(—Ax) for positive integers n and a suitable choice of A
which you should specify.

(ii) zexp(—xz) + C'sin(Bz) for suitable values of B which you should specify.

[ You are not required to obtain any improved bounds. | [3]

END OF PAPER
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