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1C

(a) For vector fields A and B in three dimensions, show that

∇× (A×B) = (B · ∇)A−B(∇ ·A)− (A · ∇)B+A(∇ ·B) . [3]

(b) State Stokes’s theorem, taking care to define all the quantities which appear. [2]

(c) Elliptic cylindrical coordinates (u, v, z) are related to Cartesian coordinates
(x, y, z) by

x = a cosh u cos v ,

y = a sinhu sin v ,

z = z ,

where u > 0, 0 6 v < 2π, −∞ < z < ∞, and a is a positive real constant. Find the basis
vectors hu, hv and hz defined by dr = hu du + hv dv + hz dz, show that the coordinates
are orthogonal, and find the scale factors hu, hv and hz. [5]

(d) Describe the surfaces of constant u, the surfaces of constant v and the surfaces
of constant z. [3]

(e) Consider the surface S with z = c and

x2

cosh2 1
+

y2

sinh2 1
6 a2 ,

where c is a positive constant and the normal to S points in the positive z direction.
Calculate

∫

S

(∇× F) · dS ,

where F = (2 sinhu sin v,−2 cosh u cos v, cosh u) in Cartesian coordinates. [7]
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The temperature, T (x, y, t), in a two-dimensional bar satisfies

1

λ

∂T

∂t
=

(

∂2T

∂x2
+
∂2T

∂y2

)

,

where 0 6 x 6 a, 0 6 y 6 b and λ is a positive constant. The sides x = 0 and x = a are
held at fixed temperature T = 0, whereas the sides y = 0 and y = b are insulating, i.e.
∂T
∂y

∣

∣

∣

y=0
= ∂T

∂y

∣

∣

∣

y=b
= 0.

(a) Using separation of variables and carefully explaining your working, show that
the general solution can be written as

T (x, y, t) =
∑

n,m

Anm sin
(nπx

a

)

cos
(mπy

b

)

exp

[

−
(

n2

a2
+
m2

b2

)

π2λ t

]

,

where Anm are constants and you should specify the ranges of n and m in the sum. [8]

(b) The initial temperature is T (x, y, 0) = x(a− x) sin2
(

2πy
b

)

. What is T (x, y, t)? [10]

(c) What is the leading term in T (x, y, t) for large t? [2]
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(a) Consider an inhomogeneous ordinary differential equation of the form

y′′(x) + p(x)y′(x) + q(x)y(x) = f(x) , (∗)

for a 6 x 6 b subject to homogeneous boundary conditions at x = a and b. Suppose that
ya(x) and yb(x) are linearly independent solutions of the homogeneous equation (where
f(x) = 0) and satisfy the boundary conditions at x = a and x = b respectively. Show that
the Green’s function can be written as

G(x, z) =

{

ya(x)yb(z)
W (z) a 6 x 6 z ,

yb(x)ya(z)
W (z) z 6 x 6 b ,

where W (z) = ya(z)y
′
b(z)− yb(z)y

′
a(z). [5]

(b) Write an expression for y(x), the solution of (∗), in terms of an integral involving
f and G. [1]

(c) Find the general solution y(x) of

d2y

dx2
− 3

x

dy

dx
+ 3

y

x2
= 0 .

[Hint: Consider y = xn.] [3]

(d) Consider the equation

d2y

dx2
− 3

x

dy

dx
+ 3

y

x2
= f(x) ,

for 0 6 x 6 1, with boundary conditions y(0) = y(1) = 0.

(i) Find the Green’s function, G(x, z). [3]

(ii) Find y(x) when

f(x) =

{

0 0 6 x < 1
2

x2 1
2 6 x 6 1 .

[8]
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The Fourier transform of a function f(x) is given by

f̃(k) =

∫ ∞

−∞

f(x)e−ikxdx .

(a) Write down the corresponding expression for the inverse Fourier transform. [1]

(b) The convolution of two functions f(x) and g(x) is

h(x) =

∫ ∞

−∞

f(z)g(x − z)dz .

Prove that h̃(k) = f̃(k)g̃(k). [4]

(c) Find an expression for the Fourier transform of xnf(x) in terms of derivatives
of f̃(k). [4]

(d) Find the Fourier transform of the even function q(x), where

q(x) =

{

1− x 0 6 x 6 1

0 x > 1 .
[5]

(e) Find the Fourier transform of p(x) =
∫ 1
−1 q(x− z)dz, where q(x) is as defined in

part (d). [6]

5A

(a) State the definition of the adjoint A† of a linear operator A with respect to a
general inner product 〈x|y〉. In the special case of the standard dot product on complex
vectors, give an expression for the adjoint operator. [4]

(b) State the definition of an invertible matrix. Assuming that the matrix A is
diagonalizable, prove that A is invertible if and only if det(A) is nonzero. [5]

(c) Let M be an n× n matrix with real entries. Show that MTM is real symmetric
and that all its eigenvalues are non-negative. [5]

(d) Let B be a diagonalizable matrix such that Bk = 0 for some integer k. Show
that B = 0. Give an example of a 2× 2 non-zero matrix C such that C2 = 0. [6]
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(a) Let H be an n × n Hermitian matrix. Explain how to diagonalise H using an
appropriate unitary matrix U to obtain a diagonal matrix Λ. What are the entries of Λ? [4]

(b) Explain how a quadratic form
∑

ij Aijxixj , where Aij are real and Aij = Aji,

can be written in the form
∑

i aix
′
ix

′
i. [3]

(c) Find the eigenvalues and eigenvectors of the matrix

B =





1 + c 0 5− c
0 3 0

5− c 0 1 + c



 ,

where c is a real constant. [7]

(d) Describe the surface xTBx = 1, specifying the principal axes where appropriate.
[Hint: The type of surface may depend on the value of c.] [6]

7C

(a) State the Cauchy-Riemann equations for an analytic function of z = x + iy,
f(z) = u(x, y) + iv(x, y), where x, y, u and v are real. [2]

(b) Show that curves of constant u and curves of constant v intersect at right angles.
[3]

(c) Find the most general analytic function f(z) with real part

u = e−x
[(

x2 − y2
)

cos y + 2xy sin y
]

,

writing your final answer in terms of z. [7]

(d) Find and classify the singularities and zeroes of the following functions (including
any at the point at infinity)

(i)
z − 4

z2 + iz + 6
, (ii)

e2z

sinh z
. [4]

(e) Find the power series expansion of

g(z) =
1

z − 2i

about z = 3. Find the radius of convergence and comment. [4]
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(a) Define an ordinary point and a regular singular point for a second-order ordinary
differential equation of the form

y′′(x) + p(x)y′(x) + q(x)y(x) = 0 . [2]

(b) Classify the points x = 0 and x = 1 of

(1− x3)y′′(x)− 6x2y′(x)− 6xy(x) = 0 .

Find a series solution about x = 0 subject to the boundary conditions y(0) = 1 and
y′(0) = 0. Express the solution in closed form. [8]

(c) Find two linearly-independent series solutions about x = 0 of

4xy′′(x) + 2(1− x)y′(x)− y(x) = 0 .

In particular, you should find the indicial equation, the recurrence relation and the radius
of convergence. Express one solution in closed form. [10]

9B

(a) Explain what is meant by Fermat’s principle and the Euler-Lagrange equation. [2]

(b) Using Fermat’s principle, show that:

(i) when light is incident on a plane mirror the angle of incidence equals the
angle of reflection;

(ii) if light crosses a planar boundary from a medium of refractive index µ1 to
a medium of refractive index µ2, then

sin(θ1)µ1 = sin(θ2)µ2 ,

where θ1 is the angle of incidence and θ2 the angle of refraction. [8]

(c) A thin transparent medium lies in the semi-plane −∞ < x < ∞, 0 < y < ∞.
Its refractive index at the point (x, y) is given by 4

√
y. A light ray travels from a source

at (−1, 54) to an observer at (1, 54). Show that it may follow either of two possible paths, and
derive the equations for these paths. [10]
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10B (a) Consider a Sturm-Liouville operator of the form

L = − d

dx

(

ρ(x)
d

dx

)

+ σ(x) .

The functionals F [y] and G[y] of real functions y(x) are defined by

F [y] =

∫ ∞

−∞

y(x)Ly(x)dx , G[y] =

∫ ∞

−∞

w(x)
(

y(x)
)2
dx .

Assuming that y(x) → 0 as x→ ±∞, show that the ratio Λ[y] = F [y]/G[y] is extremized
by solutions of the Sturm-Liouville eigenvalue problem

Ly(x) = λw(x)y(x) .

What are the extremal values of Λ[y]? [7]

(b) A perturbed quantum harmonic oscillator is defined so that the expectation
value of the energy of a particle is

E[ψ] =

∫ ∞

−∞

(

(ψ′)2 + (x2 + ǫx4)ψ2
)

dx

when its state is defined by a real wave function ψ(x) obeying

∫ ∞

−∞

(

ψ(x)
)2
dx = 1

and ψ(x) → 0 as x→ ±∞.

Consider the case ǫ = 2, and obtain the minimum expectation value of the energy
for a particle wave function of the form ψtrial(x) = C exp(−α

2 x
2), where C and α are real

and α > 0. Define the relevant Sturm-Liouville eigenvalue problem. Explain why the
calculated minimum expectation value gives an upper bound on the smallest eigenvalue
for this problem.

[Hint: You may use the result that, for α > 0,

∫ ∞

−∞

x2n exp(−αx2)dx =
(2n)!

22nn!

√

π

α2n+1
.]

[8]

(c) Without carrying out an explicit calculation, explain how you might improve
this bound. [2]

(d) Is there a minimum energy if ǫ < 0? Justify your answer briefly. [3]

END OF PAPER
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