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SECTION A

1

Solve for x: 2x2 + x 6 6. [2]

2

Find the coordinates of the centre of the ellipse: x2 − 4x+ 4y2 − 8y = −4. [2]

3

(a) In the interval 0 6 x 6 π/2, for what value of the constant c is the straight line,
y = x+ c, a tangent to the curve y = sin 2x? [1]

(b) What is the gradient of the normal to the curve at the point where it meets the
straight line? [1]

4

The diagram below shows an isosceles triangle ABC with a right angle at A. D is the
midpoint of AC. The length of BC is 2 units. Calculate:

(a) The length AD; [1]

(b) The cosine of the angle ADB. [1]

B C

A

D

2

5

Solve for x in the interval 0 6 x 6 π: cos 2x = sinx. [2]
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6

Calculate
∫ y
1
x2 lnx dx for y > 1. [2]

7

Evaluate:

(a)

101
∑

n=2

2n ; [1]

(b)
5

∑

n=1

4n . [1]

8

Find the constants a and b in:

x2 + 1

(x+ 1)(x + 2)2
=

a

x+ 1
+

b

x+ 2
− 5

(x+ 2)2
. [2]

9

(a) The diagram shows a semicircle with vectors a and b drawn from the two ends of
the diameter to a point on the perimeter. Calculate a · b. [1]

a
b

(b) [1]How are |a| and |b| related if the area of the triangle is half the area of the semicircle?
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10

For the vectors s = (
√
3, 1) and t = (1,

√
3), calculate:

(a) The magnitude of s; [1]

(b) The vector s− 5t. [1]
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SECTION B

11Z

(a) Use De Moivre’s theorem to express 8 cos(6θ) + 15 sin(4θ) sin(2θ) in terms of cos θ
and sin θ. [4]

(b) For z ∈ C, with z = x+ iy, find the real and imaginary parts of tan(z∗). [5]

(c) Find the locus that solves |2z − z∗ − 3i| = 2, and sketch it on an Argand diagram. [4]

(d) By writing z = reiθ (where r, θ ∈ R), find the real and imaginary parts of
f = ln(z1+i) in terms of r and θ. By limiting the argument of z to range from
−π to π, sketch on an Argand Diagram the solution to Re(f) = 0. [7]
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12S

A new rail link is planned. To support the tracks, the link requires the construction of an
embankment across a small valley.

(a) The material for the embankment is stockpiled in a single circular heap of volume
V and constant outer radius R. Within the heap the height profile is given by
R exp(−r/R) with r 6 R. Here, r is the radial distance from the vertical axis of
the heap. Determine R in terms of V . [5]

(b) The embankment (see figure) is defined by the region |x| 6 L, |y| 6 b(2− z/H) and
H(x/L)2 6 z 6 H, where x is oriented across the valley and z upwards. Here, H is
the height of the embankment, 2L its length and 2b its width at the top. Calculate
the volume of the embankment. [9]

 
 

2b 

z 

x 

y 

2L 

4b 

H 

(c) Later, it is realised that there needs to be a tunnel through the embankment for a
cycle path along the bottom of the valley. The tunnel is cylindrical with diameter
D (where D < L2/H and D < H), and is centred on x = 0, z = 1

2
D and has

its axis in the y direction. Looking along the y-axis, sketch in the x − z plane the
embankment and the tunnel. Calculate the volume of the material that needs to be
removed from the embankment to create the tunnel. [6]
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13Y

(a) Determine whether or not the differential form

(2x+ ey)dx+ (xey − cos y)dy

is exact. Hence or otherwise, solve the equation

2x+ ey + (xey − cos y)
dy

dx
= 0 ,

with y(1) = π/2. [5]

(b) Solve the differential equations:

(i)
1

x

dy

dx
+ y − 5e−x2

= 0 ; [4]

(ii)
dy

dx
+ (1 + lnx)y = x−x , with y(1) = 2 . [5]

(c) The Laplace equation ∇2u = 0 can be written in spherical polar coordinates (r, θ, φ)
as

1

r2
∂

∂r

(

r2
∂u

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂u

∂θ

)

+
1

r2 sin2 θ

∂2u

∂φ2
= 0 .

Show that

u =

(

r +
1

r2

)

sin θ cosφ

is a solution. [6]
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14R

(a) The energy, E(m, v), of a relativistic particle of rest mass m and speed v is

E =
mc2

√

1− v2/c2
,

where c, the speed of light, is a constant.

(i) Express dE/E, the small fractional change in energy, in terms of the small
fractional changes dm/m and dv/v.

(ii) Two particles, A and B, moving at 90% and 91% the speed of light respec-
tively, have equal energy. Find the difference between their rest masses, as-
suming it to be small, in terms of the rest mass of A. Hence identify the
particle with the larger rest mass. [4]

(b) If u(x, y) = φ(xy) +
√
xy ψ(y/x), where φ and ψ are twice-differentiable functions

of their arguments, show that

x2
∂2u

∂x2
− y2

∂2u

∂y2
= 0 . [10]

15V

(a) State Taylor’s theorem by giving the series expansion about x = a of a function f(x)
that is n times differentiable, showing the first n terms, together with an expression
for the remainder term Rn. [4]

(b) Find the Taylor series expansion about x = a, up to and including the term
proportional to (x − a)m, of the following functions (you may use standard Taylor
series expansions without proof):

(i) sin
πex

2
for a = 0 and m = 2 ; [4]

(ii)
sinh(x+ 1)

x+ 2
for a = −1 and m = 4 ; [6]

(iii)
ln(1 + x3)

cosh(x)
for a = 0 and m = 6 . [6]
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16W

A box contains 2 blue and 3 non-blue but otherwise identical balls. An experiment consists
of three consecutive events: drawing a ball from the box, returning or not returning it
back to the box, and drawing a second ball from the box. For example, an experiment
might consist of (i) the event B1 of drawing a blue ball in a first draw, (ii) the event R of
returning the ball to the box and (iii) the event B2 of drawing a non-blue ball in a second
draw. The probability of event R is P (R) = r.

(a) Find the sample space of this experiment and the probabilities of all possible
outcomes using notations such as P (B1 ∩ R ∩ B2) for the probability of outcome
B1 ∩R ∩B2. [8]

(b) Find the probability, P (B2), that the second ball is blue if:

(i) r = 0 ; [1]

(ii) r = 1 ; [1]

(iii) r is arbitrary in the range, 0 6 r 6 1 . [1]

(c) Find:

(i) P (B1 ∩B2) ; [1]

(ii) P (R|B1 ∩B2) . [2]

(d) Consider the general case of a box containing NB > 1 of blue and N − NB > 1
of non-blue but otherwise identical balls. For the experiment described above, find
P (R|B1∩B2) in this general case. By sketching this probability as function of r for
fixed N and NB, show that

P (R|B1 ∩B2) 6 r . [6]
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17T

(a) Evaluate the following indefinite integrals for real x:

(i)

∫

ex sinh 3x dx ; [3]

(ii)

∫

arctan x

x2
dx . [4]

(b) Evaluate the definite integral

∫ e4

e3

3 lnx− 4

x ln2 x− 3x lnx+ 2x
dx . [5]

(c) Express In in terms of In−1, for integer n > 1, where

In =

∫ π

0

x2n cos x dx , [8]

and evaluate I3.
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18Z

(a) The real orthogonal matrix

A =

(

a b
c a

)

,

has the property that A2 = −I, where I is the identity matrix.

(i) Determine the possible matrices A. [6]

(ii) For each possible A, find a real orthogonal matrix B with trace(B) < 0 such
that B2 = A. [5]

(b) A study by students of n > 2 earthworms recorded that worm i, found a distance
xi from a river, had length yi. The students notice a correlation between xi and yi
and propose that the predicted length pi of worm i is given by pi = α+ βxi. They
write this for all the worms as p = Mr, where the components of the vector p are
the predictions pi with each row of M and p containing information about one of
the worms. The vector r = (α, β)T contains the model parameters as components.

(i) Write down an expression for the n× 2 matrix M in terms of xi. [3]

(ii) The components of r are estimated from the solution to MTMr = MTy,
where the components of the vector y are the observed worm lengths yi.
Solve this system and give explicit expressions for α and β in terms of the
quantities x, x2, y, xy, where f = (

∑n
i=1

fi)/n. [6]

Natural Sciences IA, Paper 1 [TURN OVER]



12

19V*

(a) Determine whether the following series converge or diverge:

(i)
∞
∑

n=1

cos(2n − 1)π

n
; [4]

(ii)
∞
∑

n=0

∞
∑

m=n

1

2m
. [4]

(b) The real function f(x) is defined as

f(x) = x2 − 2εx− 1 ,

where the parameter ε is small (i.e. |ε| ≪ 1). Suppose xi is the i-th Newton-
Raphson iteration (with x0 = 1) for the positive root x∗ of f(x) (i.e. f(x∗) = 0).
By considering the leading order term in the Taylor series expansion, show that
|xi − x∗| ∝ εni , where:

(i) n0 = 1 ; [2]

(ii) n1 = 2 ; [4]

(iii) n2 > 3 . [6]
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20R*

(a) The interval a 6 x 6 b of the x-axis, with 0 < a < b, is divided into n equal sub-
intervals of width ∆x = (b−a)/n. For each sub-interval k, 1 6 k 6 n, a rectangle of
width ∆x and height yk = (a+ k∆x)2 is constructed. Find the sum of the areas of
the rectangles as a function of n and show that, as n→ ∞, it tends to the area under
the parabola y = x2 between x = a and x = b. [Hint:

∑n
k=1

k2 = 1

6
n(n+1)(2n+1).]

[6]

(b) Differentiate the function

f(x) =

∫

cos x

sinx
exp(−xt4) dt

with respect to x. It is not necessary to evaluate integrals that arise. [6]

(c) Show that for positive parameters p and q,

I =

∫ π/2

0

dx

p cos2 x+ q sin2 x
=
π

2

1√
pq
. [4]

By considering ∂I/∂p and ∂I/∂q, evaluate

J =

∫ π/2

0

dx

(p cos2 x+ q sin2 x)2
. [4]

END OF PAPER
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