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1B

(a) State the divergence theorem for a vector field G. [2]

(b) Let A denote the open surface

x2 + y2 = 2z2, 0 ⩽ z < h.

Sketch the surface A. [3]

(c) By applying the divergence theorem to a suitable closed surface, or otherwise,
calculate ∫

A
G · dA,

where dA is the unit area element pointing out of A, and

G =




x3 + 2xy
y3 + sinx

z


 .

[15]
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2B

Consider the equation
∂v

∂t
=

∂2v

∂x2
+

2v

t+ 1
,

where v(x, t) is defined on 0 ⩽ x ⩽ π and is subject to the initial and boundary conditions

v(0, t) = 0, v(π, t) = f(t), v(x, 0) = h(x),

for some functions f(t) and h(x).

(a) Using the substitution v = (t+ 1)2 u, show that u satisfies the diffusion equation

∂u

∂t
=

∂2u

∂x2
,

and state the boundary and initial conditions satisfied by u. [5]

(b) Now consider the specific case when the functions f and h are given by

f(t) = 3(t+ 1)2 , h(x) =
sin (2x) + 3x

π
.

Using the method of separation of variables, construct the solution v(x, t). [13]

[Hint: You may find it helpful to use the substitution u(x, t) = w(x, t) + γ x, for a
suitably chosen constant γ.]

(c) For t ≫ 1, show that

v ∼ 3x t2

π
.

[2]
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3B

An amplifier outputs a signal x(t) given by the initial-value problem

d2x

dt2
+ 2q

dx

dt
+
(
q2 + 4

)
x = f(t) , x(0) =

dx

dt
(0) = 0 , (⋆)

for some constant q > 0 and input function f(t).

(a) Show that the Green’s function G(t, τ) for this problem is

G(t, τ) =

{
0 0 ⩽ t < τ,
1
2e

−q(t−τ) sin [2(t− τ)] τ ⩽ t .

[7]

Write down the general solution x(t) of equation (⋆) in terms of an integral.
[2]

(b) Now consider the specific case q = 0 and

f(t) =

{
t0 0 ⩽ t < t0,
0 t0 ⩽ t,

where t0 > 0 is a constant. Calculate the solution of equation (⋆) in this case.
[8]

Find all values of t0 for which x(t) = 0 for all t ⩾ t0.
[3]
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4A

(a) The Fourier transform of a function f(t) is given by

f̃(ω) =

∫ ∞

−∞
f(t)e−iωt dt.

Write down the corresponding expression for the inverse Fourier transform.
[2]

(b) Consider the convolution of the functions f and g

h(z) =

∫ ∞

−∞
f(t)g(z − t) dt.

Prove that the Fourier transform of h is given by the product of the Fourier
transforms of f and g.

[5]

(c) Find the Fourier transform of

f(γ, p, t) =

{
e−γt sin pt t > 0 ,

0 t ⩽ 0 ,

where γ > 0 and p are fixed parameters.

[Hint: Write sin pt in terms of exponential functions.]
[6]

(d) The current I(t) flowing through a system is related to the applied voltage V (t) by
the equation

I(t) =

∫ ∞

−∞
K(t− u)V (u) du,

where
K(τ) = a1f(γ1, p1, τ) + a2f(γ2, p2, τ).

Here the function f(γ, p, t) is as given in part (c), and all the ai, γi > 0 and pi are
fixed parameters. By considering the Fourier transform of I(t), find the relationship
that must hold between a1 and a2 if the net charge Q, defined by

Q =

∫ ∞

−∞
I(t′) dt′ ,

is to be zero for an arbitrary applied voltage.

[Hint:
∫∞
−∞ exp[iωt′] dt′ = 2πδ(ω).]

[7]
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5C

(a) When is an n×n matrix A diagonalisable? Give an example of a non-diagonalizable
n×nmatrix (for some n). What is a Hermitian matrix? Show that the eigenvalues of
a Hermitian matrix are real, and that the corresponding eigenvectors are orthogonal. [5]

(b) Diagonalise the matrix

A =




2 −a 0
−a 2 0
0 0 c


 ,

where a > 0 and c > 0 are real numbers and finds its eigenvectors. [6]Sketch the
surface

xTAx = 1 ,

where x = (x, y, z), specifying the principal axes and, where appropriate, the semi-
axis lengths. Note that different values of a may correspond to different surfaces.

[9]

6C

(a) Let A and B be n × n Hermitian matrices, each with n distinct eigenvalues. Show
that:

(i) the matrix H = i(AB− BA) is Hermitian; [4]

(ii) the eigenvectors of A and B are identical if and only if AB = BA; [6]

(iii) if A and B commute, then the matrix N = A+ iB is diagonalisable. [5]

(b) Suppose C is a unitary matrix, A is a Hermitian matrix, and p is a positive integer.
Show that (C−1AC)p has real eigenvalues. [5]
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7A

(a) Use the Cauchy-Riemann relations to show that, for any analytic function f(x, y) =
u(x, y) + i v(x, y), the relation |∇u| = |∇v| must hold.

[2]

(b) Find the most general analytic function f(z) of the variable z = x + i y whose
imaginary part is

(y cos y + x sin y) expx.

(Your final expression for f(z) should be in terms of z, not x and y.)
[10]

(c) Find the radii of convergence of the following Taylor series:

(i)
∞∑

n=2

zn

lnn
;

[3]

(ii)
∞∑

n=1

(
n+ p

n

)n2

zn , with p real.

[5]

[Hint: You may want to use the following result:

an = en ln a ,

for some real a.]
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8C

(a) Find the power series solution of the equation

d2y

dx2
− 2x

dy

dx
+ λ y = 0 , (⋆)

where λ is a real parameter, about the point x = 0, and find suitable recurrence
relations for the coefficients. For what values of λ does (⋆) have a polynomial
solution? Find the solutions corresponding to two eigenvalues λ of your choice. [10]

(b) Consider the hypergeometric equation

x(1− x)
d2y

dx2
+ [γ − (1 + α+ β)x]

dy

dx
− αβ y = 0 ,

where α, β and γ are real constants. Assuming a solution of the form

y(x) =

∞∑

n=0

an x
n+σ with a0 ̸= 0 ,

show that
σ = 0 or σ = 1− γ ,

and that

an =
(n+ σ + α− 1)(n+ σ + β − 1)

(n+ σ)(n+ σ + γ − 1)
an−1

for all n ⩾ 1. [10]
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9B

(a) The Euler–Lagrange equation for extrema of the functional

D[y] =

∫ b

a
f(x, y, y′) dx ,

where y′ = dy/dx, is
∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0. (⋆)

If f = f(y, y′) does not depend explicitly on x show that (⋆) can be written as

dh

dx
= 0 .

for some h, which you should determine.
[3]

(b) A forest lies in the (x, y) plane. A new path through the forest is proposed, starting
at (x, y) = (−1, 1) and ending at (x, y) = (1, 1). The density of undergrowth in the
forest is given by g(y), such that the total undergrowth D to be destroyed by the
new path is

D =

∫

P
g(y) ds ,

where ds is the arc-length element along the path P.

(i) Given that the path always travels in the positive x direction, show that the
path y(x) that minimises the destruction of undergrowth satisfies

d

dx

(
g√

1 + y′2

)
= 0 .

[4]

(ii) In the specific case when g = y−1, calculate the path y(x). [9]

(iii) Sketch the path, and determine its length. [4]
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Consider the problem

d2u

dx2
+ ϵ

[
x
d2u

dx2
+

du

dx
− u

]
= −λu, 0 ⩽ x ⩽ π, u′(0) = u(π) = 0 , (⋆)

where ϵ ⩾ 0 is a parameter, λ is a real constant, and u′ = du/dx. Express (⋆) in the form

Lu = λu, (⋆⋆)

where L is an operator in Sturm–Liouville form.
[2]

Now consider the functional

I[v] =

∫ π

0

(
p v′2 + q v2

)
dx ,

where v(x) satisfies v′(0) = v(π) = 0, and is subject to the constraint

∫ π

0
w v2 dx = 1 ,

for smooth functions p(x) > 0, q(x) ⩾ 0 and w(x) > 0. Show that, for a particular choice
of the functions p, q and w, which should be specified, finding extrema of I is equivalent
to finding solutions of (⋆). Explain why the stationary values of I are the eigenvalues λ
of equation (⋆⋆). You may use the Euler–Lagrange equation without proof.

[8]

When ϵ = 0, show that the smallest eigenvalue of (⋆⋆) is λ0 = 1/4, and the associated
normalised eigenfunction is

U0(x) =

√
2

π
cos
(x
2

)
.

Using U0(x) as a trial function, find an upper bound for the lowest eigenvalue λ of equation
(⋆⋆) when ϵ > 0.

[10]

END OF PAPER
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