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1A

(a) Explain what it means for the differential operator L to be self-adjoint on the interval
a 6 x 6 b. [2]

The eigenfunctions yn(x) of a self-adjoint operator L satisfy

Lyn = λnwyn ,

for some weight function w(x) > 0. Show that for appropriate boundary conditions,
eigenfunctions with distinct eigenvalues are orthogonal, i.e.,

∫ b

a
w(x)y∗m(x)yn(x) dx = 0

for λm 6= λn. [4]

(b) Consider the eigenvalue problem

−
(

1− x2
) d2yn
dx2

+ x
dyn
dx

= n2yn (⋆)

on the interval −1 6 x 6 1, with the boundary conditions yn(−1) = 0 and yn(1) = 0.

(i) Express (⋆) in Sturm–Liouville form, and hence determine the weight function
w(x). [5]

(ii) By using the substitution x = cos θ, solve (⋆) with the given boundary
conditions to show that n must be an integer, and construct the normalised
eigenfunctions for n > 0. [6]

(iii) Verify explicitly the orthogonality of your eigenfunctions for n 6= m. [3]
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2B

In plane-polar coordinates (r, θ), Laplace’s equation is

1

r

∂

∂r

(

r
∂Φ

∂r

)

+
1

r2
∂2Φ

∂θ2
= 0 . (⋆)

(a) Use separation of variables to show that the general solution of (⋆) that is continuous
and single-valued for r > 0 can be written as

Φ(r, θ) = A0 +B0 ln r +
∞
∑

n=1

[(

Anr
n +Bnr

−n
)

cosnθ +
(

Cnr
n +Dnr

−n
)

sinnθ
]

,

where An, Bn, Cn, and Dn are constants. [10]

(b) The surface of an infinite cylinder is given by r = R in cylindrical polar coordinates
(r, θ, z). The cylinder has a surface charge density σ(θ) so the electrostatic potential
Φ is continuous at r = R, but its normal derivative has a discontinuity:

(

∂Φ

∂r

)

r=R+

−

(

∂Φ

∂r

)

r=R−

= −σ(θ) ,

where R+ denotes the limit as r → R from above and R− the limit as r → R from
below. The surface charge density has Fourier series

σ(θ) =
∞
∑

n=1

(an cosnθ + bn sinnθ) .

Assume that Φ is independent of z and therefore satisfies (⋆) for r < R and r > R.
Determine Φ for all r, assuming that Φ → 0 as r → ∞ and that Φ is finite at r = 0. [10]
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3B

Let V be a region of three-dimensional space with boundary S.

(a) Prove that

∫

V

(

φ∇2ψ − ψ∇2φ
)

dV =

∫

S
(φn·∇ψ − ψn·∇φ) dS ,

where φ and ψ are scalar fields and n is the outward-directed unit normal to S. [3]

(b) Let φ satisfy Laplace’s equation ∇2φ = 0 in V , and let G(x,x′) obey

−∇2
x
G = δ(3)(x− x′) ,

where ∇x is the gradient with respect to x. Prove that

φ(x′) =

∫

S

[

G(x,x′)n·∇xφ(x)− φ(x)n·∇xG(x,x
′)
]

dS .

[2]

(c) State the boundary condition that should be imposed on G(x,x′) for it to be a
Green’s function for Laplace’s equation with Dirichlet boundary conditions (i.e.,
φ(x) = f(x) on S). [2]

(d) Let V be the half-space z > 0 and let φ satisfy Laplace’s equation in V with
boundary conditions φ(x, y, 0) = f(x, y) and φ(x) → 0 as |x| → ∞. Use the method
of images to determine G(x,x′) and hence show that, for z > 0,

φ(x, y, z) =
z

2π

∫ ∞

−∞

∫ ∞

−∞

f(ξ, η)

[(x− ξ)2 + (y − η)2 + z2]3/2
dξdη .

[9]

[You may assume that H(x) = 1
4π|x| satisfies −∇2H = δ(3)(x).]

(e) Determine φ(0, 0, z) explicitly for the case

f(x, y) =

{

0 if x2 + y2 > a2

1 if x2 + y2 6 a2,

where a > 0. [4]
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4B

(a) (i) State the residue theorem of complex analysis. [2]

(ii) Consider the function

f(z) =
z2

1 + z4
.

State the location of any singularities of f(z) and calculate the residues of
f(z) at these singularities, simplifying your answers as much as possible. [7]

(iii) By considering the integral of f(z) around a large semicircle, evaluate the
integral

∫ ∞

−∞

x2

1 + x4
dx .

[3]

(b) Use contour integration to determine the value of

∫ ∞

0

lnx

x2 + a2
dx ,

where a is real and positive. State clearly the location of any branch cut required. [8]

5C

The response y(t) of a system to a forcing function f(t) is described by the second-
order linear equation

ÿ + 2ẏ + 5y = f(t) . (⋆)

You may assume that f(t) vanishes as t→ ±∞.

(a) By multiplying (⋆) by e−iωt and integrating, or otherwise, show that the solution to
(⋆) can be written as

ỹ(ω) =
−f̃(ω)

ω2 − 2iω − 5
,

where ỹ(ω) and f̃(ω) are the Fourier transforms of y(t) and f(t), respectively. [5]

(b) Consider the forcing function described by f̃(ω) = i/(ω − 2i).

(i) Use contour integration in the complex ω plane to determine the solution y(t)
for both positive and negative t. [12]

(ii) What does this solution imply about f(t) for t < 0? (You need not determine
f(t) itself.) [3]
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6C

Let T be a second-order tensor with components Tij with respect to a Cartesian
coordinate system (x1, x2, x3). An alternative Cartesian coordinate system (x′1, x

′
2, x

′
3) is

defined by x′i =Mijxj .

(a) What restriction is placed on the transformation matrix Mij? How can one
determine whether (x′1, x

′
2, x

′
3) is a left- or right-handed coordinate system? Write

down expressions for the components of T in the x′i coordinate system in terms of
Tij . [3]

(b) Show that the symmetric and antisymmetric parts of T are second-order tensors. [3]

(c) Consider the second-order tensor field F , with position-dependent components

Fij =





x21 −x21 + x1x2 − x22 x1 − x2
x21 + x1x2 + x22 x22 −x1 − x2

−x1 + x2 x1 + x2 3(x21 + x22)





with respect to the xi coordinates. Write down the components of the symmetric
part of F . Determine the principal axes and corresponding principal values of the
symmetric part of F , and describe the orientation of the principal axes geometrically.
Write down the transformation matrix Mij that is needed to transform from the
original axes to these principal axes. [10]

(d) Decompose the tensor field F introduced above as Fij = Pδij+ Ŝij+ Âij , where P is
a scalar field, Ŝij is symmetric and trace-free, and Âij is antisymmetric. Determine
whether the principal axes of Ŝij are the same as those found in (c). [4]
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7C

Three climbers have fallen from an overhanging cliff and are now suspended by their
identical elastic safety ropes. The tension in each rope is given by T (L) = k(L− L0), for
L > L0, where k is a constant and L0 is the unstretched length of each rope. Climber
1 is suspended from the cliff top by rope 1 with stretched length L1(t). The other two
climbers are suspended directly from climber 1. Climber 2 is suspended from climber 1 by
rope 2 with stretched length L2(t), while climber 3 is suspended from climber 1 by rope
3 with stretched length L3(t). The climbers have masses m1, m2, and m3, respectively.
The mass of the ropes is negligible.

(a) Write down expressions for the potential and kinetic energies of the system and
hence determine its Lagrangian. (Take the gravitational acceleration to be g and
remember to include the elastic potential energy.) [4]

(b) Use the Euler–Lagrange equations to derive the equations of motion for Li. Show
that, at equilibrium, the lengths of the ropes are given by Li = L̂i where

L̂1 = L0 +
g
k (m1 +m2 +m3) ,

L̂2 = L0 +
g
km2 ,

L̂3 = L0 +
g
km3 .

[5]

(c) Let yi = Li − L̂i be a small departure from equilibrium. Show that





m1 +m2 +m3 m2 m3

m2 m2 0
m3 0 m3









ÿ1
ÿ2
ÿ3



+





k 0 0
0 k 0
0 0 k









y1
y2
y3



 =





0
0
0



 .

[2]

(d) Assume, now, that all climbers have equal mass m. Show that one normal mode
of oscillation has frequency ω = (k/m)1/2 and that climber 1 is stationary in this
mode. For this case, describe the motion of the other two climbers. Determine also
the frequencies of the other two modes of oscillation. [9]
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8A

(a) Let H be a subgroup of a finite group G. Define the left coset gH of H for an
element g ∈ G. Prove that the left cosets of H partition G. [6]

(b) Show that the set of all real 3× 3 matrices with elements





1 x y
0 1 z
0 0 1



 (⋆)

forms a group under matrix multiplication. Show further that the subset of matrices
with x = z = 0 forms a normal subgroup. [6]

(c) Now suppose that x, y, and z are integers mod 4 (e.g., 5mod 4 = 1). Show that the
set of matrices of the form in (⋆) is a finite group G under matrix multiplication
with arithmetic modulo 4, and determine the order of G. [4]

Show that the subset of such matrices given by x = z defines an Abelian subgroup
H. Determine the order of H. How many distinct left cosets of H are there in G? [4]

9B

Let G and G′ be finite groups.

(a) Let Φ : G → G′ be a homomorphism. Define the kernel K of Φ. Prove that K is a
normal subgroup of G. [5]

(b) Define the conjugacy class of g ∈ G. Prove that any normal subgroup of G is a
union of conjugacy classes. [3]

(c) What is meant by the cycle structure of a permutation? List the possible cycle
structures for elements of Σ3 (the permutation group for three objects). [3]

(d) Assume that Φ : Σ3 → G′ is a homomorphism that is onto, i.e., any element of G′

can be written as Φ(g) for some g ∈ Σ3. Determine the possible forms of K (the
kernel of Φ) and hence, or otherwise, prove that G′ must be isomorphic to one of
Σ3, C2 (the cyclic group of order 2), or the trivial group {I}. [9]

[You may assume that two elements of Σ3 belong to the same conjugacy class if, and
only if, they have the same cycle structure.]
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10C

Consider the D6 dihedral group

G =
{

I,R,R2, R3, R4, R5,m1,m2,m3,m4,m5,m6

}

,

with structure defined by the group table

I R R2 R3 R4 R5 m1 m2 m3 m4 m5 m6

R R2 R3 R4 R5 I m2 m3 m4 m5 m6 m1

R2 R3 R4 R5 I R m3 m4 m5 m6 m1 m2

R3 R4 R5 I R R2 m4 m5 m6 m1 m2 m3

R4 R5 I R R2 R3 m5 m6 m1 m2 m3 m4

R5 I R R2 R3 R4 m6 m1 m2 m3 m4 m5

m1 m6 m5 m4 m3 m2 I R5 R4 R3 R2 R
m2 m1 m6 m5 m4 m3 R I R5 R4 R3 R2

m3 m2 m1 m6 m5 m4 R2 R I R5 R4 R3

m4 m3 m2 m1 m6 m5 R3 R2 R I R5 R4

m5 m4 m3 m2 m1 m6 R4 R3 R2 R I R5

m6 m5 m4 m3 m2 m1 R5 R4 R3 R2 R I

(a) What do the generators R and m1 represent geometrically? Give an expression for
each of the group members in terms of the generators {R,m1}. [2]

(b) Identify all the subgroups of order 2 and 3. Are any of these subgroups cyclic? [5]

(c) Explain how to construct a faithful representation of G using 2 × 2 orthogonal
matrices. Give matrices corresponding to R, m1, and m2 in such a representation. [4]

(d) Write down the regular representation D(g) for g = m4 and hence or otherwise
derive an expression for [D(m4)]

n for any integer n. [5]

[Reminder: the regular representation is a set of |G|×|G| permutation matrices each
with |G| non-zero elements.]

(e) State the characters of the representations used above in (c) and (d). [4]

END OF PAPER
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