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SECTION A

1 Show that if a and b are two non-parallel non-zero vectors then

xa + yb = 0

implies x = y = 0. [2]

2 Calculate:

(i)
∫ π

−π

x2 sin x dx;

[1]

(ii)
∫ π

0

(cos2 x − sin2 x)dx.

[1]

3 Given the two functions
f = x + y + z

g = x2 + y2 + z2

find the point (x, y, z) for which ∇f = ∇g. [2]

4 Given the matrix
(

1 α
α 1

)

find all α such that one eigenvalue is 0. [1]

5 Find the zeros, the stationary points and the inflection points of

y = x3 − 3x2 + 4

and state whether the stationary points are maxima or minima. Indicate these points on
a graph of the function. [3]
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6 Show that
u(x, t) = (x − ct)2 + (x + ct)2

is a solution of the equation
∂2u

∂t2
= c2

∂2u

∂x2
,

where c is a constant. [2]

7 Determine the equation of the line that is tangent to the curve y = ln x at x = 1. [2]

8 Given that, for small x, ex ≃ 1+x+ 1

2
x2 and ln(1+x) ≃ x− 1

2
x2 find an expression

for ln(1 + ex) ignoring powers of x greater than 2. [2]

9 Find the values of θ in [0, 2π] for which

|
√

2 cos θ| > 1.

[2]

10 Show that the probability distribution

f(k, λ) =
λke−λ

k!

for non-negative integer k is normalised, i.e.

∞
∑

k=0

f(k, λ) = 1.

[2]

Natural Sciences IA, Paper 2 [TURN OVER



4

SECTION B

11S

(a) Write the equation for the straight line joining the points a = (1, 2, 4) and
b = (2, 4, 2) in both vector and Cartesian form.

Find the position vector of the point where this line intersects the (x, y)-plane. [5]

(b) Find the vector equation for the line of intersection of the two planes

2x − y − z = 3

3x − y − 3z = 4.

[8]

(c) Find the shortest distance from the position (2, 2, 1) to the line of intersection of
the planes found in (b). [7]

12T The position y(t) of a particle of unit mass suspended at the end of a spring of
constant k moving under the influence of a friction force proportional to the speed satisfies

d2y

dt2
= −ky − λ

dy

dt
,

with k and λ positive constants.

(i) Find the general solution of this equation and state the condition under which the
motion is oscillatory. [6]

(ii) Assuming that this condition is satisfied, state the angular frequency of the
oscillation and find the time for the amplitude of the oscillation to decrease by
a quarter. [4]

(iii) Suppose now that λ = 0 and k = ω2 > 0, that y = dy/dt = 0 at t = 0, and that
an external force F (t) = 2te−t acts on the particle for t > 0. Find the amplitude of
the resulting oscillation as t → ∞ by solving

d2y

dt2
+ ω2y = 2te−t

subject to the initial conditions. [10]
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13X The function z(x, y) is given by

z(x, y) = (x − 1)y exp
[

−1

2

(

(x − 1)2 + y2
)]

.

(a) Do the following in whichever order you find most convenient, and using any (clearly
stated) methods of your choice:

(i) Find the positions of the stationary points of z(x, y).

(ii) Classify each stationary point as either a maximum, a minimum, or a saddle
point.

(iii) Sketch contours of z in the (x, y)-plane, indicating the locations of the
stationary points. [13]

(b) Suppose that z(x, y) describes a surface in a three-dimensional space in which x, y
and z are the usual Cartesian co-ordinates.

(i) Determine the unit vector which is normal to the surface at the point where
x = y = 1. [4]

(ii) An ant is discovered on the surface at the point where x = y = 1, and is found
to be walking directly downhill (by the steepest possible path) with speed u.
Determine its velocity vector v = (vx, vy, vz) at that moment. [2]

(iii) If the ant continues to walk directly downhill for as long as possible, where
will it end up? [1]
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14Y

(a) Consider the matrix

A =





1 2 −1

0 1 −1

1 −1 −2





(i) Calculate det A. [2]

(ii) Calculate A−1. [4]

(b) Find the value of λ for which the following set of linear equations has non-zero

solutions
x + y + z = 0

x + 2y = 0

x − 3y + λz = 0.
[7]

(c) Find all conditions on the constants a, b and c that allow the set of equations

x + y + z = 0

ax + by + cz = 0

a2x + b2y + c2z = 0

to have non-zero solutions. [7]

15R

(a) Show that the real Fourier series of period 2 for g(x) = x2 in the range −1 6 x 6 1
is

g(x) =
1

3
+

4

π2

∞
∑

n=1

(−1)n

n2
cos(πnx).

[6]

(b) By considering

∫

1

−1

[g(x)]2 dx calculate the sum
∞
∑

r=1

r−4.
[6]

(c) Find the real Fourier series of period 2 for f(x) = cosh x in the range −1 6 x 6 1
in the form

f(x) = sinh(1)

(

A0 +

∞
∑

n=1

An(x)

)

,

by determining the constant A0 and the functions An(x). [8]
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16S

(a) If m = αi+ βj+ γk is a constant vector and r = xi+ yj+ zk is the position vector,
show that

(i)
∇· r = 3;

(ii)

∇

(

1

r

)

= − r

r3
;

(iii)

∇

(m · r

r3

)

=
m

r3
− 3(m · r)

r5
r.

[7]

(b) If ∇2φ = 0 and m is a constant vector, show that

∇× (m × ∇φ) + ∇ (m · ∇φ) = 0.

[6]

(c) Using Cartesian coordinates show that φ = 1/r satisfies ∇2φ = 0 for r 6= 0.

Calculate E = −∇φ where φ = 1/r.

What is the value of ∇×E ? [7]

[Notation ∇× is equivalent to ∇∧]
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17X

(a) State the definitions of the mean and variance of a continuous random variable X
with probability density function p(x) for −∞ < x < ∞. [2]

(b) The Normal Distribution has a probability density function with two parameters µ
and σ:

p(x;µ, σ) =
1√

2πσ2
exp

[

−(x − µ)2

2σ2

]

.

Use your definitions of the mean and variance to prove that the mean of the Normal
Distribution is µ and the variance is σ2. [7]

[Hint: You may use

∫

∞

−∞

exp[−u2] du =
√

π.]

(c) Find the simplest form (i.e. with fewest ‘P ’s) for each of the following probabilities
(B̄ indicates the complement of B):

(i) P (A|B)P (B)P (C|A ∩ B);

(ii) P (A|B̄)P (B̄) + P (B)P (A|B);

(iii) P (B|A)P (A)/P (A|B);

(iv) P (A) + P (B) − P (A ∩ B);

(v) P (A ∩ B)/P (A). [5]

(d) A standard pack of 52 cards (four suits of thirteen cards) is shuffled and five cards
are drawn. Calculate the probability of drawing a “full house” (i.e. a pair and a
triple, e.g. two sevens and three kings). Leave your answer in the form N

(52

5
)

where

N is the number to be determined. [6]
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18Y

(a) Evaluate
∫ y=1

y=0

∫ x=2

x=0

xexydx dy.

[4]

(b) By reversing the order of integration evaluate

∫ y=
1

2

y=0

∫ x=

√
1−4y2

x=−

√
1−4y2

y dx dy.

[8]

(c) Find the volume V of the region that lies inside the quarter cylinder 0 6 r 6 1,

0 6 θ 6
1

2
π and between the planes x + y + z = 4 and z = 0, where (r, θ, z) are

cylindrical polar coordinates. [8]

19R*

(a) Calculate ∇·F where F = (y − x) i + x2z j + (x2 + z)k. Hence use the divergence
theorem to evaluate the surface integral

∫

S

F ·dS,

where S is the open surface of the hemisphere x2 + y2 + z2 = 1, z > 0. [10]

(b) Use Stokes’ theorem to evaluate

∫

S

( ∇×G) · ndS,

where
G = z2 i − 3xy j + x3y3 k,

and the surface S is the part of z = 5 − x2 − y2 that lies above the plane z = 1. [10]

[Notation ∇× is equivalent to ∇∧.]
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20T*

(a) Given v = (x2 − 1)l, where l is a non-negative integer, show that

(x2 − 1)
dv

dx
= 2lxv.

By differentiating this result l + 1 times, verify that y =
dlv

dxl
satisfies the Legendre

equation
(1 − x2)y′′ − 2xy′ + l(l + 1)y = 0.

[10]

(b) Show that

Pl(x) ≡ 1

2ll!

dlv

dxl

is a polynomial of degree l (i.e. the highest power of x appearing in the polynomial
is l). [3]

(c) Show that Pl(1) = 1. [7]

[Hint: write v = (x + 1)l(x − 1)l.]

END OF PAPER
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