MATHEMATICS (2)

Before you begin read these instructions carefully:

You may submit answers to no more than **six** questions. All questions carry the same number of marks.

The approximate number of marks allocated to a part of a question is indicated in the right hand margin.

Write on **one** side of the paper only and begin each answer on a separate sheet.

At the end of the examination:

Each question has a number and a letter (for example, **6A**).

Answers must be tied up in **separate** bundles, marked **A**, **B** or **C** according to the letter affixed to each question.

Do not join the bundles together.

For each bundle, a blue cover sheet must be completed and attached to the bundle.

A **separate** yellow master cover sheet listing all the questions attempted must also be completed.

Every cover sheet must bear your examination number and desk number.

STATIONERY REQUIREMENTS

- 6 blue cover sheets and treasury tags
- Yellow master cover sheet
- Script paper

SPECIAL REQUIREMENTS

- None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.
1B Axisymmetric solutions $\Phi(r, \theta)$ of Laplace’s equation satisfy

$$\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial \Phi}{\partial r}) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial \Phi}{\partial \theta}) = 0,$$

where (r, θ, ϕ) are the standard spherical polar co-ordinates. Show, by using the method of separation of variables, that the solution to this equation can be written as

$$\Phi(r, \theta) = \sum_{n=0}^{\infty} (A_n r^n + B_n r^{-n-1}) P_n(\cos \theta)$$

for constants A_n, B_n. Derive the equation which the functions P_n must satisfy.

A spherically symmetric shell of material lies between $a < r < b$. The temperature on the boundaries of the shell is

$$T(a, \theta) = T_0 + T_1 \cos \theta, \quad T(b, \theta) = T_2 + T_3 \cos \theta,$$

for constants T_0, T_1, T_2, T_3. Determine the steady-state axisymmetric temperature within the shell.

[You may assume that $P_0(\cos \theta) = 1$ and $P_1(\cos \theta) = \cos \theta$.]
2B Prove that the Green’s function
\[G(x; x_0) = -\frac{1}{4\pi|x - x_0|} \]
is the fundamental solution in three dimensions satisfying \(G(x; x_0) \to 0 \) as \(|x| \to \infty \) and
\[\nabla^2 G(x; x_0) = \delta(x - x_0) . \] \((*)\)

Using the method of images find the Green’s function \(G(x; x_0) \) satisfying \((*)\) for \(x \in V \) and \((\text{fixed}) \) \(x_0 \in V \) when:

(i) \(V \) is the half space of \(\mathbb{R}^3 \) with \(z > 0 \), \(G = 0 \) on \(z = 0 \), and \(G \to 0 \) as \(|x| \to \infty \) for \(x \in V \).

(ii) \(V \) is the interior of the sphere \(r < a \), and \(G = 0 \) on \(r = a \).

A point charge \(e \) is placed at \(x_0 \in V \), where \(V \) is a hollow hemisphere of radius \(a \):
\[V = \{(x, y, z) : x^2 + y^2 + z^2 < a^2 \text{ and } z > 0\} . \]
The boundary of \(V \) is earthed. Derive the electrostatic potential in \(V \).

3B

Let \(f(z) = u + iv \) for real \(u, v \) be an analytic function of \(z = x + iy \) for real \(x, y \). Prove that \(u \) and \(v \) satisfy the Cauchy-Riemann equations
\[\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} . \]

Determine \(f(z) \) when \(u(x, y) = e^x((x^2 - y^2) \cos y - 2xy \sin y) \).

Determine the singularities (poles or branch points) of the following functions:

(i) \(f(z) = z^4 \log \left(\frac{z - 1}{z + 1}\right) \), \(\quad \) (ii) \(f(z) = \frac{z}{z^2 + 4z + 5} \).

[You may assume that \(\int y^2 \cos y \, dy = y^2 \sin y - 2 \sin y + 2y \cos y \) and \(\int y \sin y \, dy = \sin y - y \cos y \).]
4B

State the Residue Theorem. [4]

Let n be a positive integer with $n \geq 3$. Identify the poles of

$$f(z) = \frac{1}{1 + z^n}.$$

By integrating $f(z)$ along a contour enclosing only one pole, prove that

$$\int_{0}^{\infty} \frac{1}{1 + x^n} \, dx = \frac{\pi}{n \sin \left(\frac{\pi}{n} \right)}.$$

Furthermore, compute the integral

$$I = \int_{0}^{\infty} \frac{x^{\frac{1}{n}}}{1 + x^n} \, dx.$$

[8]

5B

(i) Define the Laplace transform $\tilde{f}(p)$ of a function $f(t)$ (where $f(t) = 0$ for $t < 0$). State the Bromwich inverse integral formula for the inverse Laplace transform, and describe how the Bromwich contour should be chosen in the integral.

Assuming that $f(t) \to f(0)$ as $t \to 0$ from above, and also that $f(t)e^{-pt} \to 0$ as $t \to +\infty$, show that the Laplace transform of $f'(t)$ is $pf(p) - f(0)$. [8]

(ii) The function $S_n(t)$ is defined by

$$S_n(t) = \begin{cases}
 n & \text{if } 1 - \frac{1}{2n} < t < 1 + \frac{1}{2n} \\
 0 & \text{otherwise}
\end{cases}$$

where n is a positive integer. The function $f(t)$ satisfies $f(0) = 0$ and

$$f'(t) - f(t) = S_n(t) \quad (*)$$

for $t > 0$, with $f(t) = 0$ for $t < 0$. Using the Laplace transform, find $f(t)$ for $t < 1 - \frac{1}{2n}$ and $t > 1 + \frac{1}{2n}$. [12]

[For this question, Jordan’s Lemma may be used without proof, provided it is stated carefully].
Define a tensor T of rank two in \mathbb{R}^3, and demonstrate that every such tensor can be decomposed as

$$T_{ij} = Y \delta_{ij} + \Omega_{ij} + S_{ij},$$

where Ω_{ij} is antisymmetric, S_{ij} is symmetric and traceless and Y is a scalar. What are the numbers of independent components of Ω_{ij} and S_{ij}? \[6\]

Let A_i be a non-zero rank one tensor and let T_{ij} be a symmetric rank two tensor. Find scalars α, β, a rank one tensor B_i, and a symmetric traceless rank two tensor C_{ij} such that

$$T_{ij} = \alpha \delta_{ij} + \beta A_i A_j + (B_i A_j + B_j A_i) + C_{ij},$$

$$A_i B_i = 0, \quad C_{ij} A_i = 0.$$ \[14\]

[The summation convention is assumed. It is not necessary to derive the transformation laws for Y, Ω_{ij}, S_{ij}, α, β, B_i and C_{ij}.]
Write down a general Lagrangian of a system with \(n \) degrees of freedom undergoing small oscillations, and state the polynomial equation for the normal frequencies. [4]

Let \(A, B, C \) be three identical particles of unit mass, and let \(O \) be a fixed point. Assume that \(A \) is suspended from \(O \) by a string of length \(3a \), \(B \) is suspended from \(A \) by a string of length \(2b \) and \(C \) is suspended from \(B \) by a string of length \(c \). The system moves in a plane containing \(A, B, C \) and \(O \) under the influence of gravity.

Let \(x, y, z \) denote the horizontal displacements of \(A, B, C \) from their equilibria. Show that the approximate Lagrangian for small oscillations is

\[
L = \frac{1}{2} (\dot{x}^2 + \dot{y}^2 + \dot{z}^2) - g \left(\frac{x^2}{a} + \frac{(x-y)^2}{b} + \frac{(y-z)^2}{c} \right),
\]

where \(g \) is the acceleration due to gravity. [8]

Show that the necessary and sufficient condition for the existence of a normal mode \(y(t) = 0 \) is

\[
\frac{1}{a} + \frac{1}{b} - \frac{1}{c} = 0.
\]

[8]
8C

State the Lagrange theorem relating the order of a group to orders of its subgroups. [2]

Let G be a group in which every element other than the identity has order 2. Show that this group is Abelian. Let a, b be distinct elements of G different from the identity element I. Show that $\{I, a, b, ab\}$ is a subgroup of G of order 4. [10]

Deduce that any group of order $2p$, where $p > 2$ is prime, must contain an element of order p. [8]

9C

Let G and H be two groups. Define the terms isomorphism, homomorphism and kernel, and show that if $\phi : G \rightarrow H$ is a homomorphism then the kernel of ϕ is a normal subgroup of G. [6]

Show that matrices of the form

$$B = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix},$$

where n is an integer, form a subgroup H of the multiplicative group of invertible 2×2 matrices. Is H cyclic? Does it have any proper subgroups? [8]

Demonstrate that H is isomorphic to the additive group of all integers. [6]
10C

Let G be a group, and let D be a map $D : G \to GL(2, \mathbb{R})$, where $GL(2, \mathbb{R})$ is the group of real 2×2 invertible matrices. What does it mean for D to be a representation of G? \[4\]

Let G be a cyclic subgroup of $GL(2, \mathbb{R})$ of order 4 given by

$$G = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\}.$$

Suppose that real $x, y, \tilde{x}, \tilde{y}$ are related by

$$\begin{pmatrix} \tilde{x} \\ \tilde{y} \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix}$$ for real x, y, where $A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in G$.

Suppose in addition that $x, y, \tilde{x}, \tilde{y}$ satisfy the relation

$$\hat{a}\tilde{x}^2 + \hat{b}\tilde{y}^2 = ax^2 + by^2 \quad (\star)$$

for real \hat{a}, \hat{b}, a, b. Find the real 2×2 matrix M, whose components do not depend on \hat{a}, \hat{b}, a, b, such that the relation (\star) holds for all real x, y, and M satisfies

$$\begin{pmatrix} a \\ b \end{pmatrix} = M \begin{pmatrix} \hat{a} \\ \hat{b} \end{pmatrix}.$$

[7]

Show that the map

$$A \mapsto D(A) = M^{-1}$$

is a representation of G. Is this representation faithful? \[9\]

END OF PAPER