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1A

For the spherical polar co-ordinates (r, θ, φ) defined by

x1 = r sin θ cosφ, x2 = r sin θ sinφ, x3 = r cos θ, r > 0, 0 6 θ 6 π, 0 6 φ < 2π

the gradient ∇ and the Laplacian ∇2 are given by the following:

∇ = er
∂

∂r
+

eθ

r

∂

∂θ
+

eφ

r sin θ
∂

∂φ
,

∇2 =
1
r2

∂

∂r

(
r2
∂

∂r

)
+

1
r2

[ 1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2

]
.

Let
r̂ =

r
r
.

(i) Show that

∇× r̂ = 0, ∇ · r̂ =
2
r
.

[5]

(ii) Let
f(r) = Rr̂ + r̂×∇F + (r̂×∇G)× r̂

where R, F , G are smooth functions of r, θ, φ. Show that

(a)

f = Rer +
1
r

(∂G
∂θ

− 1
sin θ

∂F

∂φ

)
eθ +

1
r

( 1
sin θ

∂G

∂φ
+
∂F

∂θ

)
eφ .

[5]

(b) (∇× f) · r is independent of R and G.

[5]

(c)

(∇× f) · r =
1
r
∆θ,φF

for some differential operator ∆θ,φ which should be determined.

[5]

[You may assume the identity ∇×(f1×f2) = f1∇·f2−f2∇·f1+(f2 ·∇)f1−(f1 ·∇)f2.]
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2A The heat flow along a thin circular wire of length 2L can be approximated by the
heat equation

∂u

∂t
= κ

∂2u

∂x2
, κ > 0, −L < x < L

with the following boundary conditions

u(−L, t) = u(L, t) ,
∂u

∂x
(−L, t) =

∂u

∂x
(L, t) .

(i) Use separation of variables to express the solution u in terms of an infinite Fourier
series involving appropriate integral transforms of the initial condition u(x, 0) = u0(x).

[10]

(ii) Compute the integral transforms appearing in (i) in the particular case that

u0(x) = sinx−
( sinL
L

)
x .

[10]
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3A

(i) The cosine transform of a function f(x), which has sufficient smoothness and decay
as x→∞, is given by

f̂c(k) = 2
∫ ∞

0

f(x) cos kx dx, k > 0 .

By applying the Fourier transform to an even function, show that the inverse cosine
transform is given by

f(x) =
1
π

∫ ∞

0

f̂c(k) cos kx dk, x > 0 .

[7]

(ii) Let f(x, t) satisfy the partial differential equation

i
∂f

∂t
+
∂2f

∂x2
= 0, −∞ < x <∞, t > 0 ,

and the initial condition

f(x, 0) = f0(x), −∞ < x <∞ ,

where the function f0(x) has sufficient smoothness and decay as |x| → ∞. Use the Fourier
transform to show that f(x, t) can be written as

f(x, t) =
c

2π
√
t

∫ ∞

−∞
f0(ξ)e

i(x−ξ)2

4t dξ ,

where
c =

∫ ∞

−∞
e−i`2d` .

[13]
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4C

Define the trace of a square matrix and show that Tr(AB) = Tr(BA). Deduce
that there are no n× n matrices A,B such that

AB −BA = I ,

where I is the identity matrix. [6]

Let A,B be real n × n matrices such that the complex matrix C = A + iB is
invertible. By considering det(A+ λB) as a function of λ, show that the matrix A+ λB
is invertible for some real number λ. [6]

Deduce that if two real matrices P,Q are related by a complex similarity transfor-
mation P = RQR−1, where R is a complex matrix, then they are also related by a real
similarity transformation. [8]

[Hint: for the last part rearrange the similarity relation and consider its real and
imaginary parts.]

5C

Define the standard inner product in a complex vector space Cn, and prove the
Cauchy–Schwarz inequality. [8]

Show that if U is a unitary matrix, then |Ua| = |a| for all vectors a. Hence, find
a constraint for the eigenvalues of U . [4]

Given a one parameter family of unitary matrices

U(t) = I + tA+O(t2),

where t is real, show that the eigenvalues of the matrix A are purely imaginary. [8]
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6A

(i) Let y(z) satisfy
2z(1− z)y′′ + (1 + z)y′ − y = 0 .

Find the indicial equation associated with the singular point z = 1.

[4]

(ii) Let ψ(x) satisfy the Schrödinger equation

ψ′′ + (2λ+ 1− x2)ψ = 0 .

Use the transformation ψ(x) = e−
x2
2 y(x) to obtain the equation satisfied by y(x), which

is called the Hermite equation. [8]

Construct two linearly independent series solutions of the Hermite equation in
the neighbourhood of x = 0. Give the radius of convergence of the series obtained and
construct the first three terms of these series. Find the particular values of λ for which
there exist polynomial solutions. Find such solutions up to terms including x3.

[8]
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7A

(i) Let yn(x) satisfy

d

dx
(g(x)

dyn(x)
dx

) + h(x)yn(x) + λnw(x)yn(x) = 0 , a < x < b ,

α1
dyn

dx
(a) + α2yn(a) = 0 , β1

dyn

dx
(b) + β2yn(b) = 0 ,

where α1, α2 are not both zero and β1, β2 are not both zero. Show that if λm 6= λn then
yn and ym satisfy the following orthogonality relation∫ b

a

w(x)yn(x)ym(x) dx = 0 ,

for m 6= n.

[10]

(ii) Let
d

dx
(x
dyn(x)
dx

) +
λn

x
yn(x) = 0 , 1 < x < b ,

yn(1) = yn(b) = 0 ,

where λn 6= 0. Use the change of variables ξ = λn lnx to compute λn and yn(x).

[10]

8A Use an appropriate Green’s function to solve the following differential equation:

d2u

dx2
− u = ex , 0 < x < 1 ,

u(0) = u(1) = 0 .

[20]

[You may use the identity sinh a cosh b− cosh a sinh b = sinh(a− b).]
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9B

Show that functions y(x) which make stationary the functional

F [y] =
∫ a

b

f(x, y, y′) dx ,

where y′ = dy
dx , and y(a), y(b) are fixed, satisfy Euler’s equation

d

dx

( ∂f
∂y′

)
=
∂f

∂y
.

[10]

The motion of a particle in a plane is constrained by the Lagrangian

L =
ṙ2

(1− 2m
r )

+ r2θ̇2 +
µ

(1− 2m
r )

,

where m, µ are positive constants and r(t), θ(t) are generalized co-ordinates with r > 2m,
0 6 θ < 2π. By setting

J = r2θ̇ ,

show that the Euler-Lagrange equations imply that J is constant.

By computing the Euler-Lagrange equation for r, show that solutions with r = R
for constant R > 2m are only possible when

J2 =
mµR

(1− 2m
R )2

.

[10]
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10B

The Sturm-Liouville equation is given by

− d

dx
(p(x)y′) + q(x)y = λw(x)y , a < x < b , (?)

where λ is constant and p(x) > 0, q(x) > 0 and w(x) > 0. Show that solutions of this
equation which satisfy the boundary condition

p(b)y(b)y′(b)− p(a)y(a)y′(a) = 0

correspond to functions y(x) for which the quotient

Λ[y] =
F [y]
G[y]

is stationary, where

F [y] =
∫ b

a

(py′2 + qy2)dx , G[y] =
∫ b

a

ωy2dx .

Show furthermore that the eigenvalues λ of this Sturm-Liouville problem are given
by the values of Λ[y], where y satisfies (?).

[10]

Suppose y(x) satisfies the second order differential equation

−y′′ − (n− 1)
x

y′ + x2y = λy , x > 0 ,

where n is a fixed positive integer and λ is constant. By writing this equation in the
form of a Sturm-Liouville equation with p(x) = w(x) = xn−1 and q(x) = xn+1, use the
Rayleigh-Ritz method with a trial function of the form eax2

for a < 0 to find an estimate
for the lowest eigenvalue of the Sturm-Liouville problem.

[10]

[For this question, you may assume the Euler equation without proof.]

END OF PAPER
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