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1C State the divergence theorem for a vector field F(r) in a simply connected region
R with surface S. [2]

Let u(r) and v(r) be scalar fields that tend to zero as |r| → ∞. Use the divergence
theorem to show that∫ [

u(∇2 −m2)v − v(∇2 −m2)u
]
dV = 0 , (A)

where the integration is over all space. [4]

A scalar field φ(r), that tends to zero as |r| → ∞, satisfies the equation

(∇2 −m2)φ(r) = ρ(r) , (B)

where ρ(r) tends to zero rapidly as |r| → ∞. Use equation (A) to show that

φ(r) =
∫
G(r, r′)ρ(r′)dV ′ .

[2]

where the Green’s function G(r, r′) satisfies

(∇2 −m2)G(r, r′) = δ(r− r′)

and G(r, r′) = G(r′, r).

Assuming that G(r, r′) depends only on |r− r′| compute the Green’s function. [4]

Solve equation (B) for the case

ρ(r) =
e−βr

r
,

where r = |r| . Hence show that

1
4π

∫
e−m|r−r′|

|r− r′|
e−βr′

r′
dV ′ = −1

r

e−βr − e−mr

β2 −m2
.

[8]

You may use the result that

∇2ψ(r) =
1
r

d2

dr2
(rψ(r)) .
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2C In plane polar coordinates, (r, θ), Laplace’s equation for a potential φ(r, θ) is

1
r

∂

∂r

(
r
∂φ

∂r

)
+

1
r2
∂2φ

∂θ2
= 0 .

Using the method of separation of variables show that the general solution of Laplace’s
equation in a domain a ≤ r ≤ b, 0 ≤ θ < 2π, has the form

φ(r, θ) = A+B log r

+
∞∑

n=1

[rn(An cosnθ +Bn sinnθ) + r−n(Cn cosnθ +Dn sinnθ)] .

where An, Bn, Cn and Dn are constants. [10]

Obtain the solution for φ(r, θ) given the boundary conditions φ(a, θ) = U and
φ(b, θ) = V cos θ . [10]

3A Let f = u+iv be a complex differentiable function of a complex variable z = x+iy,
where x, y, u and v are real. Derive the Cauchy-Riemann equations for u and v. [5]

Find the most general analytic function f(z) whose real part is

u = e−x(x sin y − y cos y) . [5]

Use the Cauchy-Riemann equations to show that f(z) = cosh z is analytic. [5]

Find the terms a−1, a0 in the Laurent expansion of
cosh z
z2 − 1

about z = 1.
[5]
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4A What is meant by a pole of a complex function f(z) and what is meant by its
residue? [2]

Write down the Cauchy theorem for a function f(z) which is analytic in a simply
connected domain R, and state the residue theorem for a function g(z) which is analytic
in R except at a finite number of poles. [2]

By integrating the function f(z) =
eiaz − eibz

z2
, where a, b > 0, along a closed

contour containing no poles, evaluate∫ ∞

−∞

cos ax− cos bx
x2

dx.
[7]

Find the poles of the function g(z) =
eaz

coshπz
, and calculate their residues.

[2]

By integrating g(z) along a closed rectangular contour containing one pole, evaluate∫ ∞

−∞

eax

coshπx
dx

where −π < a < π. [7]

5C Given a function u(t) on the range t ≥ 0, define its Laplace transform ū(p).

Calculate the Laplace transform of
du

dt
in terms of ū(p) and u(0). Obtain the corresponding

results for the second and third derivatives of u(t). [2]

Let v(t) = tu(t). Show that

v̄(p) = − d

dp
ū(p) .

[4]

Hence compute the Laplace transforms of the functions

vn(t) = tne−t ,

for n = 0, 1, 2, 3. [6]

Consider the differential equation

d3y

dt3
+ 3

d2y

dt2
+ 3

dy

dt
+ y = e−t ,

in the range t ≥ 0. Use the method of the Laplace transform to find the solution when
y(t) satisfies the initial conditions, y(0) = 0, ẏ(0) = 0 and ÿ(0) = 0. [8]
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6A The differential operator ∂i is defined by ∂i =
∂

∂xi
. Show that ∂i is a tensor of

rank one. [2]

Two vectors u and w are related by w = ∇ × u. By considering individual
components and using the summation convention, derive the following identities:

(i) w × u = u · ∇u−∇
(
|u|2
2

)
[4]

(ii) ∇× (w × u) = (u · ∇)w + (∇ · u)w − (∇ ·w)u− (w · ∇)u [7]

If u is the velocity of an inviscid, incompressible flow, then the equations of motion
can be written as:

∂u
∂t

+ (u · ∇)u = −∇H

∇ · u = 0

for some function H, which depends on the density, pressure, and gravitational potential.
Using the identities derived above, show that

∂w
∂t

+ (u · ∇)w = (w ·∇)u

where w is defined as above (in this case w is known as the ‘vorticity’). [7]

7C A light string of length 4a is fixed at its ends and is under tension T . A particle
of mass 4m is attached at the centre of the string. A particle of mass 3m is attached a
distance a from the left end of the string another particle also of mass 3m is attached a
distance a from the right end of the string.

The particles can undergo small oscillations transverse to the string in a plane con-
taining the string. Let the displacement of the central particle be z and the displacements
of the other two particles be x and y respectively. Given that the potential energy of the
system is

V =
1
2
mΩ2

[
x2 + (x− z)2 + (y − z)2 + y2

]
,

where
Ω2 =

T

ma
.

Obtain the equations of motion for the particles. [4]

Find the normal mode frequencies. [6]

Calculate the ratios for the displacements x, y and z in each of the normal modes. [6]

Give sketches of the three normal modes. [4]
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8B Given a finite group G of order |G| and a subgroup H of order |H| define a left
coset of H in G. State Lagrange’s theorem relating the order of a group and those of its
subgroups. [2]

Construct the multiplication table of the following set of matrices, and verify that
they form a group under matrix multiplication:

I =
(

1 0
0 1

)
A =

(
−1 0
0 −1

)
B =

(
0 1
1 0

)
C =

(
0 −1
−1 0

)
[9]

If H is a group in which every element other than the identity, e, has order 2, show
that H is Abelian. [9]

9B Define a homomorphism and an isomorphism between two groups G1 and G2. [2]

Verify that the set A(G) of isomorphisms from a group G to itself forms a group,
under the group operation defined by the composition of maps. [9]

Define what is meant by a finite cyclic group H. By showing that there is an
isomorphism onto the set of complex numbers {e2πik/n}, for k = 1, ..., n, explain why a
finite cyclic group G of order n has no proper subgroup if n is prime, and find two proper
subgroups otherwise. [9]

10B Define a representation of a group G and explain what is meant by a reducible
representation and an irreducible representation. [3]

If D is an n-dimensional representation and S an invertible n × n matrix, show
that the map D̃ defined by D̃(g) = SD(g)S−1 is a representation. Define the characters
of a representation, and the conjugacy classes of a group. Show that (i) characters of D
and D̃ are the same, and that (ii) each element of a given conjugacy class has the same
order. [7]

List the elements of the group of symmetries of the square. Find the conjugacy
classes, and deduce the number of irreducible representations, quoting any theorems you
use. [10]

END OF PAPER
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