MATHEMATICS (1)

Before you begin read these instructions carefully:

You may submit answers to no more than six questions. All questions carry the same number of marks.

The approximate number of marks allocated to a part of a question is indicated in the right hand margin.

Write on one side of the paper only and begin each answer on a separate sheet.

At the end of the examination:

Each question has a number and a letter (for example, $\boldsymbol{6 A}$).
Answers must be tied up in separate bundles, marked $\boldsymbol{A}, \boldsymbol{B}$ or \boldsymbol{C} according to the letter affixed to each question.

Do not join the bundles together.
For each bundle, a blue cover sheet must be completed and attached to the bundle.
A separate yellow master cover sheet listing all the questions attempted must also be completed.

Every cover sheet must bear your examination number and desk number.

> You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1B For $\phi(\boldsymbol{r})=\exp (i k r) /(4 \pi r)$ evaluate $\nabla \phi$ in Cartesian coordinates, where $\boldsymbol{r}=$ $(x, y, z), r=|\boldsymbol{r}|$, and k is a positive real number.

State Stokes' theorem for a vector field \boldsymbol{F}.
Using Cartesian coordinates show that

$$
(\boldsymbol{F} \cdot \nabla) \boldsymbol{F}=\frac{1}{2} \nabla f^{2}-\boldsymbol{F} \times(\nabla \times \boldsymbol{F})
$$

where $f=|\boldsymbol{F}|$.
For orthorgonal curvilinear coordinates q_{i}, for $i=1,2,3$, show that

$$
\begin{equation*}
\nabla \psi=\sum_{i=1}^{3} \frac{1}{h_{i}} \frac{\partial \psi}{\partial q_{i}} \boldsymbol{e}_{i} \tag{5}
\end{equation*}
$$

explaining the definition of the quantities h_{i} and \boldsymbol{e}_{i}, where ψ is a scalar function.

2A The heat flow in a laterally insulated bar placed along the x-axis from $x=0$ to $x=\pi$ is governed by the heat equation

$$
\frac{\partial T}{\partial t}=c^{2} \frac{\partial^{2} T}{\partial x^{2}}, \quad c^{2}=\frac{\kappa}{\sigma \rho}
$$

where $T(x, t)$ is the temperature, κ is the thermal conductivity, σ is the specific heat and ρ is the density of the material. The ends of the bar are kept at temperature $T=0$.

Using the technique of separation of variables, find the functions $F_{n}(x)$ and $G_{n}(t)$ which allow $T(x, t)$ to be written as

$$
T(x, t)=\sum_{n=1}^{\infty} a_{n} F_{n}(x) G_{n}(t) .
$$

If the initial temperature is given by

$$
f(x)= \begin{cases}x & \text { if } 0<x<\pi / 2 \\ \pi-x & \text { if } \pi / 2<x<\pi\end{cases}
$$

find a_{n}.
Verify that the infinite series converges.

3B Define the Fourier transform of a function $f(x)$ and write down its inverse transform.

For a function $g(x)$, derive the Fourier transform of $d^{n} g / d x^{n}$ in terms of the Fourier transform of g for any positive integer n, under the assumption that the derivative exists and that $d^{n} g(x) / d x^{n} \rightarrow 0$ as $|x| \rightarrow \infty$ for each n.

For a function $f(x, t)$ with given initial condition $f(x, 0)$ and which satisfies

$$
\frac{\partial f}{\partial t}=\alpha \frac{\partial^{2} f}{\partial x^{2}}
$$

and $|f(x, t)| \rightarrow 0,|\partial f / \partial x| \rightarrow 0$ as $|x| \rightarrow \infty$ for all t, use Fourier transforms to derive the solution for $f(x, t)$ in terms of $f(x, 0)$. Evaluate this explicitly in the case $f(x, 0)=\exp \left(-x^{2}\right)$.

4B Suppose A is a Hermitian $n \times n$ matrix such that $A^{2}=A$ and $\operatorname{det} A \neq 1$. By examining the eigenvalues of A, or otherwise, show that $\operatorname{det} A=0$ and $\operatorname{Tr} A=m$ where m is an integer less than n.

Define a scalar product in a complex vector space and state what is meant by an orthonormal basis.

If \boldsymbol{x} and \boldsymbol{y} are two elements of an orthonormal basis find the distance $\|\boldsymbol{x}-\boldsymbol{y}\|$ between them.

Given an $n \times n$ Hermitian matrix B and a vector \boldsymbol{x} in an n-dimensional vector space over the complex numbers, show that $\boldsymbol{x}^{\dagger} B \boldsymbol{x}$ is real.

5B Define what is meant by a unitary matrix and an orthogonal matrix.
Find the eigenvalues and eigenvectors of the matrix A where

$$
A=\left(\begin{array}{ccc}
a & 0 & b \\
0 & c & 0 \\
b & 0 & d
\end{array}\right)
$$

where a, b, c, and d are real constants, in the case $a+d=0$.
Schwarz's inequality for any pair of vectors $\boldsymbol{a}, \boldsymbol{b}$ in an n-dimensional vector space is $|<\boldsymbol{a}, \boldsymbol{b}>| \leq\|\boldsymbol{a}\|\|\boldsymbol{b}\|$. Prove this and hence or otherwise show that $\|\boldsymbol{a}+\boldsymbol{b}\| \leq\|\boldsymbol{a}\|+\|\boldsymbol{b}\|$.

6A Define a regular singular point of a second-order linear differential equation.
Consider Bessel's differential equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\nu^{2}\right) y=0
$$

where ν is real and non-negative. Show that a series solution is

$$
y_{1}(x)=x^{\nu} \sum_{m=0}^{\infty} a_{2 m} x^{2 m}
$$

where $a_{2 m}$ is defined in terms of a recurrence relation which you should find.
In the case where ν is not an integer, find a second solution $y_{2}(x)$.
In the case where ν is an integer, set $a_{0}=\left(2^{\nu} \nu!\right)^{-1}$, and hence find the solution of the recurrence relation for the term $a_{2 m}$ in $y_{1}(x)$. Discuss the convergence of the series.

7A The second-order Sturm-Liouville linear differential operator \mathcal{L} is given by

$$
\mathcal{L}=-\frac{d}{d x}\left(p(x) \frac{d}{d x}\right)-q(x),
$$

where $p(x)$ and $q(x)$ are real functions defined for $a \leq x \leq b$, with $p(x)>0$ for $a<x<b$. Consider the eigenvalue equation

$$
\mathcal{L} y=\lambda w(x) y
$$

where $w(x)$ is a real function with $w(x)>0$ for $a<x<b$ and $y(a)=y(b)=0$. Show that any two eigenfunctions corresponding to different eigenvalues λ are orthogonal with respect to an inner product with weight function $w(x)$.

By considering the substitution $x=e^{v}$, or otherwise, find the eigenvalues and orthonormal eigenfunctions of the equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}+\lambda y=0
$$

when $y(1)=y(2)=0$.

8A Find the Green's function $G(x, \xi)$ that satisfies

$$
\frac{d^{2} G}{d x^{2}}+4 \frac{d G}{d x}+\left(4+a^{2}\right) G=\delta(x-\xi)
$$

where a is real, subject to $\frac{d G}{d x}(0, \xi)=0$ and $G(0, \xi)=0$.
Hence find the solution $y(x)$ of the equation

$$
y^{\prime \prime}+4 y^{\prime}+8 y=\sin 2 x
$$

with $y(0)=0$ and $y^{\prime}(0)=0$.
You may use the following identity:

$$
\sin A \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)]
$$

9C The functions $p(x), q(x)$ and $w(x)$ are defined on the interval $0 \leq x \leq 1$. They are all positive in the interval except that $p(0)=0$.

Consider the twice differentiable functions $y(x)$ that are subject to the boundary conditions $y(1)=0, y(0)$ is finite, and the constraint

$$
\int_{0}^{1} w(x)(y(x))^{2} d x=1
$$

Show that such a function $y(x)$ that renders the integral

$$
I=\int_{0}^{1}\left(p(x) y^{2}+q(x) y^{2}\right) d x
$$

stationary, is a solution of the Sturm-Liouville eigenvalue problem

$$
\left(p(x) y^{\prime}\right)^{\prime}-q(x) y+\lambda w(x) y=0
$$

where λ is the eigenvalue.
Explain briefly the Rayleigh-Ritz method for estimating the lowest eigenvalue.
Consider the eigenvalue problem on the interval $0 \leq x \leq 1$,

$$
\left(x y^{\prime}\right)^{\prime}+\lambda x y=0 .
$$

By using the trial wave function

$$
y=A\left(1-x^{2}\right)
$$

where A is a constant that you should determine, obtain an estimate of the lowest eigenvalue.

The exact value (to four decimal places) is 5.7815 . Why is your estimate bigger than this?

10C The Euler-Lagrange equation

$$
\frac{d}{d x} \frac{\partial f}{\partial y^{\prime}}-\frac{\partial f}{\partial y}=0
$$

is satisfied by the function $y(x)$ that renders the integral

$$
I=\int_{a}^{b} f\left(x, y, y^{\prime}\right) d x
$$

stationary, subject to appropriate boundary conditions. Show that if $f\left(x, y, y^{\prime}\right)$ does not depend explicitly on x, then $y(x)$ also satisfies the first integral

$$
f-y^{\prime} \frac{\partial f}{\partial y^{\prime}}=k
$$

where k is a constant.
A flexible fence of length $2 l$, is attached at its ends to two points on a straight wall a distance $2 a$ apart. The values of l and a satisfy the inequalities $a<l<\pi a / 2$. Find the shape of the flexible fence that maximises the area between the fence and the wall?

