MATHEMATICS (2)

Before you begin read these instructions carefully:

You may submit answers to no more than six questions. All questions carry the same number of marks.

The approximate number of marks allocated to a part of a question is indicated in the right hand margin.

Write on one side of the paper only and begin each answer on a separate sheet.
Questions marked with an asterisk $\left(^{*}\right)$ require a knowledge of B course material.

At the end of the examination:

Each question has a number and a letter (for example 3B).
Answers must be tied up in separate bundles, marked $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}$ or \mathbf{F} according to the letter affixed to each question. Do not join the bundles together.

For each bundle, a blue cover sheet must be completed and attached to the bundle, with the appropriate letter written in the section box.

A separate yellow master cover sheet listing all the questions attempted must also be completed.

Every cover sheet must bear your examination number and desk number.

1 A

(a) Find the equation of the plane that is perpendicular to the vector $-\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}$ and passes through the point A $(2,-1,1)$. Determine the shortest distance of this
plane from the origin.
(b) A second plane passes through the points A, B $(1,1,-1)$ and $\mathrm{C}(3,-1,2)$. Find a unit vector normal to this plane, and a vector along the line of intersection of the two planes.
[You may find the following trigonometric identities useful:

$$
\begin{aligned}
\cos (\theta \pm \phi) & =\cos \theta \cos \phi \mp \sin \theta \sin \phi \\
\sin (\theta \pm \phi) & =\sin \theta \cos \phi \pm \cos \theta \sin \phi .]
\end{aligned}
$$

3B
(a) Express the real matrix

$$
M=\left(\begin{array}{ll}
0 & b \\
a & 0
\end{array}\right)
$$

as the sum of a real symmetric matrix, S, and a real antisymmetric matrix A.
Determine the values of a and b for which both S and A are orthogonal matrices.
(b) Determine the eigenvalues and normalised eigenvectors of the matrix

$$
\left(\begin{array}{rr}
5 & -2 \\
-2 & 2
\end{array}\right)
$$

Verify that the eigenvectors are orthogonal.
(a) State carefully the divergence theorem and Stokes' theorem.
(b) In Cartesian coordinates and components, the vector field \mathbf{F} is given by

$$
\mathbf{F}=\left(x^{2} y z, x y^{2} z, x y z^{2}\right)
$$

Evaluate $\int_{S} \mathbf{F} \cdot d \mathbf{S}$, where S is the surface of the cube

$$
0 \leqslant x \leqslant 1, \quad 0 \leqslant y \leqslant 1, \quad 0 \leqslant z \leqslant 1
$$

(c) In Cartesian coordinates and components, the vector field \mathbf{G} is given by

$$
\mathbf{G}=(4 y, 3 x, 2 z) .
$$

Evaluate $\int_{S}(\boldsymbol{\nabla} \times \mathbf{G}) \cdot d \mathbf{S}$, where S is the open hemispherical surface

$$
x^{2}+y^{2}+z^{2}=r^{2}, \quad z \geqslant 0 .
$$

5C
(a) It is known that n people out of a population of N suffer from a certain disease, and that the other $N-n$ people do not. The test for the disease has a probability a of producing a correct positive result when used on a sufferer and a probability b of producing a false positive result when used on a non-sufferer. The test is positive when done on me. What is the probability that I am a sufferer?
(b) A random variable X has density function $f(t)$ given by

$$
f(t)=A e^{-k t}, \quad \text { for } \quad t \geq 0
$$

where A and k are constants. Find, in terms of k :
(i) the value of A;
(ii) the probability that $X \geq 3$ given that $X \geq 1$;
(iii) the expectation value of X.

$$
x
$$

6C Solve the equations

$$
\begin{aligned}
3 x+2 y+7 z & =a, \\
x+4 y+6 z & =b, \\
y+z & =c,
\end{aligned}
$$

finding x, y and z in terms of a, b and c.
Write the equations in matrix form $A \mathbf{x}=\mathbf{d}$, where

$$
\mathbf{x}=\left(\begin{array}{l}
x \tag{2}\\
y \\
z
\end{array}\right) \text { and } \mathbf{d}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) .
$$

Hence find

$$
\left(\begin{array}{lll}
3 & 2 & 7 \tag{6}\\
1 & 4 & 6 \\
0 & 1 & 1
\end{array}\right)^{-1}
$$

7D Let E be the ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+z^{2}=1
$$

where $a>\sqrt{2}$ and $b>\sqrt{2}$. Find the normal to the surface of E.
Let S be the part of the surface of E defined by

$$
0 \leqslant x \leqslant 1, \quad 0 \leqslant y \leqslant 1, \quad \text { and } z>0
$$

and let \mathbf{F} be the vector field defined by $\mathbf{F}=(-y, x, 0)$. Explain why $\int_{S} \mathbf{F} \cdot d \mathbf{S}=0$ in the case $a=b$.

Given that the surface area element of S is given by

$$
d \mathbf{S}=\left(\frac{x}{a^{2} z}, \frac{y}{b^{2} z}, 1\right) d x d y
$$

find $\int_{S} \mathbf{F} \cdot d \mathbf{S}$ in the case $a \neq b$.

8D*

(a) The $n \times n$ matrix P has components $P_{i j}=\delta_{i j}-a_{i} a_{j}-b_{i} b_{j}$ where $n>1$ and a_{i} and b_{i} are the components of two orthogonal unit vectors \mathbf{a} and \mathbf{b}, respectively.
(i) Evaluate $\operatorname{tr}(P)$.
(ii) Using the summation convention, or otherwise, show that $P^{2}=P$.
(iii) Evaluate $P \mathbf{a}$ and hence find $\operatorname{det}(P)$.
(b) Let S be a symmetric $n \times n$ matrix and let A be an antisymmetric $n \times n$ matrix.
(i) Show that S^{2} is symmetric.
(ii) Show that $\operatorname{tr}(S A)=0$.

9E

(a) The internal energy U of a gas can be regarded as a function of the entropy S and the volume V. It is given that

$$
d U=T d S-p d V
$$

where T and p denote temperature and pressure, respectively. The enthalpy H is defined by

$$
H=U+p V
$$

Show that

$$
\left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial p}{\partial S}\right)_{V}
$$

and also that

$$
\begin{equation*}
\left(\frac{\partial T}{\partial p}\right)_{S}=\left(\frac{\partial V}{\partial S}\right)_{p} \tag{6}
\end{equation*}
$$

(b) The heat capacities of a gas at constant pressure, C_{p}, and constant volume, C_{V}, are defined by

$$
C_{p}=\left(\frac{\partial H}{\partial T}\right)_{p}, \quad C_{V}=\left(\frac{\partial U}{\partial T}\right)_{V} .
$$

Using the definition of H above, show that

$$
C_{p}-C_{V}=\left(\frac{\partial U}{\partial T}\right)_{p}+p\left(\frac{\partial V}{\partial T}\right)_{p}-\left(\frac{\partial U}{\partial T}\right)_{V}
$$

By considering U as a function of T and V, show that

$$
\left(\frac{\partial U}{\partial T}\right)_{p}=\left(\frac{\partial U}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{p}+\left(\frac{\partial U}{\partial T}\right)_{V}
$$

and hence that

$$
C_{p}-C_{V}=\left[\left(\frac{\partial U}{\partial V}\right)_{T}+p\right]\left(\frac{\partial V}{\partial T}\right)_{p}
$$

Evaluate $C_{p}-C_{V}$ for an ideal gas, for which

$$
\left(\frac{\partial U}{\partial V}\right)_{T}=0 \quad \text { and } \quad p V=N k T
$$

where N is the number of gas molecules present in volume V and k is Boltzmann's constant.
(a) The distance $r(x, y)$ of the point (x, y) from the origin of two-dimensional Cartesian space is given by

$$
r(x, y)=\sqrt{x^{2}+y^{2}} .
$$

Obtain formulae for

$$
\frac{\partial r}{\partial x}, \quad \frac{\partial r}{\partial y}
$$

and also for

$$
\frac{\partial^{2} r}{\partial x^{2}}, \quad \frac{\partial^{2} r}{\partial y^{2}} \text { and } \frac{\partial^{2} r}{\partial x \partial y}
$$

Without further calculation, write down a formula for

$$
\begin{equation*}
\frac{\partial^{2} r}{\partial y \partial x} . \tag{8}
\end{equation*}
$$

(b) Let $g(x, y)$ be a function defined on the $x y$-plane. The coordinates u and v are defined by

$$
\begin{aligned}
& u=x \cos \theta+y \sin \theta \\
& v=-x \sin \theta+y \cos \theta
\end{aligned}
$$

where θ is a constant. Show that

$$
\begin{equation*}
\frac{\partial^{2} g}{\partial x^{2}}+\frac{\partial^{2} g}{\partial y^{2}}=\frac{\partial^{2} g}{\partial u^{2}}+\frac{\partial^{2} g}{\partial v^{2}} \tag{12}
\end{equation*}
$$

11F Consider the differential equation

$$
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=2 x \sin x
$$

Find a particular solution, of the form

$$
y(x)=(a+b x) \sin x+(c+d x) \cos x,
$$

where the constants a, b, c, and d are to be determined.
Hence find the solution $y(x)$ that satisfies the initial conditions $y=0$ and $d y / d x=0$ at $x=0$.

12F* Consider the stationary points of the function

$$
u(x, y)=2(x-y)^{2}+(x+y)^{2}
$$

subject to the constraint $v(x, y)=0$, where

$$
v(x, y)=x^{2}-y-\frac{1}{4}
$$

By considering the function $(u-\lambda v)$, where λ is a Lagrange multiplier, show that any stationary points (x, y) satisfy:

$$
x=\frac{\lambda}{(6 \lambda-16)} \quad, \quad y=\frac{\lambda(3-\lambda)}{(6 \lambda-16)} .
$$

Deduce that λ obeys the cubic equation

$$
3 \lambda^{3}-21 \lambda^{2}+48 \lambda-32=0
$$

You may assume that this cubic equation has only one real root (so that there is a unique stationary point). Sketch the contours of u in relation to the curve C given by $v=0$, and explain why the function u takes its minimum value on C at this stationary point.
[6]

