NATURAL SCIENCES TRIPOS Part IA

Monday 9 June 2003 9 to 12

MATHEMATICS (1)

Before you begin read these instructions carefully:

You may submit answers to no more than six questions. All questions carry the same number of marks.

The approximate number of marks allocated to a part of a question is indicated in the right hand margin.

Write on one side of the paper only and begin each answer on a separate sheet.

Questions marked with an asterisk (*) require a knowledge of B course material.

At the end of the examination:

Each question has a number and a letter (for example, **3B**).

Answers must be tied up in separate bundles, marked A, B, C, D, E or F according to the letter affixed to each question. Do not join the bundles together.

For each bundle, a blue cover sheet **must** be completed and attached to each bundle, with the appropriate letter written in the section box.

A separate yellow master cover sheet listing all the questions attempted must also be completed.

Every cover sheet must bear your examination number and desk number.

1A The vectors **a**, **b**, **c** and **A**, **B**, **C** form reciprocal sets, defined such that

$$\mathbf{A} = rac{\mathbf{b} imes \mathbf{c}}{\mathbf{a} \cdot (\mathbf{b} imes \mathbf{c})}, \;\; \mathbf{B} = rac{\mathbf{c} imes \mathbf{a}}{\mathbf{a} \cdot (\mathbf{b} imes \mathbf{c})}, \;\; \mathbf{C} = rac{\mathbf{a} imes \mathbf{b}}{\mathbf{a} \cdot (\mathbf{b} imes \mathbf{c})},$$

and $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \neq 0$. Show that:

- (a) $\mathbf{A} \cdot \mathbf{a} = \mathbf{B} \cdot \mathbf{b} = \mathbf{C} \cdot \mathbf{c} = 1$,
- (b) $\mathbf{A} \cdot \mathbf{b} = \mathbf{A} \cdot \mathbf{c} = 0$,
- (c) **A**, **B** and **C** are non-coplanar.

Show that the vectors $\mathbf{a} = (-1, 1, 0)$, $\mathbf{b} = (0, 2, 1)$ and $\mathbf{c} = (1, 0, -1)$ are noncoplanar. Find the reciprocal basis, and hence write the vector $\mathbf{d} = (2, 1, -1)$ in terms of the basis \mathbf{a} , \mathbf{b} , \mathbf{c} . [12]

$2A^*$

(a) Evaluate the following limits:

(i)
$$\frac{(x^2+3)(2x^2-1)}{(3x^4-x^3-1)} \text{ as } x \to 0, \text{ as } x \to 1, \text{ and as } x \to \infty;$$

(ii)
$$\left(1-\frac{a}{x}\right)^x \text{ as } x \to \infty.$$
 [3]

[Hint for part (ii): first take logarithms.]

(b) L'Hôpital's rule for finding limits states that, if f(a) = g(a) = 0, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)},$$

provided this limit exists. Using l'Hôpital's rule, or otherwise, evaluate:

(i)
$$\frac{1}{(3x-x^3)} \int_0^x e^{-y^2} dy$$
 as $x \to 0$; [4]

(ii)
$$\frac{1 - \sin(\pi x/2)}{x^3 - 3x + 2}$$
 as $x \to 1$. [8]

Paper 1

[8]

[5]

3B

(a) Find the position and nature of each of the stationary points of the function

$$f(x) = \frac{x^3}{3} e^{-\frac{3}{2}x^2}.$$

[9]

- (b) Sketch the function f(x). [3]
- (c) Evaluate $\int_{-\infty}^{\infty} f(x) dx$ and $\int_{0}^{\infty} f(x) dx$. [8]
- **4B** By integrating by parts, or otherwise, evaluate

$$\int (1+3x^2) \ln(1+x^2) dx \,.$$
[7]

By making suitable substitutions, or otherwise, evaluate

(i)
$$\int \frac{dx}{x \ln x}$$
; [6]

(ii)
$$\int \frac{\sin^3 x}{\cos^4 x} \, dx \,.$$
 [7]

5C
(a) Let
$$M = \begin{pmatrix} 2 & 3 \\ 3 & 4 \end{pmatrix}$$
 and $N = \begin{pmatrix} 1 & 3 \\ 1 & 4 \end{pmatrix}$. Show by direct calculation that:
(i) $\det(MN) = \det(M) \det(N)$; [4]

(ii)
$$(MN)^{-1} = N^{-1}M^{-1}$$
. [4]

(b) Show, by means of counterexamples, that the following identities do not hold for arbitrary non-singular matrices A and B:

(i) det(A + B) = det(A) + det(B);

(ii)
$$[A+B]^{-1} = A^{-1} + B^{-1};$$

(iii) $(AB)^{-1} = A^{-1}B^{-1}.$ [7]

- (c) Let M be a $3 \times n$ matrix and let M^{T} denote the transpose of M. For what values of n are the following consistent with the rules of matrix manipulation:
 - (i) M^2 ; (ii) $(M^T)^2$; (iii) MM^T ; (iv) $M + M^T$; (v) M^{-1} ? [5]

6C* Use the method of separation of variables to find the solution U(x,t) of the heat equation

$$\frac{\partial^2 U}{\partial x^2} = \frac{\partial U}{\partial t} \qquad (t \ge 0, \ 0 \le x \le \pi)$$

that satisfies

$$U(0,t) = 0$$
; $U(\pi,t) = 0$; $U(x,0) = 3\sin x - \sin 3x$. [20]

Paper 1

4

7D The force field **F** is given by

$$\mathbf{F} = \begin{pmatrix} \mu z + y - x \\ x - \lambda z \\ z + (\lambda - 2)y - \mu x \end{pmatrix} ,$$

where λ and μ are real parameters.

- (i) Compute the line integral ∫ F ⋅ dx along the straight line from (0,0,0) to (1,1,1). [6]
 (ii) Compute the line integral ∫ F ⋅ dx along the path x(t) = (t, t, t²) from (0,0,0) to (1,1,1). [7]
 (iii) Find the exclose of) and a far which F is concentration.
- (iii) Find the values of λ and μ for which **F** is conservative. [7]

$8\mathbf{D}$

(a) Find, by any method, the first three non-zero terms in the Taylor expansion about x = 0 of the following functions:

(i)
$$\frac{\cos x}{\cos x}$$
;

$$\begin{array}{c} (1) \\ 1-x \end{array}, \tag{4}$$

(ii)
$$\sin^6 x$$
; [6]

(iii)
$$e^{e^x}$$
. [4]

(b) Let $f(x) = \sum_{i=0}^{\infty} a_i x^i$. Given that $f(0) \neq 0$, find the first three terms in the Taylor expansion about x = 0 of the function 1/f(x). [6]

9E

(a) Show that

and that

 $\cosh(ix) = \cos x \,.$

 $\sinh(ix) = i\sin x$

Deduce that

$$\tanh(ix) = i\tan x \,. \tag{6}$$

- (b) Express $\sinh x$ and $\cosh x$ as power series in x, quoting the general term. [4]
- (c) Evaluate

$$\int_0^{\pi/2} \cosh x \cos x \, dx \,. \tag{10}$$

[TURN OVER

Paper 1

10E*

(a) (i) By means of a diagram, show that

$$\int_{5}^{\infty} \frac{1}{(x+1)^2} \, dx < \sum_{n=6}^{\infty} \frac{1}{n^2} < \int_{5}^{\infty} \frac{1}{x^2} \, dx \,.$$
[4]

(ii) Given that

$$\sum_{n=1}^{5} \frac{1}{n^2} = \frac{5269}{3600} \,,$$

use the inequality above to show that

$$\frac{5869}{3600} < \sum_{n=1}^{\infty} \frac{1}{n^2} < \frac{5989}{3600} \ . \tag{8}$$

(b) Given that

$$\sum_{n=1}^{12} \frac{1}{n} = \frac{86021}{27720} \,,$$

use a similar method to evaluate

$$\sum_{n=1}^{100} \frac{1}{n}$$

100

to two significant figures.

11F

(a) Find the general solutions of the differential equations

(i)

$$(1+x^2)\frac{dy}{dx} = ky,$$

where k is a constant, and

(ii)

$$\frac{dy}{dx} - x^2 y = x^2.$$
^[5]

(b) By writing y(x) = x v(x), or otherwise, solve the differential equation

$$x\frac{dy}{dx} - y = \cot\left(\frac{y}{x}\right),$$
 given that $y = \frac{\pi}{4}$ when $x = 1.$ [10]

Paper 1

[8]

[5]

12F Sketch the region R of the xy-plane defined by

$$\begin{aligned} x &\ge 0, \quad y \ge 0, \\ x^2 + y^2 &\le 1, \\ xy &\ge \frac{1}{4} . \end{aligned}$$
 [3]

[4]

Show that, in terms of plane polar coordinates (r, θ) , the two points in R at which the curves $x^2 + y^2 = 1$ and $xy = \frac{1}{4}$ intersect are located at $(r = 1, \theta = \pi/12)$ and $(r = 1, \theta = 5\pi/12)$.

Show that

$$\int \int_{R} xy(x^{2} + y^{2})dxdy = \frac{\sqrt{3}}{32}.$$
[13]

Paper 1