MATHEMATICS (1)

Before you begin read these instructions carefully:

You may submit answers to no more than six questions. All questions carry the same number of marks.

The approximate number of marks allocated to a part of a question is indicated in the right hand margin.

Write on one side of the paper only and begin each answer on a separate sheet.
Questions marked with an asterisk $\left(^{*}\right)$ require a knowledge of B course material.

At the end of the examination:

Each question has a number and a letter (for example, 3B).
Answers must be tied up in separate bundles, marked $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}$ or \mathbf{F} according to the letter affixed to each question. Do not join the bundles together.

For each bundle, a blue cover sheet must be completed and attached to each bundle, with the appropriate letter written in the section box.

A separate yellow master cover sheet listing all the questions attempted must also be completed.

Every cover sheet must bear your examination number and desk number.

1A The vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and $\mathbf{A}, \mathbf{B}, \mathbf{C}$ form reciprocal sets, defined such that

$$
\mathbf{A}=\frac{\mathbf{b} \times \mathbf{c}}{\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})}, \quad \mathbf{B}=\frac{\mathbf{c} \times \mathbf{a}}{\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})}, \quad \mathbf{C}=\frac{\mathbf{a} \times \mathbf{b}}{\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})},
$$

and $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c}) \neq 0$. Show that:
(a) $\mathbf{A} \cdot \mathbf{a}=\mathbf{B} \cdot \mathbf{b}=\mathbf{C} \cdot \mathbf{c}=1$,
(b) $\mathbf{A} \cdot \mathbf{b}=\mathbf{A} \cdot \mathbf{c}=0$,
(c) \mathbf{A}, \mathbf{B} and \mathbf{C} are non-coplanar.

Show that the vectors $\mathbf{a}=(-1,1,0), \mathbf{b}=(0,2,1)$ and $\mathbf{c}=(1,0,-1)$ are noncoplanar. Find the reciprocal basis, and hence write the vector $\mathbf{d}=(2,1,-1)$ in terms of the basis $\mathbf{a}, \mathbf{b}, \mathbf{c}$.

2A*

(a) Evaluate the following limits:
(i) $\frac{\left(x^{2}+3\right)\left(2 x^{2}-1\right)}{\left(3 x^{4}-x^{3}-1\right)}$ as $x \rightarrow 0$, as $x \rightarrow 1$, and as $x \rightarrow \infty$;
(ii) $\left(1-\frac{a}{x}\right)^{x}$ as $x \rightarrow \infty$.
[Hint for part (ii): first take logarithms.]
(b) L'Hôpital's rule for finding limits states that, if $f(a)=g(a)=0$, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

provided this limit exists. Using l'Hôpital's rule, or otherwise, evaluate:
(i) $\frac{1}{\left(3 x-x^{3}\right)} \int_{0}^{x} e^{-y^{2}} d y \quad$ as $x \rightarrow 0$;
(ii) $\frac{1-\sin (\pi x / 2)}{x^{3}-3 x+2} \quad$ as $x \rightarrow 1$.

3B
(a) Find the position and nature of each of the stationary points of the function

$$
f(x)=\frac{x^{3}}{3} e^{-\frac{3}{2} x^{2}} .
$$

(b) Sketch the function $f(x)$.
(c) Evaluate $\int_{-\infty}^{\infty} f(x) d x$ and $\int_{0}^{\infty} f(x) d x$.

4B By integrating by parts, or otherwise, evaluate

$$
\begin{equation*}
\int\left(1+3 x^{2}\right) \ln \left(1+x^{2}\right) d x . \tag{7}
\end{equation*}
$$

By making suitable substitutions, or otherwise, evaluate

> (i) $\int \frac{d x}{x \ln x}$
> (ii) $\int \frac{\sin ^{3} x}{\cos ^{4} x} d x$

5C
(a) Let $M=\left(\begin{array}{ll}2 & 3 \\ 3 & 4\end{array}\right)$ and $N=\left(\begin{array}{ll}1 & 3 \\ 1 & 4\end{array}\right)$. Show by direct calculation that:
(i) $\operatorname{det}(M N)=\operatorname{det}(M) \operatorname{det}(N)$;
(ii) $(M N)^{-1}=N^{-1} M^{-1}$.
(b) Show, by means of counterexamples, that the following identities do not hold for arbitrary non-singular matrices A and B :
(i) $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$;
(ii) $[A+B]^{-1}=A^{-1}+B^{-1}$;
(iii) $(A B)^{-1}=A^{-1} B^{-1}$.
(c) Let M be a $3 \times n$ matrix and let M^{T} denote the transpose of M. For what values of n are the following consistent with the rules of matrix manipulation:
(i) M^{2};
(ii) $\left(M^{\mathrm{T}}\right)^{2}$;
(iii) $M M^{\mathrm{T}}$;
(iv) $M+M^{\mathrm{T}}$;
(v) M^{-1} ?

6C* Use the method of separation of variables to find the solution $U(x, t)$ of the heat equation

$$
\frac{\partial^{2} U}{\partial x^{2}}=\frac{\partial U}{\partial t} \quad(t \geqslant 0,0 \leqslant x \leqslant \pi)
$$

that satisfies

$$
U(0, t)=0 ; \quad U(\pi, t)=0 ; \quad U(x, 0)=3 \sin x-\sin 3 x
$$

7D The force field \mathbf{F} is given by

$$
\mathbf{F}=\left(\begin{array}{c}
\mu z+y-x \\
x-\lambda z \\
z+(\lambda-2) y-\mu x
\end{array}\right)
$$

where λ and μ are real parameters.
(i) Compute the line integral $\int \mathbf{F} \cdot \mathrm{d} \mathbf{x}$ along the straight line from $(0,0,0)$ to $(1,1,1)$.
(ii) Compute the line integral $\int \mathbf{F} \cdot \mathrm{d} \mathbf{x}$ along the path $\mathbf{x}(t)=\left(t, t, t^{2}\right)$ from $(0,0,0)$ to $(1,1,1)$.
(iii) Find the values of λ and μ for which \mathbf{F} is conservative.

8D
(a) Find, by any method, the first three non-zero terms in the Taylor expansion about $x=0$ of the following functions:
(i) $\frac{\cos x}{1-x}$;
(ii) $\sin ^{3} x$;
(iii) $e^{e^{x}}$.
(b) Let $f(x)=\sum_{i=0}^{\infty} a_{i} x^{i}$. Given that $f(0) \neq 0$, find the first three terms in the Taylor expansion about $x=0$ of the function $1 / f(x)$.

9E
(a) Show that

$$
\sinh (i x)=i \sin x
$$

and that

$$
\cosh (i x)=\cos x
$$

Deduce that

$$
\begin{equation*}
\tanh (i x)=i \tan x \tag{6}
\end{equation*}
$$

(b) Express $\sinh x$ and $\cosh x$ as power series in x, quoting the general term.
(c) Evaluate

$$
\begin{equation*}
\int_{0}^{\pi / 2} \cosh x \cos x d x \tag{10}
\end{equation*}
$$

(a) (i) By means of a diagram, show that

$$
\int_{5}^{\infty} \frac{1}{(x+1)^{2}} d x<\sum_{n=6}^{\infty} \frac{1}{n^{2}}<\int_{5}^{\infty} \frac{1}{x^{2}} d x
$$

(ii) Given that

$$
\sum_{n=1}^{5} \frac{1}{n^{2}}=\frac{5269}{3600}
$$

use the inequality above to show that

$$
\begin{equation*}
\frac{5869}{3600}<\sum_{n=1}^{\infty} \frac{1}{n^{2}}<\frac{5989}{3600} \tag{8}
\end{equation*}
$$

(b) Given that

$$
\sum_{n=1}^{12} \frac{1}{n}=\frac{86021}{27720}
$$

use a similar method to evaluate

$$
\sum_{n=1}^{100} \frac{1}{n}
$$

to two significant figures.
(a) Find the general solutions of the differential equations
(i)

$$
\left(1+x^{2}\right) \frac{d y}{d x}=k y
$$

where k is a constant, and
(ii)

$$
\begin{equation*}
\frac{d y}{d x}-x^{2} y=x^{2} \tag{5}
\end{equation*}
$$

(b) By writing $y(x)=x v(x)$, or otherwise, solve the differential equation

$$
x \frac{d y}{d x}-y=\cot \left(\frac{y}{x}\right),
$$

given that $y=\frac{\pi}{4}$ when $x=1$.

12F Sketch the region R of the $x y$-plane defined by

$$
\begin{gathered}
x \geqslant 0, \quad y \geqslant 0, \\
x^{2}+y^{2} \leqslant 1, \\
x y \geqslant \frac{1}{4} .
\end{gathered}
$$

Show that, in terms of plane polar coordinates (r, θ), the two points in R at which the curves $x^{2}+y^{2}=1$ and $x y=\frac{1}{4}$ intersect are located at $(r=1, \theta=\pi / 12)$ and $(r=1, \theta=5 \pi / 12)$.

Show that

$$
\begin{equation*}
\iint_{R} x y\left(x^{2}+y^{2}\right) d x d y=\frac{\sqrt{3}}{32} \tag{13}
\end{equation*}
$$

