MATHEMATICS (1)

Before you begin read these instructions carefully:

You may submit answers to no more than six questions. All questions carry the same number of marks.

The approximate number of marks allocated to a part of a question will be indicated in the right hand margin.

Write on one side of the paper only and begin each answer on a separate sheet.

At the end of the examination:

Each question has a number and a letter (for example, 6C).
Answers must be tied up in separate bundles, marked $\boldsymbol{A}, \boldsymbol{B}$ or \boldsymbol{C} according to the letter affixed to each question.

Do not join the bundles together.
For each bundle, a blue cover sheet must be completed and attached to the bundle.
A separate yellow master cover sheet listing all the questions attempted must also be completed.

Every cover sheet must bear your examination number and desk number.

1A In a curvilinear system a point P has coordinates (u, v, w) such that

$$
u^{2}=\frac{1}{2}(s+x), \quad v^{2}=\frac{1}{2}(s-x) \quad \text { and } \quad w=z
$$

where (x, y, z) are the rectangular Cartesian coordinates of P and $s=\sqrt{x^{2}+y^{2}}$ is its distance from the z-axis. Describe the surfaces $u=$ const, $v=$ const and $w=$ const and sketch the loci of intersections of $u^{2}=0,1,2$ and $v^{2}=0,1,2$ with the x, y plane.

Express x, y and z explicitly in terms of u, v and w in such a way that, when u is defined so that $u \geq 0, y$ and v have the same sign and the point P is uniquely determined by u, v and w.

Show that u, v and w are orthogonal curvilinear coordinates and find the coefficients h_{u}, h_{v} and h_{w} such that $d l$, the distance between points (u, v, w) and $(u+d u, v+$ $d v, w+d w)$, is given by

$$
d l^{2}=h_{u}^{2} d u^{2}+h_{v}^{2} d v^{2}+h_{w}^{2} d w^{2}
$$

in the limit $d l \rightarrow 0$.
If $\phi=\phi(u, v)$ only express $\nabla^{2} \phi$ in terms of derivatives with respect to u and v.
[You may use the following formulae

$$
\nabla \phi=\frac{1}{h_{u}} \frac{\partial \phi}{\partial u} \boldsymbol{e}_{u}+\frac{1}{h_{v}} \frac{\partial \phi}{\partial v} \boldsymbol{e}_{v}+\frac{1}{h_{w}} \frac{\partial \phi}{\partial w} \boldsymbol{e}_{w}
$$

and

$$
\left.\nabla \cdot \boldsymbol{A}=\frac{1}{h_{u} h_{v} h_{w}}\left\{\frac{\partial}{\partial u}\left(h_{v} h_{w} A_{u}\right)+\frac{\partial}{\partial v}\left(h_{w} h_{u} A_{v}\right)+\frac{\partial}{\partial w}\left(h_{u} h_{v} A_{w}\right)\right\} .\right]
$$

2A The temperature in an insulated silver rod placed along the x-axis from $x=0$ to $x=l$ obeys the diffusion equation

$$
\frac{\partial T}{\partial t}=\nu \frac{\partial^{2} T}{\partial x^{2}}
$$

At $t=0$ the rod is uniformly of temperature $T=0$. For $t>0$ the end at $x=0$ is held at $T=0$ while the end at $x=l$ is held at $T=T_{0}$.

What is the steady state temperature distribution along the rod at large t ?
By looking for separable solutions of the form $T(x, t)=\xi(x) \theta(t)$ find the temperature distribution for any $t>0$.
[Hint: You can use the steady state solution as the boundary condition when $t \rightarrow \infty$ to determine the spatial eigenfunctions.]

The heat capacity of the bar is γ per unit length so that the total heat in the bar is

$$
H=\int_{0}^{l} \gamma T d x
$$

Find the rate at which heat is absorbed by the bar at time $t>0$. If your answer is an infinite series ensure that it converges.

3A Define the Fourier transform $\tilde{f}(k)$ of a function $f(x)$ and write down its inverse.

Show that the Fourier transform of $\frac{d^{2} f}{d x^{2}}$ is

$$
-k^{2} \tilde{f}(k)
$$

By taking the Fourier transform with respect to x find the function $\phi(x, y)$, $-\infty<x<\infty, 0 \leq y<\infty$ that satisfies Laplace's equation

$$
\begin{equation*}
\nabla^{2} \phi=\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0 \tag{9}
\end{equation*}
$$

with $\phi(x, 0)=\delta(x)$ and $\phi(x, y) \rightarrow 0$ as $y \rightarrow \infty$.
Verify your solution satisfies $\nabla^{2} \phi=0$.

4B Suppose \mathbf{A} is an $n \times n$ matrix:
Prove that $\mathbf{A}^{n}=\mathbf{0}$ if and only if all eigenvalues of \mathbf{A} vanish.
[You may use the fact that a matrix satisfies its own characteristic equation]
By considering the quadratic form $Q=\mathbf{x}^{T} \mathbf{A} \mathbf{x}$, or otherwise, prove that if the matrix \mathbf{A} is symmetric then $\mathbf{A}^{n}=\mathbf{0}$ implies $\mathbf{A}=\mathbf{0}$.

For the following matrix

$$
\mathbf{T}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & \alpha \\
1 & 1 & \beta
\end{array}\right)
$$

find the values of α and β for which all the eigenvalues of \mathbf{T} vanish and verify that in that case $\mathbf{T}^{3}=\mathbf{0}$.

Consider the transformation $\mathbf{x}^{\prime}=\mathbf{T} \mathbf{x}$ for three dimensional vectors \mathbf{x} and \mathbf{x}^{\prime}. Show that all \mathbf{x}^{\prime} are confined to a single plane for any given \mathbf{x}.
What is the effect of \mathbf{T}^{2} and \mathbf{T}^{3} operating on \mathbf{x} ?

5B (a) Let \mathbf{A} and \mathbf{B} be $n \times n$ Hermitian matrices $\left(\mathbf{A}=\mathbf{A}^{\dagger}, \mathbf{B}=\mathbf{B}^{\dagger}\right)$ with distinct eigenvalues. Show that:
(i) $\mathbf{H}=i(\mathbf{A B}-\mathbf{B A})$ is Hermitian,
(ii) the eigenvectors of \mathbf{A} and \mathbf{B} are identical if and only if $\mathbf{A B}=\mathbf{B A}$,
(iii) the matrix $\mathbf{N}=\mathbf{A}+i \mathbf{B}$ can be diagonalised if and only if $\mathbf{N N}^{\dagger}=\mathbf{N}^{\dagger} \mathbf{N}$.
(b) If \mathbf{C} is a unitary matrix and \mathbf{A} is Hermitian show that $\left(\mathbf{C}^{-1} \mathbf{A C}\right)^{n}$ has real eigenvalues if n is a positive integer.
[You may quote the properties of the eigenvalue and eigenvectors of Hermitian matrices without proof.]

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+m^{2} y=0 \tag{*}
\end{equation*}
$$

has two linearly independent solutions about the origin of the form $y=x^{\sigma} \sum_{n=0}^{\infty} a_{n} x^{n}$ (with $a_{0} \neq 0$).
(a) Is the origin $x=0$ an ordinary or singular point of this differential equation? Determine the two appropriate values of σ and find recurrence relations between the a_{n} 's for the two cases.
(b) Show that if m is an integer then there always exists a polynomial solution, denoted by $T_{m}(x)$. How many non-zero terms do these polynomials contain? Find the first four polynomials $T_{m}(x)$ (i.e. $\left.m=0,1,2,3\right)$ given the normalization $T_{m}(1)=1$.
(c) Use the ratio test to discuss the convergence of the non-polynomial solutions on the interval $-1 \leq x \leq 1$. Comment on the relationship of the radius of convergence R to the location of the singular points of the differential equation $(*)$.

7C (a) Consider the general eigenvalue equation

$$
y^{\prime \prime}-b(x) y^{\prime}+c(x) y=-\lambda d(x) y
$$

subject to homogeneous boundary conditions $y(0)=y(1)=0$. Find suitable functions $p(x), q(x)$ and $w(x)$ which enable this equation to be re-expressed in Sturm-Liouville form

$$
\begin{equation*}
-\left(p(x) y^{\prime}\right)^{\prime}+q(x) y=\lambda w(x) y \tag{4}
\end{equation*}
$$

(b) Find eigenfunctions and eigenvalues for the equation

$$
y^{\prime \prime}+\lambda y=0
$$

subject to the boundary conditions $y(0)=0$ and $y^{\prime}(\pi / 2)=0$. Determine an appropriate normalization for these eigenfunctions.

Use these to obtain an eigenfunction expansion as a solution of the inhomogeneous equation

$$
y^{\prime \prime}+\kappa y=x,
$$

subject to the same boundary conditions as in (\dagger) and where κ is a constant (not an eigenvalue).

Hence, by choosing appropriate values for κ and x (or otherwise), show that

$$
\begin{equation*}
\frac{\pi^{4}}{96}=1+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\ldots \tag{4}
\end{equation*}
$$

[7]

8C Consider the inhomogeneous differential equation

$$
y^{\prime \prime}-\frac{1}{x} y^{\prime}+\frac{1}{x^{2}} y=f(x)
$$

subject to the boundary conditions $y(1)=y(e)=0$ where $e=2.718 \ldots$
(a) Given that one solution of the homogeneous equation is $y=x$, substitute $y(x)=x v(x)$ (or otherwise) to find the second homogeneous solution.
(b) Construct the Green's function $G(x, \xi)$ using $f(x)=\delta(x-\xi)$ in the inhomogeneous equation (\ddagger) and subject to the same boundary conditions.
(c) Hence show that the solution of (\ddagger) is given by

$$
y=x \ln x \int_{x}^{e}(\ln \xi-1) f(\xi) d \xi+(x \ln x-x) \int_{1}^{x} \ln \xi f(\xi) d \xi .
$$

Find y explicitly for $f(x)=1 / x$ and verify your solution.

9C Consider a set of eigenfunctions $y_{n}(x)$, (with $n=0,1,2 \ldots$) and corresponding eigenvalues λ_{n} which satisfy the Sturm-Liouville equation

$$
\mathcal{L} y \equiv-\left[p(x) y^{\prime}\right]^{\prime}+q(x) y=\lambda w(x) y
$$

with boundary conditions $y(0)=y(1)=0$. Assume that the eigenfunctions are unit normalized, that is, $\int_{0}^{1} y_{n}^{2} w d x=1$.
(a) Given an arbitrary function \tilde{y} satisfying the same boundary conditions, we can define

$$
F_{n}(x) \equiv \mathcal{L} \tilde{y}-\lambda_{n} w(x) \tilde{y}
$$

Show that for every n we must have

$$
\begin{equation*}
\int_{0}^{1} y_{n}(x) F_{n}(x) d x=0 \tag{6}
\end{equation*}
$$

(b) Consider an approximate trial function \tilde{y} (with $\tilde{y}(0)=\tilde{y}(1)=0$) which is close to the lowest eigenfunction y_{0} so that we can expand the difference in terms of the remaining eigenfunctions as

$$
\tilde{y}=y_{0}+\sum_{n=1}^{\infty} a_{n} y_{n} .
$$

where the a_{n} 's can be assumed small. Use the Rayleigh-Ritz method with the trial function \tilde{y} to show that the lowest eigenvalue λ_{0} can be approximated as

$$
\tilde{\lambda}_{0}=\frac{\lambda_{0}+\sum_{n=1}^{\infty} a_{n}^{2} \lambda_{n}}{1+\sum_{n=1}^{\infty} a_{n}^{2}} \approx \lambda_{0}+\sum_{n=1}^{\infty} a_{n}^{2}\left(\lambda_{n}-\lambda_{0}\right)
$$

where terms of order $\mathcal{O}\left(a_{n}^{4}\right)$ have been neglected.
Discuss the relative error in the approximation \tilde{y} to the lowest eigenfunction y_{0} compared with the error in the approximation $\tilde{\lambda}_{0}$ to the lowest eigenvalue λ_{0}. Is $\tilde{\lambda}_{0}$ lower or higher than λ_{0} ?

10C (a) Derive the Euler-Lagrange equation satisfied by the function $y(x)$ which makes the integral

$$
I=\int_{a}^{b} F\left[x, y(x), y^{\prime}(x)\right] d x
$$

stationary subject to the boundary conditions $y(a)=y_{1}$ and $y(b)=y_{2}$.
(b) Efficient international airline routes must minimize the distance between two locations on the globe.

Show that the path length between two points $A\left(\phi_{1}, \theta_{1}\right)$ and $B\left(\phi_{2}, \theta_{2}\right)$ on a unit sphere can be expressed in polar coordinates (ϕ, θ) as

$$
S=\int_{\theta_{1}}^{\theta_{2}} \sqrt{1+\sin ^{2} \theta \phi^{\prime 2}} d \theta
$$

where $\phi^{\prime}=\frac{d \phi}{d \theta}$.
Hence, use the Euler-Lagrange equation to show that a stationary path satisfies

$$
\phi(\theta)= \pm \int_{\theta_{1}}^{\theta_{2}} \frac{d \theta}{\sin \theta\left(k^{2} \sin ^{2} \theta-1\right)^{1 / 2}}
$$

where k is a constant.
Integrate this expression to find the extremal solution. Use this to specify the shortest route for a flight setting out from Rome ($\theta \approx 45^{\circ}, \phi \approx 15^{\circ}$) and heading for Singapore ($\theta \approx 90^{\circ}, \phi \approx 105^{\circ}$).
[Hint: In the integration consider the substitution $t=\cot \theta$.]

