
NATURAL SCIENCES TRIPOS Part IB & II (General)

Monday 28 May 2001 1.30 to 4.30

MATHEMATICS (1)

Before you begin read these instructions carefully:

You may submit answers to no more than seven questions. All questions carry the
same number of marks.

The approximate number of marks allocated to a part of a question will be indicated
in the right hand margin.

Write on one side of the paper only and begin each answer on a separate sheet.

At the end of the examination:

Each question has a number and a letter (for example, 6C).

Answers must be tied up in separate bundles, marked A, B or C according to the
letter affixed to each question.

Do not join the bundles together.

For each bundle, a blue cover sheet must be completed and attached to the bundle.

A separate yellow master cover sheet listing all the questions attempted must also
be completed.

Every cover sheet must bear your examination number and desk number.
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1A Using Cartesian coordinates show that

(u.∇)u =
1
2
∇u2 − u× (∇× u),

where u = |u|. Briefly explain why this is true irrespective of the coordinate system used
to describe the vectors. [7]

Spherical polar coordinates r, θ, φ are related to Cartesian x, y, z by

x = r sin θ cosφ, y = r sin θ sinφ and z = r cos θ.

Prove that spherical polar coordinates are orthogonal and find the metric coefficients hr,
hθ and hφ such that

|ds|2 = h2
rdr

2 + h2
θdθ

2 + h2
φdφ

2,

where the vector ds connects the point (r, θ, φ) to (r + dr, θ + dθ, φ+ dφ). [6]

A vector field u = u(r)φ̂, where φ̂ is a unit vector in the direction of increasing φ.
Show that the radial component of (u.∇)u is

−u
2

r

and find the other two components. [7]

[You may use the following formulae

∇ψ =
1
hr

∂ψ

∂r
r̂ +

1
hθ

∂ψ

∂θ
θ̂ +

1
hφ

∂ψ

∂φ
φ̂

and

∇×A =
1

hrhθhφ

∣∣∣∣∣∣
hrr̂ hθθ̂ hφφ̂
∂/∂r ∂/∂θ ∂/∂φ
hrAr hθAθ hφAφ

∣∣∣∣∣∣ .]
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2A The Fourier transform of f(x) is defined as

f̃(k) =
1√
2π

∫ ∞

−∞
f(x)e−ikx dx.

Write down the inverse Fourier transform of g̃(k). [2]

Evaluate the Fourier transform of f(x) = e−c|x| (c > 0) and hence or otherwise
show that the Fourier transform of f(x) = 1

x2+c2 is

f̃(k) =
√

2π
2c

e−c|k|.

[6]

Define the convolution f ∗ g of two functions f(x) and g(x) and deduce the
convolution theorem for its Fourier transform. [5]

Hence, by taking the Fourier transform, find the function g(x) in the integral
equation ∫ ∞

−∞

g(y)
(y − x)2 + a2

dy =
1

x2 + b2
,

where b > a > 0. [7]

3A Define the Laplace transform F (p) of a function f(t), t ≥ 0. [2]

Derive expressions for the Laplace transforms of df/dt and tf(t). [5]

Evaluate F (p) when f(t) = sin kt. [3]

Hence, by finding dG/dp or otherwise, solve

t
d2g

dt2
+ 2

dg

dt
+ α2tg = 0, g(0) = 1, g′(0) = 0.

[10]
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4B Suppose A is an n× n matrix, such that A2 =A.

(a) By considering the eigenvalues of A, prove either: (i) that detA = 1 and TrA = n;
or (ii) that detA = 0 and TrA = m < n, where m is an integer. [5]

If Ax = y, what is Ay? What is the dimension of the space of nonvanishing
vectors y for the two cases (i) and (ii) mentioned above? [5]

(b) Construct a 4× 4 matrix P such that its action on an arbitrary vector x is

Pijxj = xi − δi4

4∑
k=1

xk .

What is P2, detP, TrP? [5]

Find a set of linearly independent vectors that span the space of vectors y = Px.
Construct from them an orthonormal basis for this subspace. [5]

5B Given an n × n matrix M and the identity I, show that the matrices I + M and
(I−M)−1 commute. [4]

For a real antisymmetric matrix A, the matrix N is defined by:

N = (I + A) (I−A)−1 .

Show that N is orthogonal. [4]

Show that the eigenvectors of A are also eigenvectors of N. [3]

Show that the three eigenvalues of a real orthogonal 3 × 3 matrix are (i) e+iα,
(ii) e−iα and (iii) +1 or −1, where α is real. [4]

Hence show that, when A and N are 3 × 3 matrices, detN = 1 and that there
exists a direction x in which Ax = 0. [5]
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6C Define an ordinary point and a regular singular point of the ordinary differential
equation

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0 .

What are the implications for the existence of a series solution at such points? [6]

Find series solutions about x = 0 of the equation

y′′ +
(1− x)

2x
y′ − 1

4x
y = 0 .

In particular, determine the indicial equation, the recurrence relations and the radius of
convergence of your solutions. [12]

Express one of these solutions in closed form. [2]

7C A differential operator L is self-adjoint on the interval a ≤ x ≤ b if for all pairs of
functions y1, y2 satisfying appropriate boundary conditions we have∫ b

a

[y1Ly2 − y2Ly1] dx = 0 .

By integrating by parts, show that operators in Sturm-Liouville form

Ly ≡ − [p(x) y′]′ + q(x)y

are self-adjoint, given suitable boundary conditions. Specify several examples of these
boundary conditions. [6]

Consider the eigenvalue problem

(1− x2)y′′ − x y′ + n2y = 0

on the interval −1 ≤ x ≤ 1 with given eigenvalues λn = n2, n an integer.

By considering the substitution x = cos θ, find the corresponding eigenfunctions

yn(x) = Nn sin
[
n cos−1 x

]
which satisfy yn(1) = 0 and yn(−1) = 0. [6]

Hence (or otherwise) find the weight function w(x) and the normalization constants
Nn such that ∫ 1

−1

w(x) yn(x) ym(x) dx = δnm .

[8]
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8C Find the Green’s function G(x, ξ) satisfying

d2G

dx2
− κ2G = δ(x− ξ), 0 ≤ x ≤ 1 , 0 ≤ ξ ≤ 1 , (κ real)

subject to the boundary conditions dG
dx (0, ξ) = dG

dx (1, ξ) = 0. [10]

Hence show that the solution of the equation

d2y

dx2
− κ2y = f(x),

for the boundary conditions y′(0) = y′(1) = 0, is given by

y(x) =
−1

κ sinhκ

[
coshκx

∫ 1

x

f(ξ) coshκ(1− ξ)dξ

+ coshκ(1− x)
∫ x

0

f(ξ) coshκξ dξ
]
.

[4]

Find the explicit solution for y(x) given f(x) = x and κ = 1. [6]

9C From the Euler-Lagrange equation, d
dx

∂F
∂y′ − ∂F

∂y = 0, which extremizes the

functional I =
∫ b

a
F (x, y, y′)dx, recast the Sturm-Liouville eigenvalue problem

− [p(x) y′]′ + q(x)y − λw(x)y = 0

in variational form, given appropriate boundary conditions for y at x = a, b. Hence,
explain the Rayleigh-Ritz method for estimating the lowest eigenvalue. [8]

Consider the differential equation

1
r2

d

dr

(
r2
dψ

dr

)
+ λψ = 0

subject to the boundary conditions y(1) = 0 and y′(0) = 0.

Find a suitable quadratic trial function satisfying these boundary conditions and
apply the Rayleigh-Ritz method to estimate the lowest eigenvalue λ0. [9]

The actual value is λ0 = π2. Why should your estimate be higher? [3]
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10C The Euler-Lagrange equation

d

dx

∂F

∂y′
− ∂F

∂y
= 0

is satisfied by the function y(x) which makes the integral I =
∫ b

a
F (x, y, y′)dx stationary,

subject to appropriate boundary conditions.

Show that if F (x, y, y′) does not depend explicitly on x, then y also satisfies the
first integral

F − y′
∂F

∂y′
= k (const.)

[6]

An optical medium in the planar strip 0 < y ≤ 1 has a variable refractive index
µ(x, y) = y−1, with a constant µ = 1 above it (y > 1).

Apply Fermat’s principle to find the set of paths followed by light rays within the
optical medium (0 < y ≤ 1). [8]

For a light ray entering the medium at y = 1 and subtending an angle θ from
the y-axis, calculate the distance in the x-direction that the ray will travel; what is the
maximum distance possible? [6]

11C We wish to solve numerically the first-order differential equation y′ = f(y, t) using
one of the following schemes:

Euler: yn+1 = yn + ∆t f(yn, tn) ,

Backward Euler: yn+1 = yn + ∆t f(yn+1, tn+1) ,

By Taylor expanding y and f , show that both schemes have a local truncation error
O(∆t2). [6]

By considering the equation y′ = −Λy (Re Λ > 0) (or otherwise), examine the
stability of both schemes. [6]

A predictor-corrector method employs both the Euler and Backward Euler schemes
as follows:

yn+1 =
1
2

[
y
(1)
n+1 + y

(2)
n+1

]
,

where
y
(1)
n+1 = yn + ∆t f(yn, tn) ,

y
(2)
n+1 = yn + ∆t f(y(1)

n+1, tn+1) ,

Find the local truncation error for this method. [4]

Examine the stability of this method. [4]
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