MATHEMATICS (1)

Before you begin read these instructions carefully:

You may submit answers to no more than seven questions. All questions carry the same number of marks.

The approximate number of marks allocated to a part of a question will be indicated in the right hand margin.

Write on one side of the paper only and begin each answer on a separate sheet.

At the end of the examination:
Each question has a number and a letter (for example, $\mathbf{6 C}$).
Answers must be tied up in separate bundles, marked $\boldsymbol{A}, \boldsymbol{B}$ or \boldsymbol{C} according to the letter affixed to each question.

Do not join the bundles together.
For each bundle, a blue cover sheet must be completed and attached to the bundle.
A separate yellow master cover sheet listing all the questions attempted must also be completed.

Every cover sheet must bear your examination number and desk number.

1 A Using Cartesian coordinates show that

$$
(\boldsymbol{u} . \nabla) \boldsymbol{u}=\frac{1}{2} \nabla u^{2}-\boldsymbol{u} \times(\nabla \times \boldsymbol{u}),
$$

where $u=|\boldsymbol{u}|$. Briefly explain why this is true irrespective of the coordinate system used to describe the vectors.

Spherical polar coordinates r, θ, ϕ are related to Cartesian x, y, z by

$$
x=r \sin \theta \cos \phi, \quad y=r \sin \theta \sin \phi \quad \text { and } \quad z=r \cos \theta
$$

Prove that spherical polar coordinates are orthogonal and find the metric coefficients h_{r}, h_{θ} and h_{ϕ} such that

$$
|\boldsymbol{d} \boldsymbol{s}|^{2}=h_{r}^{2} d r^{2}+h_{\theta}^{2} d \theta^{2}+h_{\phi}^{2} d \phi^{2}
$$

where the vector $\boldsymbol{d} \boldsymbol{s}$ connects the point (r, θ, ϕ) to $(r+d r, \theta+d \theta, \phi+d \phi)$.
A vector field $\boldsymbol{u}=u(r) \hat{\boldsymbol{\phi}}$, where $\hat{\boldsymbol{\phi}}$ is a unit vector in the direction of increasing ϕ. Show that the radial component of $(\boldsymbol{u} . \nabla) \boldsymbol{u}$ is

$$
-\frac{u^{2}}{r}
$$

and find the other two components.
[You may use the following formulae

$$
\nabla \psi=\frac{1}{h_{r}} \frac{\partial \psi}{\partial r} \hat{\boldsymbol{r}}+\frac{1}{h_{\theta}} \frac{\partial \psi}{\partial \theta} \hat{\boldsymbol{\theta}}+\frac{1}{h_{\phi}} \frac{\partial \psi}{\partial \phi} \hat{\boldsymbol{\phi}}
$$

and

$$
\left.\nabla \times \boldsymbol{A}=\frac{1}{h_{r} h_{\theta} h_{\phi}}\left|\begin{array}{ccc}
h_{r} \hat{\boldsymbol{r}} & h_{\theta} \hat{\boldsymbol{\theta}} & h_{\phi} \hat{\boldsymbol{\phi}} \\
\partial / \partial r & \partial / \partial \theta & \partial / \partial \phi \\
h_{r} A_{r} & h_{\theta} A_{\theta} & h_{\phi} A_{\phi}
\end{array}\right| .\right]
$$

2A The Fourier transform of $f(x)$ is defined as

$$
\tilde{f}(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) \mathrm{e}^{-\mathrm{i} k x} d x
$$

Write down the inverse Fourier transform of $\tilde{g}(k)$.
Evaluate the Fourier transform of $f(x)=\mathrm{e}^{-c|x|}(c>0)$ and hence or otherwise show that the Fourier transform of $f(x)=\frac{1}{x^{2}+c^{2}}$ is

$$
\tilde{f}(k)=\frac{\sqrt{2 \pi}}{2 c} \mathrm{e}^{-c|k|}
$$

Define the convolution $f * g$ of two functions $f(x)$ and $g(x)$ and deduce the convolution theorem for its Fourier transform.

Hence, by taking the Fourier transform, find the function $g(x)$ in the integral equation

$$
\int_{-\infty}^{\infty} \frac{g(y)}{(y-x)^{2}+a^{2}} d y=\frac{1}{x^{2}+b^{2}}
$$

where $b>a>0$.

3A Define the Laplace transform $F(p)$ of a function $f(t), t \geq 0$.
Derive expressions for the Laplace transforms of $d f / d t$ and $t f(t)$.
Evaluate $F(p)$ when $f(t)=\sin k t$.
Hence, by finding $d G / d p$ or otherwise, solve

$$
\begin{equation*}
t \frac{d^{2} g}{d t^{2}}+2 \frac{d g}{d t}+\alpha^{2} t g=0, \quad g(0)=1, \quad g^{\prime}(0)=0 \tag{10}
\end{equation*}
$$

4B Suppose \mathbf{A} is an $n \times n$ matrix, such that $\mathbf{A}^{2}=\mathbf{A}$.
(a) By considering the eigenvalues of \mathbf{A}, prove either: (i) that det $\mathbf{A}=1$ and $\operatorname{Tr} \mathbf{A}=n$; or (ii) that $\operatorname{det} \mathbf{A}=0$ and $\operatorname{Tr} \mathbf{A}=m<n$, where m is an integer.

If $\mathbf{A} \boldsymbol{x}=\boldsymbol{y}$, what is $\mathbf{A} \boldsymbol{y}$? What is the dimension of the space of nonvanishing vectors \boldsymbol{y} for the two cases (i) and (ii) mentioned above?
(b) Construct a 4×4 matrix \mathbf{P} such that its action on an arbitrary vector \boldsymbol{x} is

$$
P_{i j} x_{j}=x_{i}-\delta_{i 4} \sum_{k=1}^{4} x_{k}
$$

What is $\mathbf{P}^{2}, \operatorname{det} \mathbf{P}, \operatorname{Tr} \mathbf{P}$?
Find a set of linearly independent vectors that span the space of vectors $\boldsymbol{y}=\mathbf{P} \boldsymbol{x}$. Construct from them an orthonormal basis for this subspace.

5B Given an $n \times n$ matrix \mathbf{M} and the identity \mathbf{I}, show that the matrices $\mathbf{I}+\mathbf{M}$ and $(\mathbf{I}-\mathbf{M})^{-1}$ commute.

For a real antisymmetric matrix \mathbf{A}, the matrix \mathbf{N} is defined by:

$$
\mathbf{N}=(\mathbf{I}+\mathbf{A})(\mathbf{I}-\mathbf{A})^{-1}
$$

Show that \mathbf{N} is orthogonal.
Show that the eigenvectors of \mathbf{A} are also eigenvectors of \mathbf{N}.
Show that the three eigenvalues of a real orthogonal 3×3 matrix are (i) $e^{+i \alpha}$, (ii) $e^{-i \alpha}$ and (iii) +1 or -1 , where α is real.

Hence show that, when \mathbf{A} and \mathbf{N} are 3×3 matrices, $\operatorname{det} \mathbf{N}=1$ and that there exists a direction \boldsymbol{x} in which $\mathbf{A} \boldsymbol{x}=0$.

6C Define an ordinary point and a regular singular point of the ordinary differential equation

$$
\frac{d^{2} y}{d x^{2}}+p(x) \frac{d y}{d x}+q(x) y=0
$$

What are the implications for the existence of a series solution at such points?

Find series solutions about $x=0$ of the equation

$$
y^{\prime \prime}+\frac{(1-x)}{2 x} y^{\prime}-\frac{1}{4 x} y=0
$$

In particular, determine the indicial equation, the recurrence relations and the radius of convergence of your solutions.

Express one of these solutions in closed form.

7C A differential operator \mathcal{L} is self-adjoint on the interval $a \leq x \leq b$ if for all pairs of functions y_{1}, y_{2} satisfying appropriate boundary conditions we have

$$
\int_{a}^{b}\left[y_{1} \mathcal{L} y_{2}-y_{2} \mathcal{L} y_{1}\right] d x=0
$$

By integrating by parts, show that operators in Sturm-Liouville form

$$
\mathcal{L} y \equiv-\left[p(x) y^{\prime}\right]^{\prime}+q(x) y
$$

are self-adjoint, given suitable boundary conditions. Specify several examples of these boundary conditions.

Consider the eigenvalue problem

$$
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+n^{2} y=0
$$

on the interval $-1 \leq x \leq 1$ with given eigenvalues $\lambda_{n}=n^{2}, n$ an integer.
By considering the substitution $x=\cos \theta$, find the corresponding eigenfunctions

$$
\begin{equation*}
y_{n}(x)=N_{n} \sin \left[n \cos ^{-1} x\right] \tag{6}
\end{equation*}
$$

which satisfy $y_{n}(1)=0$ and $y_{n}(-1)=0$.
Hence (or otherwise) find the weight function $w(x)$ and the normalization constants N_{n} such that

$$
\begin{equation*}
\int_{-1}^{1} w(x) y_{n}(x) y_{m}(x) d x=\delta_{n m} \tag{8}
\end{equation*}
$$

8C Find the Green's function $G(x, \xi)$ satisfying

$$
\frac{d^{2} G}{d x^{2}}-\kappa^{2} G=\delta(x-\xi), \quad 0 \leq x \leq 1, \quad 0 \leq \xi \leq 1, \quad(\kappa \text { real })
$$

subject to the boundary conditions $\frac{d G}{d x}(0, \xi)=\frac{d G}{d x}(1, \xi)=0$.
Hence show that the solution of the equation

$$
\frac{d^{2} y}{d x^{2}}-\kappa^{2} y=f(x)
$$

for the boundary conditions $y^{\prime}(0)=y^{\prime}(1)=0$, is given by

$$
\begin{aligned}
y(x)=\frac{-1}{\kappa \sinh \kappa}[\cosh \kappa x & \int_{x}^{1} f(\xi) \cosh \kappa(1-\xi) d \xi \\
& \left.+\cosh \kappa(1-x) \int_{0}^{x} f(\xi) \cosh \kappa \xi d \xi\right]
\end{aligned}
$$

Find the explicit solution for $y(x)$ given $f(x)=x$ and $\kappa=1$.

9C From the Euler-Lagrange equation, $\frac{d}{d x} \frac{\partial F}{\partial y^{\prime}}-\frac{\partial F}{\partial y}=0$, which extremizes the functional $I=\int_{a}^{b} F\left(x, y, y^{\prime}\right) d x$, recast the Sturm-Liouville eigenvalue problem

$$
-\left[p(x) y^{\prime}\right]^{\prime}+q(x) y-\lambda w(x) y=0
$$

in variational form, given appropriate boundary conditions for y at $x=a, b$. Hence, explain the Rayleigh-Ritz method for estimating the lowest eigenvalue.

Consider the differential equation

$$
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d \psi}{d r}\right)+\lambda \psi=0
$$

subject to the boundary conditions $y(1)=0$ and $y^{\prime}(0)=0$.
Find a suitable quadratic trial function satisfying these boundary conditions and apply the Rayleigh-Ritz method to estimate the lowest eigenvalue λ_{0}.

The actual value is $\lambda_{0}=\pi^{2}$. Why should your estimate be higher?

$$
\frac{d}{d x} \frac{\partial F}{\partial y^{\prime}}-\frac{\partial F}{\partial y}=0
$$

is satisfied by the function $y(x)$ which makes the integral $I=\int_{a}^{b} F\left(x, y, y^{\prime}\right) d x$ stationary, subject to appropriate boundary conditions.

Show that if $F\left(x, y, y^{\prime}\right)$ does not depend explicitly on x, then y also satisfies the first integral

$$
F-y^{\prime} \frac{\partial F}{\partial y^{\prime}}=k \quad \text { (const.) }
$$

An optical medium in the planar strip $0<y \leq 1$ has a variable refractive index $\mu(x, y)=y^{-1}$, with a constant $\mu=1$ above it $(y>1)$.

Apply Fermat's principle to find the set of paths followed by light rays within the optical medium $(0<y \leq 1)$.

For a light ray entering the medium at $y=1$ and subtending an angle θ from the y-axis, calculate the distance in the x-direction that the ray will travel; what is the maximum distance possible?

11C We wish to solve numerically the first-order differential equation $y^{\prime}=f(y, t)$ using one of the following schemes:

$$
\begin{gathered}
\text { Euler: } \quad y_{n+1}=y_{n}+\Delta t f\left(y_{n}, t_{n}\right), \\
\text { Backward Euler: } \\
y_{n+1}=y_{n}+\Delta t f\left(y_{n+1}, t_{n+1}\right),
\end{gathered}
$$

By Taylor expanding y and f, show that both schemes have a local truncation error $\mathcal{O}\left(\Delta t^{2}\right)$.

By considering the equation $y^{\prime}=-\Lambda y(\operatorname{Re} \Lambda>0)$ (or otherwise), examine the stability of both schemes.

A predictor-corrector method employs both the Euler and Backward Euler schemes as follows:

$$
y_{n+1}=\frac{1}{2}\left[y_{n+1}^{(1)}+y_{n+1}^{(2)}\right],
$$

where

$$
\begin{gathered}
y_{n+1}^{(1)}=y_{n}+\Delta t f\left(y_{n}, t_{n}\right) \\
y_{n+1}^{(2)}=y_{n}+\Delta t f\left(y_{n+1}^{(1)}, t_{n+1}\right),
\end{gathered}
$$

Find the local truncation error for this method.
Examine the stability of this method.

