MATHEMATICS (2)

Before you begin read these instructions carefully:

You may submit answers to no more than six questions. All questions carry the same number of marks.

The approximate number of marks allocated to a part of a question will be indicated in the right hand margin.

Write on one side of the paper only and begin each answer on a separate sheet.
Questions marked with an asterisk $\left(^{*}\right)$ require a knowledge of B course material.

At the end of the examination:

Each question has a number and a letter (for example 3B).
Answers must be tied up in separate bundles, marked $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D}, \boldsymbol{E}$ or \boldsymbol{F} according to the letter affixed to each question.

Do not join the bundles together.
For each bundle, a blue cover sheet must be completed and attached to the bundle, with the appropriate letter written in the section box.

A separate yellow master cover sheet listing all the questions attempted must also be completed.

Every cover sheet must bear your examination number and desk number.

1A Solve the following differential equations:
(a)

$$
\begin{equation*}
\frac{d y}{d x}=\frac{2 x+x y^{2}}{x^{2} y-3 y} \tag{7}
\end{equation*}
$$

such that when $x=3, y=4$;
(b)

$$
\begin{equation*}
\frac{d y}{d x} \sin x+y \cos x=\frac{1}{2} \sin 2 x \tag{5}
\end{equation*}
$$

such that when $x=\frac{\pi}{6}, y=\frac{1}{4}$;
(c)

$$
\begin{equation*}
\left(2 y e^{y / x}+x\right) \frac{d y}{d x}-2 x-y=0 \tag{8}
\end{equation*}
$$

2A* By mathematical induction or otherwise prove Leibnitz's formula

$$
(u v)^{(n)}=\sum_{r=0}^{n} \frac{n!}{r!(n-r)!} v^{(n-r)} u^{(r)}
$$

where $u^{(n)}=\frac{d^{n} u}{d x^{n}}$, i.e. the $n^{\text {th }}$ derivative of u with respect to x.
Use this formula to find the $n^{\text {th }}$ derivative of

$$
\begin{equation*}
y=x(x+1) e^{2 x} \tag{5}
\end{equation*}
$$

and show that the $n^{\text {th }}$ derivative of $y=x^{2} \sin x$ is

$$
\begin{equation*}
\left\{x^{2}-n(n-1)\right\} \sin \left(x+\frac{n \pi}{2}\right)-2 n x \cos \left(x+\frac{n \pi}{2}\right) \tag{8}
\end{equation*}
$$

(a) Write down the Cartesian co-ordinates (x, y, z) of a point with position vector \boldsymbol{r} in terms of its cylindrical polar co-ordinates (ρ, ϕ, z).
(b) The square of the infinitesimal element of distance in cylindrical polar co-ordinates is given by

$$
\begin{equation*}
d s^{2}=d \rho^{2}+\rho^{2} d \phi^{2}+d z^{2} \tag{*}
\end{equation*}
$$

Two points, \boldsymbol{r}_{0} and \boldsymbol{r}_{1}, on the surface of a cylinder of radius R have cylindrical polar co-ordinates $(R, 0,0)$ and $\left(R, \phi_{1}, z_{1}\right)$. Use $(*)$ to obtain an expression for the length of the shortest path on the surface of the cylinder between \boldsymbol{r}_{0} and \boldsymbol{r}_{1}.
(c) Sketch the length of the shortest path as a function of ϕ_{1} where $0 \leqslant \phi_{1} \leqslant 2 \pi$, when (i) $R=1, z_{1}=0$ and (ii) $R=1, z_{1}=1$.

3B

4B Briefly explain the relationship between the order of an ordinary linear differential equation and the number of boundary conditions required to determine a unique solution.

Find the general solutions of:
(a) $\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=x-e^{-x}$;
(b) $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=x^{2}+2 e^{-x}$.

5C Using Cartesian co-ordinates $\boldsymbol{r}=(x, y, z)$, consider the vector field

$$
\boldsymbol{v}(\boldsymbol{r})=\left(e^{x} y, e^{x}+2 y z^{3}, 3 y^{2} z^{2}\right)
$$

(a) Calculate $\int_{C} \boldsymbol{v} \cdot d \boldsymbol{r}$ directly when C is:
(i) the straight line from $(0,0,0)$ to $(1,1,1)$;
(ii) the curve joining these same points but defined by $\boldsymbol{r}=\left(t, t^{2}, t^{3}\right)$ with $0 \leqslant t \leqslant 1$.
(b) Compute $\nabla \times \boldsymbol{v}$.
(c) Find a function $f(x, y, z)$ such that $\boldsymbol{v}=\nabla f$ and hence confirm your answers to parts (a) and (b).

6C* A right circular cylinder of radius r and height h has volume $V=\pi r^{2} h$ and surface area $A=2 \pi r(r+h)$. Use Lagrange multipliers to do the following.
(a) Show that the maximum volume for a given area is

$$
V=\frac{1}{3} \sqrt{\frac{A^{3}}{6 \pi}} .
$$

(b) Find the value of h / r which maximizes the area for a cylinder inscribed in the unit sphere, so that $r^{2}+h^{2} / 4=1$.
[You need not show that suitable extrema you find are actually maxima.]

7D
(a) Evaluate:
(i) $\left|\begin{array}{ll}8 & 1 \\ 5 & 3\end{array}\right|$;
(ii) $\left|\begin{array}{ccc}4 & 1 & -2 \\ 3 & 0 & 4 \\ 10 & 1 & -4\end{array}\right|$;
(iii) $\left|\begin{array}{ccc}4 & 1 & -2 \\ 3 & 0 & 4 \\ 8 & 2 & -4\end{array}\right|$.
(b) Find the values of λ for which the following set of linear equations has non-zero solutions, and give the solutions in each case:

$$
\begin{aligned}
x-3 z & =0 \\
x+\lambda y-\lambda z & =0 \\
x+2 y+\lambda z & =0 .
\end{aligned}
$$

(c) For matrices A and B such that $|A B|=-2,|B|>0$, and $B=B^{-1}$, find $|A|$.

8D

(a) Draw a diagram to show the area over which the following integral is evaluated:

$$
\int_{y=0}^{1} \int_{x=y}^{2-y}\left(2 x^{2}+y\right) d x d y .
$$

Evaluate the integral.
(b) The equation $r=(1+\cos \theta)$ defines a closed surface in three dimensions. Find the volume enclosed.
$[(r, \theta, \phi)$ are spherical polar co-ordinates.]

9E
(a) x, y, z, and u are variables related by two conditions so that any two can be regarded as functions of the other two. The notation $\left(\frac{\partial x}{\partial y}\right)_{z}$ means that x is to be regarded as a function of y and z, and the derivative is to be taken keeping z fixed.

If

$$
z^{2}=2 x^{2}+y^{2}
$$

and

$$
u^{2}=x^{2}-y^{2}
$$

show that
(i)

$$
\left(\frac{\partial x}{\partial z}\right)_{u}\left(\frac{\partial z}{\partial x}\right)_{y}+\left(\frac{\partial y}{\partial z}\right)_{u}\left(\frac{\partial z}{\partial y}\right)_{x}=1
$$

and
(ii)

$$
\left(\frac{\partial x}{\partial y}\right)_{z}\left(\frac{\partial y}{\partial z}\right)_{u}+\left(\frac{\partial x}{\partial u}\right)_{z}\left(\frac{\partial u}{\partial z}\right)_{y}=0 .
$$

(b) If now (x, y) and (z, u) are regarded as two sets of independent variables, and

$$
\phi(x, y)=\psi(z, u)
$$

show that

$$
\begin{equation*}
\frac{1}{x}\left(\frac{\partial \phi}{\partial x}\right)_{y}+\frac{1}{y}\left(\frac{\partial \phi}{\partial y}\right)_{x}=\frac{3}{z}\left(\frac{\partial \psi}{\partial z}\right)_{u} \tag{6}
\end{equation*}
$$

Give a necessary condition for the expression

$$
\begin{equation*}
P(x, y) d x+Q(x, y) d y \tag{2}
\end{equation*}
$$

to be an exact differential.
For the thermodynamics of a gas, the internal energy U can be regarded as a function of the entropy S and the volume V. It is given that:

$$
d U=T d S-p d V
$$

where T is the temperature and p the pressure. By considering the function

$$
A=U-T S
$$

or by some other method, show that

$$
\begin{equation*}
\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial p}{\partial T}\right)_{V} \tag{4}
\end{equation*}
$$

Now, considering U as a function of T and V show that

$$
\begin{equation*}
\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial S}{\partial V}\right)_{T}-p \tag{4}
\end{equation*}
$$

Given

$$
\begin{equation*}
p=\frac{n R T}{V-n b} \exp \left\{\frac{-a n}{V R T}\right\} \tag{6}
\end{equation*}
$$

where a, b, n, R are constants, find $\left(\frac{\partial U}{\partial V}\right)_{T}$.
If, instead

$$
\begin{equation*}
p=\frac{n R T}{V} \tag{4}
\end{equation*}
$$

and $\left(\frac{\partial U}{\partial T}\right)_{V}=C_{V}$ where C_{V} is constant, find an expression for U.

11F A bag contains 2 red and 5 green counters.
(a) In a trial, counters are repeatedly drawn from the bag and replaced each time. Find the probability that a red counter is drawn on the n-th draw for the first time.
(b) In another trial counters are now drawn without being replaced. Let E_{1} be the event that the first drawn is red, and E_{2} the event that the second drawn is red. If $P(E)$ denotes the probability of event E, find the following probabilities:
(i) $P\left(E_{1}\right)$;
(ii) $P\left(E_{2}\right)$;
(iii) $P\left(E_{1} \cap E_{2}\right)$.

Hence or otherwise find
(iv) $P\left(E_{1} \cup E_{2}\right)$;
(v) $P\left(E_{1} \mid E_{2}\right)$;
where $E_{1} \mid E_{2}$ denotes the event " E_{1} given E_{2} ".

12F*

(a) In each of the following cases state whether the function has a finite limit as x tends to zero, and if so find its value:
(i) $\frac{1}{x} \sin 2 x$;
(ii) $x \cos \frac{1}{x}$
(iii) $\frac{x}{1-\exp (-x)}$.
(b) Explain what is meant by the statement that a series $\sum u_{n}$ is
(i) convergent;
(ii) absolutely convergent.
(c) Show whether or not the series $\sum u_{n}$ is convergent when

$$
\begin{equation*}
u_{n}=\frac{n^{4}}{2^{n}} \tag{7}
\end{equation*}
$$

