MATHEMATICS (1)

Before you begin read these instructions carefully:

You may submit answers to no more than six questions. All questions carry the same number of marks.

The approximate number of marks allocated to a part of a question will be indicated in the right hand margin.

Write on one side of the paper only and begin each answer on a separate sheet.
Questions marked with an asterisk $\left(^{*}\right)$ require a knowledge of B course material.

At the end of the examination:

Each question has a number and a letter (for example, 3B).
Answers must be tied up in separate bundles, marked $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D}, \boldsymbol{E}$ or \boldsymbol{F} according to the letter affixed to each question.

Do not join the bundles together.
For each bundle, a blue cover sheet must be completed and attached to each bundle, with the appropriate letter written in the section box.

A separate yellow master cover sheet listing all the questions attempted must also be completed.

Every cover sheet must bear your examination number and desk number.

1A The points A, B and C have position vectors (relative to the origin)

$$
\begin{aligned}
\mathbf{a} & =2 \hat{\boldsymbol{\imath}}-\hat{\boldsymbol{\jmath}}-2 \hat{\boldsymbol{k}} \\
\mathbf{b} & =-\hat{\boldsymbol{\imath}}-2 \hat{\boldsymbol{\jmath}}+\hat{\boldsymbol{k}} \\
\mathbf{c} & =-\hat{\boldsymbol{\imath}}+\hat{\boldsymbol{\jmath}} .
\end{aligned}
$$

(a) Find the equation of a straight line that passes through points A and B;
(b) determine a unit vector perpendicular to the plane containing the vectors a and b;
(c) evaluate the area of the triangle with A, B and C at its vertices;
(d) find an equation for the plane containing the triangle $A B C$ and calculate the perpendicular distance of this plane from the origin.

2A Sketch the even function

$$
f(x)=\left\{\begin{array}{l}
1+(x / \pi) \text { for }-\pi \leqslant x \leqslant 0 \tag{3}\\
1-(x / \pi) \text { for } 0 \leqslant x \leqslant \pi
\end{array}\right.
$$

Find the cosine Fourier series of $f(x)$ in the range $-\pi \leqslant x \leqslant \pi$ and hence show that

$$
\begin{equation*}
\frac{\pi^{2}}{8}=\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}} \tag{17}
\end{equation*}
$$

3B Consider the matrix

$$
A=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

(a) Determine the eigenvalues of A.
(b) Determine the corresponding eigenvectors. Normalise these eigenvectors and show they are orthogonal.
(c) Determine the eigenvalues and corresponding eigenvectors of the matrix $B=A^{2}$.
(a) The function $G(\theta, k)$ is defined as

$$
\begin{equation*}
G(\theta, k)=\int_{0}^{\theta} g(x, k) d x \tag{4}
\end{equation*}
$$

Give expressions for $\left(\frac{\partial G}{\partial \theta}\right)_{k}$ and $\left(\frac{\partial G}{\partial k}\right)_{\theta}$.
(b) The functions $E(\theta, k)$ and $F(\theta, k)$ are defined as

$$
\begin{align*}
& E(\theta, k)=\int_{0}^{\theta} \sqrt{1-k^{2} \sin ^{2} x} d x, \\
& F(\theta, k)=\int_{0}^{\theta} \frac{1}{\sqrt{1-k^{2} \sin ^{2} x}} d x . \tag{8}
\end{align*}
$$

Show that $\left(\frac{\partial E}{\partial k}\right)_{\theta}=\frac{E-F}{k}$.
(c) The function $I(\theta, k)$ is defined as

$$
I(\theta, k)=\int_{0}^{\theta} E(x, k) \sqrt{1-k^{2} \sin ^{2} x} d x .
$$

By differentiating $I(\theta, k)$ with respect to θ show that

$$
\begin{equation*}
I(\theta, k)=\frac{1}{2} E(\theta, k)^{2} . \tag{8}
\end{equation*}
$$

5C
(a) The functions

$$
f(x)=x \ln x \quad \text { and } \quad g(x)=\frac{\ln x}{x}
$$

are defined on the positive real line $0<x<\infty$.
Find and classify their stationary points. State, without proof, how the functions behave as $x \rightarrow 0$ and as $x \rightarrow \infty$. Show that the graphs of f and g have a unique point of intersection, where they touch (i.e. have common gradient). Sketch the graphs of f and g on the same axes.
(b) Using a change of variables, but without evaluating the integrals, show that

$$
\int_{1}^{\infty} \frac{1}{x^{2}} \ln x d x=-\int_{0}^{1} \ln x d x
$$

Show similarly that

$$
\begin{equation*}
\int_{0}^{\infty} \frac{1}{1+x^{2}} \ln x d x=0 \tag{5}
\end{equation*}
$$

6C Evaluate $\int_{S} \boldsymbol{F} . d \boldsymbol{S}$ in the following cases.
(a) $\boldsymbol{F}=\left(x y^{2}, y z^{2}, z x^{2}\right)$ and S is the boundary of the region $|x| \leqslant a,|y| \leqslant b,|z| \leqslant c$.
(b) $\boldsymbol{F}=\boldsymbol{r}=(x, y, z)$ and S is the surface defined by

$$
\boldsymbol{r}=(a \cos \phi \sin \theta, b \sin \phi \sin \theta, c \cos \theta)
$$

with $0 \leqslant \theta \leqslant \pi$ and $0 \leqslant \phi \leqslant 2 \pi$.
[Use $\left.d \boldsymbol{S}=\frac{\partial \boldsymbol{r}}{\partial \theta} \times \frac{\partial \boldsymbol{r}}{\partial \phi} d \theta d \phi.\right]$

7D
(a) Evaluate:
(i) $\left(\begin{array}{ccc}2 & -9 & 12 \\ 6 & 1 & 4\end{array}\right)-\left(\begin{array}{ccc}0 & 1 & -3 \\ 12 & 4 & 10\end{array}\right)$;
(ii) $\left(\begin{array}{ll}3 & 7 \\ 1 & 6\end{array}\right)\left(\begin{array}{ll}2 & 4 \\ 0 & 0\end{array}\right)$;
(iii) $\left(\begin{array}{lll}4 & 8 & 1\end{array}\right)\left(\begin{array}{l}6 \\ 3 \\ 0\end{array}\right)$;
(iv) $\left(\begin{array}{lll}3 & 2 & 1 \\ 3 & 2 & 1 \\ 3 & 2 & 1\end{array}\right)\left(\begin{array}{l}7 \\ 5 \\ 6\end{array}\right)\left(\begin{array}{lll}-2 & 0 & 2\end{array}\right)$.
(b) Find the inverse of

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 4 & 9
\end{array}\right) .
$$

Hence, or otherwise, solve the following linear equations when $\lambda=3$:

$$
\begin{aligned}
x+y+z & =5 \\
x+2 y+\lambda z & =13 \\
x+4 y+\lambda^{2} z & =35 .
\end{aligned}
$$

Find the values of λ for which these equations have no solution.

8D* Let $\boldsymbol{r}=(x, y, z)$ be the Cartesian position vector, \boldsymbol{p} a fixed vector, and $\boldsymbol{E}=$ $|\boldsymbol{r}|^{-3}\left(3|\boldsymbol{r}|^{-2}(\boldsymbol{p} . \boldsymbol{r}) \boldsymbol{r}-\boldsymbol{p}\right)$. Use the divergence theorem to show that the surface integral

$$
\begin{equation*}
\int_{A} \boldsymbol{E} \cdot d s \tag{10}
\end{equation*}
$$

vanishes for any closed surface A not enclosing the origin. Verify directly that the integral vanishes when $\boldsymbol{p}=(0,0,1)$ and A is the surface of the infinite cylinder $x^{2}+y^{2}=a^{2}$.
$\mathbf{9 E} \quad$ Write down the Taylor expansion of $f(x)$ about the point $x=x_{0}$.
Find, by any method, the first three non-zero terms in the Taylor expansion about $x=0$ of the following functions, where a is a real constant:
(a) $\ln (1+x)$
(b) $\frac{x}{\sqrt{x^{2}+a^{2}}}$
(c) $\exp \left\{-(x-a)^{2}\right\}$
(d) $\ln \frac{1-x}{1+2 x^{2}}$.
(a) If A, B, C are $n \times n$ matrices with components $a_{i j}, b_{i j}, c_{i j}$, using the summation convention write down an expression for:
(i) $\operatorname{Trace}(A B)$
(ii) $(A B C)_{i j}$
(iii) $\operatorname{Trace}(I)$, where I is the $n \times n$ identity matrix.

Show that $\operatorname{Trace}(A B C)=\operatorname{Trace}(C A B)$ and give an expression for $\operatorname{Trace}\left(A B A^{-1}\right)$.
(b) If

$$
A=I+B
$$

show

$$
\left(A^{2}\right)_{i j}=I_{i j}+2 b_{i j}+b_{i k} b_{k j} .
$$

If

$$
\begin{equation*}
B^{2}=0 \tag{10}
\end{equation*}
$$

show

$$
\left(A^{n}\right)_{i j}=I_{i j}+n b_{i j} .
$$

Verify this explicitly when

$$
B=\left(\begin{array}{ll}
0 & p \\
0 & 0
\end{array}\right),
$$

and $p \neq 0$.

11F
(a) Find the real and imaginary parts of
(i)

$$
\left(\frac{1+i}{1-i}\right)^{2}
$$

(ii)

$$
\begin{equation*}
\ln \left(i e^{i \phi}\right) . \tag{5}
\end{equation*}
$$

(b) Find all solutions of the equations
(i) $z^{3}=1$
(ii) $z^{3}=-8$.
(c) Let z be a solution of

$$
z^{2}+b z+b^{2}=0
$$

where b is a real number. Find all values of b such that $|z| \leqslant 1$.

12F $\quad x$ is a continuous real-valued random variable. The probability of x having a value in the range $(x, x+d x)$ is $P(x) d x$.
(a) Define the mean and variance of x.
(b) Find the mean and variance of x in the case

$$
P(x)=\left\{\begin{array}{lc}
1-|x| & -1 \leqslant x \leqslant 1 \tag{7}\\
0 & \text { otherwise }
\end{array} .\right.
$$

(c) Suppose that x is now normally distributed with mean zero and variance 1 , so that x has distribution function

$$
P(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-x^{2} / 2\right)
$$

Using integration by parts or otherwise
(i) show that x^{3} has mean value zero;
(ii) derive the mean value of x^{4}.

