
4C Vector Calculus

State the value of ∂xi/∂xj and find ∂r/∂xj , where r = |x|.

∂xi
∂xj

= δij
[1]

∂r

∂xj
=

∂

∂xj
(xixi)

1/2 =
1

2
2xj (xixi)

−1/2 =
xj
r[1]

Vector fields u and v in R3 are given by u = rαx and v = k × u, where α is a
constant and k is a constant vector. Calculate the second-rank tensor dij = ∂ui/∂xj , and
deduce that ∇× u = 0 and ∇ · v = 0.

∂ui
∂xj

=
∂

∂xj
(rαxi) = αxjr

α−2xi + rαδij
[2]

(∇× u)i = εijk
∂xk
∂xj

= εijk
(
αxjxkr

α−2 + rαδjk
)

= 0

as εijk is antisymmetric in j and k while the term in brackets is
symmetric.[2]

∇ · v =
∂

∂xj
(εjklkkul) = εjklkk

(
αrα−2xlxj + rαδjl

)
= 0

as εjkl is antisymmetric in j and l while the term in brackets is
symmetric.[2]

When α = −3, show that ∇ · u = 0 and

∇× v =
3(k · x)x− kr2

r5
.

∇ · u = αrα + rαδii = −3r−3 + 3r−3 = 0 if α = −3

(∇× v)i =εijk
∂

∂xj
(εklmklum)

= (δilδjm − δimδjl) kl
(
−3r−5xmxj + r−3δmj

)
=− 3kir

−5r2 + 3r−5kjxixj + 3r−3ki − kjr−3δij

=
(
3r−5(k · x)x− kr−3

)
i

[2]

[10]
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Write down the most general isotropic tensors of rank 2 and 3. Use the tensor
transformation law to show that they are, indeed, isotropic.

λδij and µεijk.[2]

Check that RliRmjδij = RliRmi = (RTR)lm = δmn

and RliRmjRnkεijk = εlmn detR = εlmn[4]

Let V be the sphere 0 6 r 6 a. Explain briefly why

Ti1...in =

∫
V
xi1 . . . xin dV

is an isotropic tensor for any n.

A rotation of the basis is equivalent to a backward rotation of the sphere.
Spheres have no preferred direction, so the integral will still be T .[2]

Hence show that∫
V
xixj dV = αδij ,

∫
V
xixjxk dV = 0 and

∫
V
xixjxkxl dV = β(δijδkl + δikδjl + δilδjk)

for some scalars α and β, which should be determined using suitable contractions of the
indices or otherwise.

[You may assume that the most general isotropic tensor of rank 4 is

λδijδkl + µδikδjl + νδilδjk ,

where λ, µ and ν are scalars.]

These are all isotropic and symmetric in the indicies. So
∫
V xixj dV

must be α δij. Contract i = j: 3α =
∫
V xixi dV =

∫
V r

4 sin θ drdθdφ =
4πa5/5 so α = 4πa5/15[3]

By isotropy,
∫
V xixjxkdV = µεijk. But the RHS is antisymmetric, so

µ = 0 and
∫
V xixjxkdV = 0.[1]

By isotropy and hint, the integral must be λδijδkl + µδikδjl + νδilδjk.
Check symmetry i↔ j swaps µ↔ ν so must have µ = ν and similarly
µ = λ. So

∫
V xixjxkxldV = β(δijδkl + δikδjl + δilδjk) for some β.[2]

Contract i = j and k = l: xixixkxk = r4∫
V
r4r2 sin θdrdθdφ =

4πa7

7
and β(δiiδkk + δikδik + δikδik) = β(9 + 3 + 3)

so β = 4πa7/105.[4]

Deduce the value of ∫
V

x× (Ω× x) dV ,



where Ω is a constant vector.

∫
V
εijkxjεklmΩlxmdV =(δilδjm − δimδjl)Ωl

(
4πa5

15
δjm

)
=(3δil − δil)Ωl

(
4πa5

15

)
=

Ωi8πa
5

15

so
∫
V x× (Ω× x) dV = 8πa5Ω/15[2]

[20]
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The electric field E(x) due to a static charge distribution with density ρ(x) satisfies

E = −∇φ , ∇ ·E =
ρ

ε0
, (1)

where φ(x) is the corresponding electrostatic potential and ε0 is a constant.

(a) Show that the total charge Q contained within a closed surface S is given by
Gauss’ law

Q = ε0

∫
S

E · dS .

Assuming spherical symmetry, deduce the electric field and potential due to a point charge
q at the origin i.e. for ρ(x) = q δ(x).

Q =

∫
V
ρ dV = ε0

∫
V
∇ ·E dV = ε0

∫
S

n ·E dS by divergence theorem.
[2]

ρ(x) = qδ(x) and E = E(r)n. Hence by Gauss’ law q = 4πr2ε0E(r).

So E(r) = q/4πε0r
2 and φ = q/4πε0r.[4]

(b) Let E1 and E2, with potentials φ1 and φ2 respectively, be the solutions to (1)
arising from two different charge distributions with densities ρ1 and ρ2. Show that

1

ε0

∫
V
φ1ρ2 dV +

∫
∂V
φ1∇φ2 · dS =

1

ε0

∫
V
φ2ρ1 dV +

∫
∂V
φ2∇φ1 · dS (2)

for any region V with boundary ∂V , where dS points out of V .

∇ · (φ2∇φ1 − φ1∇φ2) =∇φ2 ·∇φ1 + φ2∇2φ1 −∇φ1 ·∇φ2 − φ1∇2φ2
= φ2∇2φ1 − φ1∇2φ2 and (1) gives ∇2φ = −ρ/ε0. Hence∫
S

(φ2∇φ1 − φ1∇φ2) · n dS =

∫
V
−φ2

ρ1
ε0

+ φ1
ρ2
ε0

dV ⇒ answer
[5]

(c) Suppose that ρ1(x) = 0 for |x| 6 a and that φ1(x) = Φ, a constant, on |x| = a.
Use the results of (a) and (b) to show that

Φ =
1

4πε0

∫
r>a

ρ1(x)

r
dV .



[You may assume that φ1 → 0 as |x| → ∞ sufficiently rapidly that any integrals over the
‘sphere at infinity’ in (2) are zero.]

Take V = {r > a} and ρ2 = qδ(x), so that φ2 = q/4πε0r. Now part
(b) gives

1

ε0

∫
V
φ1ρ2dV +

∫
r=a

Φ

(
q

4πε0a2

)
dS =

1

ε0

∫
V

q

4πε0r
ρ1dV +

∫
r=a

q

4πε0a
∇φ1 · ndS

But ρ2 = 0 in V , and
∫
r=a∇φ1 · n dS = Q1/ε0 = 0 by part (a) so

Φq

ε0
=

q

4πε20

∫
V

1

r
ρ1dV ⇒ answer

[9]
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