2E Numbers and Sets

What is an *equivalence relation* on a set X? If \sim is an equivalence relation on X, what is an *equivalence class* of \sim ? Prove that the equivalence classes of \sim form a partition of X.

A <u>relation</u> R on a set X is a subset of $X \times X$. We write xRy for $(x, y) \in R$. Say R is an <u>equivalence relation</u> if it is reflexive (xRx for all x), symmetric (xRy iff yRx) and transitive (if xRy and yRz then xRz).

An equivalence class of \sim is a subset of X of the form $[x] = \{y \in X : y \sim x\}$ for some $x \in X$.

<u>Claim</u>: The equivalence classes of \sim partition X.

<u>Proof:</u> By reflexivity they cover X ($x \in [x]$ for all $x \in X$). For x_1 and $\overline{x_2}$ in X we need to show that $[x_1]$ and $[x_2]$ are disjoint or equal, so suppose there exists $x \in [x_1] \cap [x_2]$. Then $x \sim x_1$ and $x \sim x_2$ so for all $y \in [x_1]$ we have (using symmetry)

$$y \sim x_1 \sim x \sim x_2$$

Transitivity gives $y \sim x_2$ so $y \in [x_2]$ and hence $[x_1] \subset [x_2]$. Similarly $[x_2] \subset [x_1]$ so $[x_1] = [x_2]$, and we're done.

Let \sim be the relation on the positive integers defined by $x \sim y$ if either x divides y or y divides x. Is \sim an equivalence relation? Justify your answer.

[2]

 $\left[5\right]$

No. We have $2 \sim 1$ and $1 \sim 3$ but $2 \approx 3$, so \sim is not transitive.

Write down an equivalence relation on the positive integers that has exactly four equivalence classes, of which two are infinite and two are finite.

Consider the partition

$$\{1, 2, 3, \dots\} = \{1\} \cup \{2\} \cup \{3, 5, 7, \dots\} \cup \{4, 6, 8, \dots\}$$

Define $x \sim y$ iff x and y lie in the same part of the partition. The equivalence classes are exactly the parts of the partition.

[10]

[3]

5E Numbers and Sets

(a) What is the highest common factor of two positive integers a and b? Show that the highest common factor may always be expressed in the form $\lambda a + \mu b$, where λ and μ are integers.

(a) The <u>hcf</u> of a and b is a positive integer c such that $c \mid a$ and $c \mid b$ and such that if $d \mid a$ and $d \mid b$ then $d \mid c$ (clearly unique if it exists).

Let S be the set of positive integers of the form $\lambda a + \mu b$ for $\lambda, \mu \in \mathbb{Z}$ and let s be its smallest element.

<u>*Claim:*</u> hcf(a,b) = s.

<u>Proof:</u> Clearly if $d \mid a$ and $d \mid b$ then d divides every element of S, so $\overline{d \mid s}$. Left to show s divides a and b. By division algorithm we have a = qs + r for some $q \in \mathbb{Z}$, $r \in \{0, 1, \ldots, s - 1\}$. Then

 $r = (1 - q\lambda)a - q\mu b$

is of the form $\lambda' a + \mu' b$ so by minimality of s it must be 0. Hence a = qs is divisible by s. Similarly $s \mid b$.

Which positive integers n have the property that, for any positive integers a and b, if n divides ab then n divides a or n divides b? Justify your answer.

Precisely the primes (and 1). Suppose n composite, say n = ab for some a and b greater than 1. Then $n \mid ab$ but $n \nmid a$ and $n \nmid b$. Conversely suppose n is prime, $n \mid ab$ but $n \nmid a$. Then n and a have no common factor other than 1, so hcf(n, a) = 1. By previous part we have $\lambda n + \mu a = 1$ for some $\lambda, \mu \in \mathbb{Z}$. Then

 $b = \lambda nb + \mu ab$

 $\left[5\right]$

[3]

[5]

and n divides the RHS, so $n \mid b$.

Let a, b, c, d be distinct prime numbers. Explain carefully why ab cannot equal cd.

[No form of the Fundamental Theorem of Arithmetic may be assumed without proof.]

Suppose for contradiction that ab = cd. Then $a \mid cd$, so by previous part, since a is prime, we get $a \mid c$ or $a \mid d$. Since c and d are prime, we deduce a = c or a = d, contradicting the fact that a, b, c, d are distinct.

(b) Now let S be the set of positive integers that are congruent to 1 mod 10. We say that $x \in S$ is *irreducible* if x > 1 and whenever $a, b \in S$ satisfy ab = x then a = 1 or b = 1. Do there exist distinct irreducibles a, b, c, d with ab = cd?

Yes. Let $a = 3 \times 7$, $b = 13 \times 17$, $c = 3 \times 17$ and $d = 13 \times 7$. Each of these is 1 mod 10, and has only one non-trivial factorisation in positive integers, but the factors are not 1 mod 10, so they are each irreducible in S. They are clearly distinct (say by previous part) and satisfy ab = cd.

[20]

[7]

7E Numbers and Sets

Define the binomial coefficient $\binom{n}{i}$, where *n* is a positive integer and *i* is an integer with $0 \leq i \leq n$. Arguing from your definition, show that $\sum_{i=0}^{n} \binom{n}{i} = 2^{n}$.

 $\binom{n}{i}$ is defined to be the number of subsets of $\{1, 2, \ldots, n\}$ of size *i*. Thus

$$\sum_{i=0}^{n} \binom{n}{i} = \text{Total number of subsets of } \{1, 2, \dots, n\},$$

and this is 2^n (each of the *n* elements is either in or not in any given subset).

Prove the binomial theorem, that $(1+x)^n = \sum_{i=0}^n \binom{n}{i} x^i$ for any real number x.

Imagine multiplying out the n copies of (1 + x). All terms are of the form x^i for $0 \leq i \leq n$, and each x^i comes from multiplying the x's from i of the brackets with the 1's from the remaining n - i brackets. The number of copies of x^i is therefore the number of ways of choosing the i brackets from which to take the x, which is exactly $\binom{n}{i}$.

By differentiating this expression, or otherwise, evaluate $\sum_{i=0}^{n} i \binom{n}{i}$ and $\sum_{i=0}^{n} i^{2} \binom{n}{i}$.

Differentiating the binomial theorem with respect to x gives

$$n(1+x)^{n-1} = \sum_{i=0}^{n} i \binom{n}{i} x^{i-1}$$

for all real x. Differentiating again gives

$$n(n-1)(1+x)^{n-2} = \sum_{i=0}^{n} i(i-1)\binom{n}{i} x^{i-2}$$

for all x. Setting x = 1 we obtain

$$\sum_{i=0}^{n} i \binom{n}{i} = n2^{n-1}$$

and

$$\sum_{i=0}^{n} i(i-1)\binom{n}{i} = n(n-1)2^{n-2}.$$

Adding these gives

$$\sum_{i=0}^{n} i^{2} \binom{n}{i} = n2^{n-2} ((n-1)+2) = n(n+1)2^{n-2}.$$

[2]

[3]

[6]

[3]

By considering the identity $(1+x)^n(1+x)^n = (1+x)^{2n}$, or otherwise, show that

$$\sum_{i=0}^{n} \binom{n}{i}^2 = \binom{2n}{n}.$$

 $We\ have$

Sending a subset of $\{1, 2, ..., n\}$ to its complement gives a bijection between subsets of size *i* and subsets of size n - i so $\binom{n}{n-i} = \binom{n}{i}$ and we get the result.

Show that $\sum_{i=0}^{n} i \binom{n}{i}^2 = \frac{n}{2} \binom{2n}{n}.$

Differentiating $(1+x)^n(1+x)^n = (1+x)^{2n}$ we get

$$2n(1+x)^{2n-1} = 2(1+x)^n \frac{\mathrm{d}}{\mathrm{d}x}(1+x)^n \\ = 2\left(\sum_{j=0}^n \binom{n}{j} x^j\right) \left(\sum_{i=0}^n i\binom{n}{i} x^{i-1}\right).$$

Equating coeffs of x^{n-1} we get

$$2n\binom{2n-1}{n-1} = 2\sum_{i=0}^{n} i\binom{n}{i}\binom{n}{n-i} = 2\sum_{i=0}^{n} i\binom{n}{i}^{2}.$$

So left to show

$$2\binom{2n-1}{n-1} = \binom{2n}{n},$$

or equivalently that

$$\binom{2n-1}{n-1} + \binom{2n-1}{n} = \binom{2n}{n}.$$

To prove this equality note that the RHS counts subsets of $\{1, 2, ..., 2n\}$ of size n whilst the LHS counts the same thing, split into 'subsets containing 2n' and 'subsets not containing 2n'.

[6]

[20]