
2D Groups

State and prove Lagrange’s Theorem.

Lagrange’s Theorem: If G is a finite group and H a subgroup then |H|
divides |G|.

Proof: Define a relation ∼ on G by g1 ∼ g2 iff g−1
1 g2 ∈ H. This is

reflexive (since H contains the identity), symmetric (since g−1
2 g1 =

(g−1
1 g2)

−1 and H is closed under inverses) and transitive (as g−1
1 g3 =

(g−1
1 g2)(g

−1
2 g3) and H is closed under products). Hence it is an

equivalence relation, and G is partitioned into equivalence classes.

We now claim that for each g ∈ G its equivalence class [g] has
size |H|, so that

|G| = |H| ×#equivalence classes

is divisible by |H|. Well, define a map f : [g] → H by x 7→ g−1x.

f well-defined: If x ∈ [g] then g−1x ∈ H so f(x) ∈ H.

f bijective: Its inverse is x 7→ gx (this is similarly well-defined
H → [g]).

Thus |[g]| = |H| and we’re done. �[6]

Show that the dihedral group of order 2n has a subgroup of order k for every k
dividing 2n.

The dihedral group D2n is the symmetry group of a regular n-gon in
the plane. If m > 1 divides n then one can form a regular m-gon
with vertices every (n/m)th vertex of the n-gon. The symmetry group
of this m-gon (of order 2m) and its rotational subgroup (of order m)
form subgroups of the symmetry group of the n-gon. So we have found
subgroups of D2n of order m and 2m for every m > 1 dividing n, and
hence of order k for every k | 2n (for k = 1 just take the subgroup {e},
and for k = 2 the subgroup generated by a reflection).[4]

[10]

5D Groups

(a) Let G be a finite group, and let g ∈ G. Define the order of g and show it is
finite. Show that if g is conjugate to h, then g and h have the same order.

The order o(g) of g is the smallest positive integer n such that gn = e.

Claim: The order exists (is finite).

Proof: We need to show that the set {n > 0 : gn = e} is non-empty. Let

|G| = N and consider the N+1 elements of G given by e, g, g2, . . . , gN .



By the pigeonhole principle, there exist distinct i, j ∈ {0, 1, . . . , N + 1}
with gi = gj . WLOG i < j. Then gj−i = e so j − i ∈ {n > 0 : gn = e}
and we’re done. �

Suppose g = khk−1. Then for n ∈ Z we have gn = khnk−1 so

gn = e ⇐⇒ khnk−1 = e ⇐⇒ hn(= k−1k) = e.

Thus {n ∈ Z : gn = e} = {n ∈ Z : hn = e} so o(g) = o(h).[5]

(b) Show that every g ∈ Sn can be written as a product of disjoint cycles. For
g ∈ Sn, describe the order of g in terms of the cycle decomposition of g.

Take any g ∈ Sn; this represents a permutation of {1, 2, . . . , n}.
For m ∈ {1, 2, . . . , n} let i(m) be the smallest positive integer with
gi(m)(m) = m (this exists since go(g)(m) = m).

Then m, g(m), . . . , gi(m)−1(m) are distinct: if gj(m) = gk(m)
with 0 6 j < k < i(m) then gk−j(m) = m, contradicting minimality of
i(m). Moreover they are cycled by the action of g. In particular they
are closed under the action of the subgroup of Sn generated by g, so
form the orbit of m under this subgroup.

Thus g acts on the orbit of each element m as a cycle. Since
distinct orbits are disjoint, we obtain a disjoint cycle decomposition of
g.

The order of g is the lcm of the lengths of the cycles in its disjoint
cycle representation.[5]

(c) Define the alternating group An. What is the condition on the cycle decompos-
ition of g ∈ Sn that characterises when g ∈ An?

Every g ∈ Sn can be written as a product of transpositions, and the
number of transpositions is well-defined mod 2. Say g is even (resp
odd) if this number is even (odd). An = {g ∈ Sn : g is even}.

Since a cycle of length k is a product of k − 1 transpositions, g
lies in An iff the number of cycles in its cycle decomp of even length is
even.[3]

(d) Show that, for every n, An+2 has a subgroup isomorphic to Sn.

Let τ be the permutation of {1, 2, . . . , n+2} transposing n+1 and n+2.
View perms of {1, 2, . . . , n} as perms of {1, 2, . . . , n+2} in the obvious
way. Let N : Sn+2 → Z/2 be the homomorphism sending a perm to the
mod 2 number of factors in its decomp into transpositions.

Define a map θ : Sn → Sn+2 by

θ(π) = πτN(π).

We claim θ is an injective homomorphism with image contained in
An+2, so it defines an isomorphism between Sn and a subgroup of An+2.



θ is a hom: Perms of {1, 2, . . . , n} commute with τ , so for π1, π2 ∈
Sn we have

θ(π1π2) = π1π2τ
N(π1π2) = π1τ

N(π1)π2τ
N(π2) = θ(π1)θ(π2).

θ injective: θ has a left inverse given by restricting perms of
{1, 2, . . . , n+ 2} to {1, 2, . . . , n}.

θ(Sn) ⊂ An+2: For π ∈ Sn we have

N(θ(π)) = N(π) +N
(

τN(π)
)

= 2N(π) = 0 mod 2.

Hence θ(Sn) is a subgroup of An+2 isomorphic to Sn.[7]
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7D Groups

(a) State the orbit–stabilizer theorem.

(a) Orbit-Stabiliser: If a finite group G acts on a set X then for all
x ∈ X we have

|G| = |G · x||Gx|,

where G · x is the orbit of x and Gx the stabiliser.[1]

Let a group G act on itself by conjugation. Define the centre Z(G) of G, and show
that Z(G) consists of the orbits of size 1. Show that Z(G) is a normal subgroup of G.

Z(G) = {g ∈ G : gh = hg for all h ∈ G}. Thus g ∈ G lies in the centre
iff hgh−1 = g for all h ∈ G, i.e. iff g is fixed by the conjugation action,
so iff the orbit of g has size 1.

Z(G) is a subgroup: Clearly e ∈ Z(G). If g1, g2 ∈ Z(G) then for
all h ∈ G we have

(g1g2)h = g1hg2 = h(g1g2)

using associativity, so g1g2 ∈ Z(G). Finally, for all g ∈ Z(G) and
h ∈ G we have

g−1h = g−1hgg−1 = g−1ghg−1 = hg−1,

so g−1 ∈ Z(G).

Z(G) normal: For g ∈ Z(G) and h ∈ G we have hgh−1 = g ∈

Z(G), so hZ(G)h−1 ⊂ Z(G) for all h. Hence Z(G) is normal in G.[5]

(b) Now let |G| = pn, where p is a prime and n > 1. Show that if G acts on a set
X, and Y is an orbit of this action, then either |Y | = 1 or p divides |Y |.



(b) Let y be an element of Y . Then orbit-stabiliser gives

pn = |Y ||Gy|,

so |Y | divides pn. Hence |Y | is 1 or divisible by p.[2]

Show that |Z(G)| > 1.

Let G act on itself by conjugation. Then, considering the partition of
G into orbits, we get

|Z(G)| = #orbits of size 1

= |G| −
∑

orbits Y
with |Y |>1

|Y |

and each term on the RHS is divisible by p. So p | |Z(G)|. Since
|Z(G)| > 1 (Z(G) contains e) we have |Z(G)| > p > 1.[5]

By considering the set of elements of G that commute with a fixed element x not
in Z(G), show that Z(G) cannot have order pn−1.

Suppose Z(G) 6= G, and pick x ∈ G \ Z(G). Then Gx = {g ∈ G :
gx = xg} is a subgroup of G, and is proper since x /∈ Z(G). Moreover
Z(G) 6 Gx and is proper since x ∈ Gx \ Z(G). We thus have a chain
of subgroups

Z(G) � Gx � G,

and by Lagrange’s theorem

|Z(G)| 6
|Gx|

p
6

|G|

p2
= pn−2.

So |Z(G)| cannot be pn−1.[7]
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