
3B Dynamics and Relativity

The motion of a planet in the gravitational field of a star of mass M obeys
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where r(t) and θ(t) are polar coordinates in a plane and h is a constant. Explain one of
Kepler’s Laws by giving a geometrical interpretation of h.

The area swept out by a line from the star to the planet grows at
constant rate, because this area A ∝ r2dθ and r2 dθdt = h.

[2]

Show that circular orbits are possible, and derive another of Kepler’s Laws relating
the radius a and the period T of such an orbit.

Circular orbits with radius a satisfy
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so a = h2/GM and
dθ

dt
= G2M2/h3. The period is T = 2π/

dθ

dt
=

2πh3/G2M2 ∝ a3/2. T ∝ a3/2 is another of Kepler’s laws.[3]

Show that any circular orbit is stable under small perturbations that leave h
unchanged.

Let r = a+ ε(t). Then if ε� a, expand to O(ε):
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)
so ε′′ + (h2/a4)ε = 0. Since h2/a4 > 0, the orbit is stable.[5]
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10B Dynamics and Relativity

The trajectory of a particle r(t) is observed in a frame S which rotates with constant
angular velocity ω relative to an inertial frame I. Given that the time derivative in I of
any vector u is (du

dt

)
I

= u̇ + ω×u ,

where a dot denotes a time derivative in S, show that

m r̈ = F − 2mω×ṙ − mω×(ω×r) ,

where F is the force on the particle and m is its mass.

F = m

(
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=m

(
d
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I

(ṙ + ω × r)

=m (r̈ + ω × ṙ + ω × (ṙ + ω × r))

=mr̈ + 2mω × ṙ +mω × (ω × r)
[2]

Let S be the frame that rotates with the Earth. Assume that the Earth is a sphere
of radius R. Let P be a point on its surface at latitude π/2− θ, and define vertical to be
the direction normal to the Earth’s surface at P .

(a) A particle at P is released from rest in S and is acted on only by gravity. Show
that its initial acceleration makes an angle with the vertical of approximately

ω2R

g
sin θ cos θ ,

working to lowest non-trivial order in ω.

Let ez be the unit vector normal to the Earth’s surface at P and eN be
the unit vector in the North direction.

ω × ṙ is initially small. ω × r is ωR sin θeE where eE is the unit
vector in the East direction. Take components in the North and vertical
directions;

r̈ = −gez + sin θ(ω2R sin θ)ez − cos θ(ω2R sin θ)eN

Then the angle from the vertical satisfies

tanφ =
−ω2R sin θ cos θ

−g + sin θω2R sin θ
≈ ω2R sin θ cos θ

g
and tanφ ≈ φ[8]



(b) Now consider a particle fired vertically upwards from P with speed v. Assuming
that terms of order ω2 and higher can be neglected, show that it falls back to Earth under
gravity at a distance

4

3

ωv3
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from P . [You may neglect the curvature of the Earth’s surface and the vertical variation
of gravity.]

Neglect ω × (ω × r) term. Velocity is approximately vertical u(t)ez.
Vertical component of forces gives z̈ = −g so z = −gt2/2 + vt. East
component gives

ẍ = −2ω(−gt+ v) sin θ so x = −2ω

(
−gt3

6
+
vt2

2

)
sin θ

Particle lands at time t = 2v/g, so distance East is −2ω

(
−8v3

6g2
+

4v3

2g3

)
=

−4

3
ω sin θv3/g2[10]

[20]

11B Dynamics and Relativity

A rocket carries equipment to collect samples from a stationary cloud of cosmic
dust. The rocket moves in a straight line, burning fuel and ejecting gas at constant speed
u relative to itself. Let v(t) be the speed of the rocket, M(t) its total mass, including fuel
and any dust collected, and m(t) the total mass of gas that has been ejected. Show that

M
dv

dt
+ v

dM

dt
+ (v − u)
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dt
= 0 ,

assuming that all external forces are negligible.

Conservation of momentum:

Mv =(M + ∆M)(v + ∆v) +
dm

dt
∆t(v − u)

0 =v∆M +M∆v +
dm

dt
∆t(v − u)

neglecting quadratically small terms. Divide by ∆t for result.[5]



(a) If no dust is collected and the rocket starts from rest with mass M0, deduce that

v = u log(M0/M) .

With no dust, M +m = const.⇒ dM

dt
= −dm

dt
, so
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u
= − logM + c

and M = M0 when v = 0 so c = logM0.[4]

(b) If cosmic dust is collected at a constant rate of α units of mass per unit time
and fuel is consumed at a constant rate dm/dt = β, show that, with the same initial
conditions as in (a),
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)
.

Now
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= β and
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= α− β. So M = (α− β)t+M0 and
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and at t = 0, v = 0 so c = −βuMα/(α−β)
0 /α.
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Verify that the solution in (a) is recovered in the limit α→ 0.

In the limit α → 0, (M/M0)
α/(β−α) = elog(M/M0)α/(β−α) ∼ 1 +

log(M/M0)α/(β − α) so

v ∼ uβ

α

(
− α

β − α
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M
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))
∼ u log

(
M0

M

)
as above.[4]
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