
2A Differential Equations

(a) For a differential equation of the form dy
dx = f(y), explain how f ′(y) can be used

to determine the stability of any equilibrium solutions and justify your answer.

If f ′(y0) > 0 then the equilibrium point y0 is unstable, because locally
dy
dx ≈ f ′(y0)(y − y0) has solution y ≈ ef

′(y0)x + y0, which diverges from
y0. Similarly, if f ′(y0) < 0 then the equilibrium point is stable.[3]

(b) Find the equilibrium solutions of the differential equation

dy

dx
= y3 − y2 − 2y

and determine their stability. Sketch representative solution curves in the (x, y)-plane.

f(y) = y3 − y2 − 2y so f(y) = 0 at y = 0 or y = −1 or y = 2.[2]

f ′(y) = 3y2 − 2y − 2. So f ′(0) = −2 stable, f ′(2) = 6 unstable
and f ′(−1) = 3 unstable.[2]

[3]
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7A Differential Equations

(a) Define the Wronskian W of two solutions y1(x) and y2(x) of the differential
equation

y′′ + p(x)y′ + q(x)y = 0 , (∗)

and state a necessary and sufficient condition for y1(x) and y2(x) to be linearly independ-
ent. Show that W (x) satisfies the differential equation

W ′(x) = −p(x)W (x) .

W (x) = y1y
′
2 − y′1y2[2]

Solutions are linearly independent if W (x) 6= 0.[2]

W ′(x) = y′1y
′
2+y1y

′′
2−y′2y′1−y2y′′1 = y1(−p(x)y′2−q(x)y2)−y2(−p(x)y′1−

q(x)y1) = −p(x)W (x)[2]



(b) By evaluating the Wronskian, or otherwise, find functions p(x) and q(x) such
that (∗) has solutions y1(x) = 1 + cosx and y2(x) = sinx.

W (x) = (1 + cosx) cosx− sinx(− sinx) = 1 + cosx.
So p(x) = −W ′(x)/W (x) = sinx/(1 + cosx).[3]

Then − sinx+
sinx

1 + cosx
cosx+ q(x) sinx = 0

so q(x) = 1− cosx/(1 + cosx) = 1/(1 + cosx)[3]

What is the value of W (π)? Is there a unique solution to the differential equation
for 0 6 x <∞ with initial conditions y(0) = 0, y′(0) = 1? Why or why not?

W (π) = 0[1]

No. Using hint about W (π), both y = sinx and

y =

{
sinx for 0 6 x 6 π

sin +(1 + cosx) for x > π

are solutions satisfying the initial conditions.[2]

(c) Write down a third-order differential equation with constant coefficients, such
that y1(x) = 1+cosx and y2(x) = sinx are both solutions. Is the solution to this equation
for 0 6 x < ∞ with initial conditions y(0) = y′′(0) = 0, y′(0) = 1 unique? Why or why
not?

y′′′ + y′ = 0.[3]

Solutions are y = 1, cosx and sinx. Since the Wronskian is now

W = det

1 sinx cosx
0 cosx − sinx
0 − sinx − cosx

 = −1 6= 0

the solutions are linearly independent for all x. So the solution y = sinx
obeys the initial conditions and is unique.[2]
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8A Differential Equations

(a) The circumference y of an ellipse with semi-axes 1 and x is given by

y(x) =

∫ 2π

0

√
sin2 θ + x2 cos2 θ dθ . (∗)

Setting t = 1− x2, find the first three terms in a series expansion of (∗) around t = 0.

y =

∫ 2π

0

√
1− t cos2 θ dθ ≈

∫ 2π

0
1− 1

2
t cos2 θ − 1

8
t2 cos4 θ dθ

= 2π − 1

2
tπ − 1

8
t2
∫ 2π

0
cos4 dθ



and
∫ 2π
0 cos4 θ+2 cos2 θ sin2 θ+sin4 θdθ = 2π with

∫ 2π
0 sin2 θ cos2 θdθ =

1
4

∫ 2π
0 sin2 2θdθ = π/4 so

∫ 2π
0 cos4 θdθ = 3π/4.

So y ≈ 2π − tπ/2− 3πt2/32.[4]

(b) Euler proved that y also satisfies the differential equation

x(1− x2)y′′ − (1 + x2)y′ + xy = 0 .

Use the substitution t = 1 − x2 for x > 0 to find a differential equation for u(t), where
u(t) = y(x). Show that this differential equation has regular singular points at t = 0 and
t = 1.

t = 1− x2 so
dy

dx
= −2x

du

dt
and

d2y

dx2
= −2

du

dt
+ 4x2

d2u

dt2
. So

xt(−2u′ + 4x2u′′)− (2− t)(−2xu′) + xu =0

4t(1− t)u′′ + 4(1− t)u′ + u =0

u′′ +
1

t
u′ +

1

4t(1− t)
u =0

[4]

and since 1/t diverges at t = 0 and 1/4t(1 − t) diverges at t = 1, we
have singular points at t = 0 and t = 1. But tp(t) and t2q(t) are finite
at t = 0, and (t − 1)p(t) and (t − 1)2q(t) are finite at t = 1, so these
are regular singular points.[2]

Show that the indicial equation at t = 0 has a repeated root, and find the recurrence
relation for the coefficients of the corresponding power-series solution. State the form of
a second, independent solution.

Try u =
∑∞

n=0 ant
n+σ. Then∑

an
[
4(1− t)t(n+ σ)(n+ σ − 1)tn+σ−2 + 4(1− t)(n+ σ)tn+σ−1 + tn+σ

]
=0

4an+1(n+ 1 + σ)(n+ σ)− 4an(n+ σ)(n+ σ − 1) + 4an+1(n+ 1 + σ)− 4an(n+ σ) + an =0

4an+1(n+ σ + 1)2 − an
(
4(n+ σ)2 − 1

)
=0

Now a0 6= 0 and a−1 = 0 so take n = −1 to get σ2 = 0. Repeated root
σ = 0.[3]

The recurrence relation is then an+1 = an
4(n+ σ)2 − 1

4(n+ σ + 1)2
for n > 0.

[4]

Call this u1. The second independent solution is u = u1(t) log t+
∑
bnt

n[1]

Verify that the power-series solution is consistent with your answer in (a).

Take a0 = 2π, then a1 = a0(−1/4) and a2 = a13/16. This agrees with
the solution above.[2]
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