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SECTION I

1G Number Theory
Let p be an odd prime.

(a) Define the Legendre symbol
(
a
p

)
, and state the law of quadratic reciprocity that

it satisfies.

(b) Give necessary and sufficient conditions on p mod 3 for the equation

X2 + 11X + 31 = 0

to have a solution in Z/pZ.

(c) Give necessary and sufficient conditions on p mod 3 for the equation

X3 = −1

to have (i) a solution in Z/pZ; and (ii) a unique solution in Z/pZ.

2I Topics in Analysis
Explain how to obtain a continued fraction expansion of a real number x > 0. Prove

that the continued fraction for x terminates if and only if x is rational.

Determine the continued fraction of
√
3.

3K Coding & Cryptography
Define a linear feedback shift register (LFSR) and its associated feedback polyno-

mial.

Suppose an LFSR has a feedback polynomial of degree d. Explain why the period
produced by this LFSR cannot be longer than 2d − 1.

Explain why an LFSR that generates a maximal period must have an odd number
of coefficients equal to 1 in its feedback polynomial. (That is, if the feedback polynomial
is given by xd + ad−1x

d−1 + · · ·+ a0, then an even number of the ai should be equal to 1.)

The output sequence of an LFSR starts with 100000001. Give a minimal LFSR that
generates this output, i.e. one whose feedback polynomial has least degree. Justify your
answer.

Part II, Paper 4
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4F Automata & Formal Languages
(a) Say what it means for a grammar to be variable based.

(b) Given two grammars G = (Σ, V, P, S) and G′ = (Σ, V ′, P ′, S′), give the
definitions of the concatenation grammar H and the regular concatenation grammar Hreg,
i.e., grammars H and Hreg such that

(i) if G and G′ are variable based with disjoint sets of variables, then

L(H) = L(G)L(G′) and

(ii) if G and G′ are regular with disjoint sets of variables, then Hreg is regular
and

L(Hreg) = L(G)L(G′).

[You do not need to prove these statements, only to provide the definitions of the
grammars.]

(c) Find examples of regular grammars G and G′ with disjoint sets of variables such
that H is not a regular grammar. Justify your claim.

(d) Find examples of variable based grammars G and G′ with disjoint sets of
variables such that L(Hreg) ̸= L(G)L(G′). Justify your claim.

5K Statistical Modelling
Define Akaike’s Information Criterion (AIC) for a general statistical model.

Consider the normal linear model Y ∼ N(Xβ, σ2In) where β ∈ Rp is unknown,
σ2 > 0 is known, and X ∈ Rn×p is non-random with full column rank. Show that the AIC
in this model is equal to Mallows’ Cp (up to constants)

Cp = ∥Y − µ̂∥2 + 2pσ2,

where µ̂ is the fitted value of Y using ordinary least squares.

The mean squared prediction error (MSPE) of µ̂ is defined as

MSPE = E(∥Y ∗ − µ̂∥2),

where Y ∗ is an independent and identically distributed copy of Y . Show that Cp is an
unbiased estimator of the MSPE.

Part II, Paper 4 [TURN OVER]
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6A Mathematical Biology
Let xn be the number of plants in season n. Each year, a proportion r < 1 of plants

survives to season n+1. In addition, the number of seeds produced per plant that become
plants the following year is ke−λxn with constants k > 0 and λ > 0.

(a) What values of k permit a non-vanishing equilibrium population?

(b) What additional requirement on k is needed for this equilibrium to be stable?

7E Further Complex Methods
The modified Bessel function I0(z), for z ∈ C, is the unique solution of the

differential equation

z
d2y

dz2
+
dy

dz
− zy = 0, (†)

satisfying y(0) = 1.

Explain Laplace’s method of seeking a solution y(z) to equation (†) of the form

y(z) =

∫
C
eztf(t) dt ,

where the function f(t) and the contour C are suitably chosen. Apply the method to show
that

I0(z) =
1

π

∫ 1

−1

ezs

(1− s2)1/2
ds.

Part II, Paper 4
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8B Classical Dynamics
(a) State the Jacobi identity for the Poisson bracket {F,G} on a phase space. Prove

that if F and G are both conserved quantities for the flow generated by a Hamiltonian H,
then {F,G} is also conserved.

(b) Consider the following mappings (q, p) 7→ (Q(q, p), P (q, p)), which depend on
the parameter λ ∈ R:

(i) (Q,P ) = (λq, λp) ;

(ii) (Q,P ) = (q, λp) ;

(iii) (Q,P ) = (p, λq) .

For which values of λ are these mappings canonical? For each value of λ either
show the mapping is not canonical or, if it is canonical, find a generating function for the
mapping.[

Hint: the generating function will either be of type S = S(q, P ;λ), such that the

mapping is equivalent to

p =
∂S

∂q
, Q =

∂S

∂P
,

or of type Φ = Φ(q,Q;λ) with the mapping equivalent to

p =
∂Φ

∂q
, P = −∂Φ

∂Q
.

]
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9E Cosmology
An inflationary Friedmann-Lemâıtre-Robertson-Walker universe is governed by the

following slow-roll equations for the scale factor a(t) and the scalar field ϕ(t),

H2 =
1

3M2
Pl

V (ϕ) , 3Hϕ̇ = −V ′(ϕ) ,

where a dot denotes d/dt, H = ȧ/a, V ′(ϕ) = dV/dϕ and MPl is the Planck mass.

(a) Defining the slow-roll parameter

ϵ(ϕ) ..=
M2

Pl

2

[
V ′(ϕ)

V (ϕ)

]2
,

verify that the condition ϵ(ϕ) ≪ 1 is consistent with the slow-roll condition ϕ̇2 ≪ V . Show
that

H

ϕ̇
= − 1

M2
Pl

V

V ′ = − 1√
2MPl

1√
ϵ
.

(b) The amount of inflation is given by the number of e-folds by which the scale
factor grows, N = log[a(tf )/a(ti)], where ti and tf are the start and end times of inflation.
Denoting ϕi = ϕ(ti) and ϕf = ϕ(tf ), show that in the slow-roll regime,

N =

∫ tf

ti

H dt ≈ 1√
2MPl

∫ ϕi

ϕf

dϕ√
ϵ(ϕ)

.

(c) Consider the potential V (ϕ) = V0 [1 + cos(ϕ/f)], where V0 and f are positive
constants. Show that √

ϵ(ϕ) =
MPl√
2f

tan
ϕ

2f
.

Hence, find that the number of e-foldings for this model is given by

N =
2

M2
Pl

f2
[
log

(
sin

ϕi
2f

)
− log

(
sin

ϕf
2f

)]
.
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10C Quantum Information and Computation
(a) A GHZ state between three parties (Alice, Bob, and Charlie) is defined as

|ψ⟩ABC :=
1√
2
(|000⟩ABC + |111⟩ABC) .

Write down a quantum circuit that generates this state from the initial state |000⟩ABC ,
justifying your answer.

(b) The aim below is to design a multi-party super-dense coding protocol between
Alice, Bob, and Charlie, who are spatially separated and share the GHZ state |ψ⟩ABC

before communication begins.

Suppose that Alice wants to send two (classical) bits to Charlie and Bob wants to
send one (classical) bit to Charlie. What operations should Alice and Bob perform on
their respective qubits of |ψ⟩ABC before sending their qubits to Charlie (over ideal qubit
channels), and how does Charlie infer the classical bits sent by Alice and Bob? Be sure to
consider all cases.

[The following orthonormal basis of 3 qubits will be useful,

|χ±
1 ⟩ :=

1√
2
(|000⟩ABC ± |111⟩ABC)

|χ±
2 ⟩ :=

1√
2
(|010⟩ABC ± |101⟩ABC)

|χ±
3 ⟩ :=

1√
2
(|001⟩ABC ± |110⟩ABC)

|χ±
4 ⟩ :=

1√
2
(|011⟩ABC ± |100⟩ABC) .]
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SECTION II

11G Number Theory
(a) Let p be a prime number, and let N ∈ N. Define the p-adic valuation vp(N)

of N .

(b) Show that if k ∈ N, and p is a prime number such that k+2 ⩽ p ⩽ 2k+1, then
vp(

(
2k+1
k+1

)
) = 1.

(c) If X ⩾ 1 is a real number, define P (X) =
∏

p⩽X p, where the product is over

prime numbers p less than or equal to X. Show that P (X) ⩽ 4X for all X ⩾ 1.

(d) If X ⩾ 1 is a real number, let π(X) denote the number of prime numbers less
than or equal to X. By considering π(X) − π(

√
X), or otherwise, show that there is a

constant c > 0 such that π(X) ⩽ cX/ logX for all X ⩾ 2.

12I Topics in Analysis
What is a nowhere dense set in a metric space? State and prove a version of the

Baire category theorem. Deduce the following:

(i) There exists a continuous function f : [0, 1] → R that is not monotone on any
interval of positive length. [You may assume that the space of continuous real valued
functions on [0, 1] with the uniform norm is complete.]

(ii) If F : R → R is an infinitely differentiable function such that for each x there is an
n (depending on x) such that F (n)(x) = 0, then F is a polynomial.

Part II, Paper 4
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13K Statistical Modelling
A three-year study was conducted at three sites on the survival status of patients

suffering from cancer. The dataset also records whether or not the initial tumour was
malignant. The data are tabulated in R as follows:

> cancer

site malignant survive die total

1 A no 40 7 47

2 A yes 36 17 53

3 B no 24 3 27

4 B yes 35 6 41

5 C no 15 4 19

6 C yes 5 5 10

(a) Write down the mathematical model that is being fitted by the following R

commands.

> fit1 <- glm(survive/total ~ site + malignant, family = binomial,

+ data = cancer, weights = total)

(b) In words or using mathematical equations, explain the (slightly abbreviated)
output from the code below and describe how the numbers in the Coefficients table are
computed. What are your conclusions based on the hypothesis tests in this table?

> summary(fit1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.6855 0.3431 4.913 8.98e-07 ***

siteB 0.8096 0.4344 1.864 0.0624 .

siteC -0.5423 0.4825 -1.124 0.2610

malignantyes -0.9048 0.3809 -2.375 0.0175 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null deviance: 11.69300 on 5 degrees of freedom

Residual deviance: 0.85048 on 2 degrees of freedom

AIC: 29.003

[QUESTION CONTINUES ON THE NEXT PAGE]
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(c) Consider a slightly different model fitted by the next R commands and the
corresponding (abbreviated) summary output below. Explain why some of the p-values
(under the column Pr(>|z|)) are the same in these two tables and others are different.
Are you surprised that the p-value for siteC is significant in summary(fit1) (at level
0.05) but not significant in summary(fit2)? Explain your answer.

> cancer$site <- factor(cancer$site, levels = c("B", "A", "C"))

> fit2 <- glm(survive/total ~ site + malignant, family = binomial,

+ data = cancer, weights = total)

> summary(fit2)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.4951 0.4610 5.413 6.21e-08 ***

siteA -0.8096 0.4344 -1.864 0.0624 .

siteC -1.3520 0.5613 -2.409 0.0160 *

malignantyes -0.9048 0.3809 -2.375 0.0175 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(d) Describe the hypothesis test performed in the R code below and your conclusion
based on the results.

> fit3 <- glm(survive/total ~ malignant, family = binomial,

data = cancer, weights = total)

> anova(fit3, fit1)

Analysis of Deviance Table

Model 1: survive/total ~ malignant

Model 2: survive/total ~ site + malignant

Resid. Df Resid. Dev Df Deviance

1 4 7.4923

2 2 0.8505 2 6.6418

> qchisq(c(0.01, 0.05, 0.1, 0.9, 0.95, 0.99), 4)

[1] 0.2971095 0.7107230 1.0636232 7.7794403 9.4877290 13.2767041

> qchisq(c(0.01, 0.05, 0.1, 0.9, 0.95, 0.99), 2)

[1] 0.02010067 0.10258659 0.21072103 4.60517019 5.99146455 9.21034037

Part II, Paper 4
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14A Mathematical Biology
Consider the reaction-diffusion system in one dimension with x ∈ R,

∂u

∂t
= D

∂2u

∂x2
+ α− (β + 1)u+ u2v,

∂v

∂t
=
∂2v

∂x2
+ βu− u2v,

where the constants D, α, and β obey D > 0, β > 1, and α2 > β − 1. The variables u
and v are both positive.

(a) First consider spatially homogeneous solutions. Determine the fixed point and
sketch the nearby trajectories in the system’s phase space.

(b) Now consider inhomogeneous solutions. Without calculation, explain why the
system is stable for D = 1. Find the condition relating D, α, and β for the system to be
unstable.

(c) Suppose we vary the diffusivity from D = 1 to the value at which the system
first becomes unstable. What is the critical wavenumber k⋆ at which the instability first
occurs?

15B Classical Dynamics
Let I1 < I2 < I3 be the three principal moments of inertia of a rigid body that

rotates freely with angular velocity ω according to the Euler equations

I1ω̇1 = (I2 − I3)ω2ω3 ,

I2ω̇2 = (I3 − I1)ω3ω1 ,

I3ω̇3 = (I1 − I2)ω1ω2 ,

where the components ω1, ω2 and ω3 of the angular velocity are taken with respect to the
principal axes of inertia.

(a) Write down expressions for the energy E and the total angular momentum
squared L2, and prove that these are conserved using the Euler equations.

(b) Show that if L2 = 2EI2 there exist solutions in which the angular velocity is
directed along the second principal axis, i.e., ω1 and ω3 are zero. What are the possible
values for ω2? Use linearisation to analyse the stability of these solutions.

(c) Still working under the condition L2 = 2EI2, use your expressions from part
(a) to express ω1 and ω3 in terms of E and L2, and hence obtain a first-order differential
equation for ω2. Integrate this equation and show that ω2(t) = µ tanh(λt) for some
constants µ, λ which you should find. Briefly comment on the relation of this solution to
your answer to part (b).

Part II, Paper 4 [TURN OVER]
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16H Logic and Set Theory
In this question, let V be a model of ZF set theory. Set-theoretic notation such as

∅, {x, y},
⋃
x, and “x is finite” refers to the operations and properties in V . Let φ be a

formula with one free variable. The φ-instance of the axiom-scheme of separation is the
formula

(∀x)(∃s)(∀z)(z ∈ s⇔ (z ∈ x ∧ φ(z))).

For a set x, the set {z ∈ x : φ} exists by the validity of the φ-instance of the axiom-scheme
of separation in V .

(a) Define what it means to be a class and a proper class in V .

A class M is called transitive if whenever x ∈ y and y is in M , then x is in M . A
class M is called φ-closed if for all x in M , the set {z ∈ x : φ} is also in M .

(b) Show that the collection of all finite sets in V is a proper class. Is it transitive?
Is it φ-closed? Justify your claims.

(c) A set is called hereditarily finite if it is contained in a transitive and finite set.
Is the collection of all hereditarity finite sets in V a proper class? Is it transitive? Is it
φ-closed? Justify your claims.

[You are allowed to use properties of the von Neumann hierarchy and its rank
function as proved in the lectures, provided that you state them correctly and precisely.]

(d) Let M be a transitive class in V such that for all x, y in M , we have that ∅,
{x, y}, and

⋃
x are in M . Show that the axioms of extensionality, empty set, pair-set and

union are satisfied in M .

(e) Let M be a transitive class. Explain briefly why being φ-closed is not sufficient
to prove the φ-instance of the axiom-scheme of separation in M .

[You do not have to provide an example of a class M where this fails.]

(f) Provide a map (without proof) φ 7→ φ∗, where φ∗ is also a formula, such that
every transitive class M that is φ∗-closed satisfies the φ-instance of the axiom-scheme of
separation. Note that this map can depend on M .

Part II, Paper 4
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17F Graph Theory
(a) For t ∈ N define the Ramsey number R(t). If t ⩾ 2, show that R(t) exists and

that R(t) ⩽ 22t.

(b) For any graph G, define R(G) to be the least positive integer n such that in any
red–blue colouring of the edges of the complete graph Kn, there must be a monochromatic
copy of G. Explain briefly why R(G) exists.

(i) Let t ∈ N. Show that, whenever the edges of K2t are red–blue coloured,
there must be a monochromatic copy of the complete bipartite graph K1,t.

(ii) Suppose that t is odd. Show that R(K1,t) = 2t. If t is even, what is R(K1,t)?
Justify your answer.

(iii) Let H be the graph on four vertices, obtained by adding an edge to a
triangle. Compute R(H), justifying your answer.

18J Galois Theory
(a) Define the nth cyclotomic polynomial Φn(X). Show that it has coefficients in Z.

Show further that if K is a subfield of C and ζn ∈ C is a root of Φn(X) then the extension
K(ζn)/K is Galois with abelian Galois group.

(b) What does it mean to say that a subfield K ⊂ R is constructible? Show that
Q(cos(2π/17)) is constructible.

(c) Let K be a field with algebraic closure K. For each n ⩾ 1 let ζn ∈ K be a root
of Φn(X). Let Kcyc =

⋃
n⩾1K(ζn). Decide whether Kcyc = K in each of the cases K = R,

K = Q, and K = Fp. Justify your answers.
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19J Representation Theory
Let p be an odd prime, G = SL2(Fp) be the special linear group over the field with

p elements,

B =

{(
a b
0 a−1

) ∣∣∣∣ a, b ∈ Fp, a ̸= 0

}
< G

be the subgroup of upper triangular matrices and

U =

{(
1 b
0 1

) ∣∣∣∣ b ∈ Fp

}
< B

be the subgroup of uni-triangular matrices.

(a) Suppose that θ, φ : B → C∗ are 1-dimensional complex representations of B.

(i) State Mackey’s restriction formula and explain carefully what it says for
ResGBInd

G
Bθ.

(ii) Determine ⟨IndGBθ, IndGBφ⟩G for all possible choices of θ and φ.

(b) Let χ : U → C∗ be a non-trivial one dimensional representation of U .

(i) If v ∈ Fp show that

χ(v·) :
(
1 x
0 1

)
7→ χ

((
1 vx
0 1

))
is also a one dimensional representation of U .

(ii) Now consider any representation V of B. Show that if ⟨ResBUV, χ⟩U ̸= 0,
then ⟨ResBUV, χ(v·)⟩U ̸= 0 for at least p−1

2 elements v in F∗
p.

(iii) Let T be the subgroup of B consisting of diagonal matrices and let θ be a
one dimensional representation of T . Show that IndBT θ is a sum of three
pairwise non-isomorphic irreducible representations of B of dimensions 1,
p−1
2 and p−1

2 .

Part II, Paper 4
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20G Number Fields
(a) State Dirichlet’s unit theorem.

(b) Define the logarithmic embedding (Log) and prove that its kernel contains only
roots of unity.

(c) What can you say about the image of a fundamental system of units u1, . . . , um
under the logarithmic embedding? Here m is the rank of the unit group. [You do not
need to prove your answer.]

(d) LetK be a number field with r real embeddings and s pairs of complex conjugate
embeddings. Let I = ⟨β⟩ ⊂ OK be a principal ideal. Show that

Log(β) = t(1, . . . , 1, 2, . . . , 2) +

m∑
i=1

λiLog(ui)

where t, λ1, . . . , λm ∈ R and the vector (1, . . . , 1, 2, . . . , 2) has r 1’s and s 2’s. Compute t
in terms of N(I) and [K : Q]. [Hint: Relate the sum of the coordinates of Log(β) to N(β).]
[Standard facts about norms may be quoted without proof.]

(e) Prove that, for every number field K, there is a constant C < ∞ such that,
for every principal ideal I ⊂ OK , there is an element α ∈ I such that I = ⟨α⟩ and
|σ(α)| < CN(I)1/[K:Q] for all embeddings σ : K → C.

21F Algebraic Topology
Let X be a triangulable space. State a formula for the rational homology groups

Hi(X;Q) given the ordinary homology groups Hi(X). Define the Euler characteristic
χ(X) of X. For K a simplicial complex triangulating X, state and prove a formula
relating χ(X) to numbers of simplices in K.

Let ∆3 denote the simplicial complex given by a standard 3-simplex together with
all its faces. For each i, which standard abelian group is isomorphic to Hi(∆

3)?

Let (∆3)′ be the barycentric subdivision of ∆3, and letM be the 2-skeleton of (∆3)′.

(i) Calculate the Euler characteristic of |M |.

(ii) Use this to compute the simplicial homology groups Hi(M).

(iii) Suppose f : |M | → |M | is a homeomorphism. Must f have a fixed point?
Briefly justify your answer.
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22I Linear Analysis
(a) State the Riesz representation theorem. For a Hilbert space H and an operator

T ∈ L(H), define the adjoint T ∗ of T , proving that it exists and that T ∗ ∈ L(H). If H
has an orthonormal basis, describe (without proof) the relation between the matrices of
T and T ∗ with respect to this basis.

(b) State the spectral theorem for compact Hermitian operators on l2. Explain why
it follows from this that every compact Hermitian operator on l2 is a limit of finite rank
Hermitian operators.

(c) Prove that every compact operator on l2 is a limit of finite rank operators.

23H Analysis of Functions
(a) Let H be a (real) Hilbert space and xn a sequence in H that converges weakly

to x in H as n→ ∞.

(i) Prove that ∥x∥H ⩽ lim infn ∥xn∥H .

(ii) Prove that ∥xn∥H → ∥x∥H if and only if ∥xn − x∥H → 0.

(iii) Must xn converge strongly to x along a subsequence? Justify your answer.

(b) Let Ω ⊂ Rn be open and bounded. For u ∈ H1
0 (Ω) and V ∈ L∞(Ω), we define

the functional

E(u) :=

∫
Ω

(
|Du|2 + V u2

)
dx.

(i) Show that for any sequence un ∈ H1
0 (Ω) that converges weakly to u in

H1
0 (Ω), we must have E(u) ⩽ lim infnE(un).

[You may use the Rellich-Kondrashov theorem without proof.]

(ii) Let λ = inf E where

E =
{
E(u) : u ∈ H1

0 (Ω), ∥u∥L2(Ω) = 1
}
.

Show that there exists w ∈ H1
0 (Ω) such that ∥w∥L2(Ω) = 1 and E(w) = λ.

(iii) Prove that

inf

{∫
R
(Du)2 dx : u ∈ H1(R), ∥u∥L2(R) = 1

}
= 0.

Is this infimum attained? Justify your answer.
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24J Algebraic Geometry
In this question, all algebraic varieties are defined over an algebraically closed field

k of characteristic zero.

State the Riemann–Roch theorem, giving a brief explanation of each term.

A smooth projective curveX is covered by two affine pieces (with respect to different
embeddings) which are affine plane curves with equations y2 = f(x) and v2 = g(u)
respectively, with f a square-free polynomial of even degree 2n > 4 and u = 1/x, v = y/xn

in the function field of X.

Determine the polynomial g(u).

Using a well-chosen rational differential, compute the canonical divisor KX of X,
and show that it has degree 2n− 4.

Compute the genus of X.

Write down a basis for the space L(KX) of rational functions with poles bounded
by KX . Conclude that X cannot be embedded into P2.

25I Differential Geometry
(a) Given a surface S ⊂ R3, define the exponential map around a point, and state and

prove the Gauss lemma (expressing the first fundamental form in the local parametrisation
ϕ that maps the polar coordinates on the tangent space to the surface by the exponential
map).

(b) Given a surface S and a smooth curve α on S parametrised by arc-length, define
the Gauss map and the geodesic curvature of α in terms of a covariant derivative. What
does it mean for α to have zero geodesic curvature?

(c) Give a statement of the global Gauss-Bonnet theorem with boundary terms.

(d) Let S ⊂ R3 be a compact connected oriented surface diffeomorphic to a sphere
and with positive Gauss curvature everywhere. Prove that any two closed geodesic curves
on S must intersect.
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26H Probability and Measure
We consider a rope broken into two strands of lengths Y and Z. We let X = Y +Z

be the random length of the rope. We assume E[X2] < +∞ and Y = XU where U is a
random variable independent of X with uniform law on [0, 1] (explicitly pU (u) = 1[0,1](u)).

(a) Compute E[Y ] and Var[Y ] in terms of E[X] and Var[X].

(b) From now on, we assume that X has a continuous density g ⩾ 0, and that

h(x) =
∫ +∞
x

g(t)
t dt is well defined and C1 on R+. Compute the densities of (X,Y ), (Y,Z),

Y and Z.

(c) Give a necessary and sufficient condition on h for Y and Z to be independent,
and compute the law of Y and Z in this case.

27L Applied Probability
(a) State the mapping theorem for a non-homogeneous spatial Poisson process on

Rd with intensity function λ and a map f : Rd → Rs. You should clearly state all the
necessary conditions.

(b) Assume that the positions (x, y, z) ∈ R3 of stars in space are distributed
according to a homogeneous spatial Poisson process Π with a constant intensity λ > 0.

(i) Let f : R3 → [0,∞) be given by f(x, y, z) = (x2 + y2 + z2)3/2. Show
that f(Π) is again a homogeneous Poisson process on [0,∞). What is its
intensity?

(ii) Let R1, R2, . . . be an increasing sequence of positive random variables such
that Rk denotes the distance of the k-th closest star from the origin. Find
the density function for the distribution of Rk. [Hint: The sum of n
independent Exp(1) random variables has a Gamma(n) distribution with
density function xn−1e−x/(n− 1)! for x > 0.]
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28L Principles of Statistics
(a) Given a distribution function F : R → [0, 1], let F−1 : [0, 1] → R be the quantile

function given by
F−1(p) := inf{t : F (t) ⩾ p}.

Show that if U ∼ U [0, 1] then F−1(U) ∼ F . [Hint: F is always right continuous, that is,
F (t+ an) ↓ F (t) for all an ↓ 0.]

(b) Describe the steps taken by the Gibbs sampler to generate approximate samples
from a bivariate density fXY : R2 → [0,∞). Writing (Y1, X1), (Y2, X2), . . . for the Markov
chain generated by the algorithm, show that fXY is stationary for its transition kernel.

(c) Let n be an even number. Consider a Bayesian model

Z1, . . . , Zn |µ, ω
i.i.d.∼ N(µ, ω−1),

with improper prior density π(µ, ω) = λe−λω, ω > 0, i.e. an Exp(λ) density for ω and a
flat prior on µ. Explain how you can generate approximate samples from the posterior
distribution Π(µ, ω |Z1, . . . , Zn) if you have ways of generating independent samples from
U [0, 1] and N(0, 1). [You may assume Π(µ, ω |Z1, . . . , Zn) has a well-defined density.]

[Hint: Recall that a Gamma(m,λ) distribution has density f(y) ∝ ym−1e−λy.

Moreover if m ∈ N and Z1, . . . , Zm
i.i.d.∼ Exp(λ), then

∑m
i=1 Zi ∼ Gamma(m,λ).]
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29K Stochastic Financial Models
Let f be a smooth function that grows slowly enough so that all the integrands in

this question are integrable.

(a) Let Z ∼ N(0, 1). Show that

1

2

∫ t

0
E[f ′′(

√
sZ)]ds = E[f(

√
tZ)]− f(0)

for all t ⩾ 0.

(b) What does it mean to say a stochastic process is a Brownian motion?

(c) Let (Wt)t⩾0 be a Brownian motion and f be a function satisfying the assumptions
of part (a). Define a process (Mt)t⩾0 by

Mt = f(Wt)−
1

2

∫ t

0
f ′′(Ws)ds.

Show that (Mt)t⩾0 is a martingale with respect to the filtration generated by (Wt)t⩾0.

(d) Let (Wt)t⩾0 be a continuous process with W0 = 0 such that for every c ∈ R the
process (Mt)⩾0 is a martingale with respect to the filtration generated by (Wt)t⩾0, where

Mt = ecWt − c2

2

∫ t

0
ecWsds.

Show that (Wt)t⩾0 is a Brownian motion. [Hint: You may wish to compute the conditional
moment generating function of the increment Wt −Ws.]
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30L Mathematics of Machine Learning
Fix s > 0. Let S ⊆ Rd×d be the convex set of symmetric, positive semidefinite

matrices with eigenvalues λ1 ⩾ λ2 ⩾ . . . ⩾ λd ⩾ 0 satisfying
∑d

i=1 λi ⩽ s. For any
symmetric matrixM ∈ Rd×d, the projection π(M) ofM onto S is defined as the minimiser
of Tr((M − Z)T (M − Z)) over Z ∈ S.

(a) Let M ∈ Rd×d be symmetric. Show that if Π ∈ Rd×d satisfies

Tr((M −Π)T (Z −Π)) ⩽ 0 for all Z ∈ S,

then Π is the projection π(M) of M onto S. [Hint: The function (A,B) 7→ Tr(ATB) =∑
i,j AijBij is an inner-product.]

(b) Now suppose that M /∈ S is positive semidefinite, with eigenvalues and
eigenvectors (µi, vi) for i = 1, . . . , d. Using part (a), or otherwise, show that

π(M) =

d∑
i=1

max(0, µi − ρ)viv
T
i ,

where ρ > 0 is such that
∑d

i=1max(0, µi − ρ) = s. [Hint: By von Neumann’s trace
inequality, if A,B ∈ Rd×d are symmetric with eigenvalues α1 ⩾ α2 ⩾ . . . ⩾ αd ⩾ 0 and
β1 ⩾ β2 ⩾ . . . ,⩾ βd ⩾ 0, respectively, then |Tr(AB)| ⩽

∑d
i=1 αiβi.]

(c) Consider i.i.d. random variables (X1, Y1), . . . , (Xn, Yn) taking values in {x ∈ Rd :
∥x∥2 ⩽ C} × {−1, 1}. Let M (1) = 0 ∈ Rd×d, and iteratively define, for a step size η > 0
and iteration i = 1, . . . , k − 1,

gi = − 1

n

n∑
j=1

YjXjX
T
j

exp(−YjXT
j M

(i)Xj)

1 + exp(−YjXT
j M

(i)Xj)
,

M (i+1) = π(M (i) − ηgi).

Let M̄ = 1
k

∑k
i=1M

(i). The function h̄ : x 7→ xT M̄x approximates an empirical risk

minimiser ĥ over a certain hypothesis class H with a certain loss function ϕ. Give explicit
forms for H and ϕ.

Carefully quoting any necessary result from the course, show that, for a choice of
step size η which you must specify,

R̂ϕ(h̄)− R̂ϕ(ĥ) ⩽
2sC2

√
k
.
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31D Asymptotic Methods
(a) Consider the function

U(x) =

∫ ∞

0

e−xt

1 + t
dt,

where x is real and positive. Use Watson’s lemma to show U(x) ∼
∑∞

n=0 anx
−n−1 as

x→ ∞, where you should determine the coefficients an.

(b) Show that U is a solution to the differential equation

xy′′(x) + (1− x)y′(x)− y(x) = 0, (†)

for real positive x.

(c) By a suitable transformation, rewrite equation (†) as

v′′(x)− 1
4

(
1 +Ax−1 +Bx−2

)
v(x) = 0, (⋆)

where A and B are constants you need to find. Determine that positive infinity is an
irregular singular point of this equation.

(d) Consider Liouville-Green solutions to equation (⋆) of the form v(x) = eS(x) with
S′(x) ∼

∑∞
n=0 bnx

−n as x → ∞. Calculate terms up to, and including, order x−1 in the
expansion of S. Find the associated asymptotic expansion of y, and compare with your
solution from part (a). What is the leading order asymptotic approximation of the other
solution to equation (†) as x→ ∞?
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32A Dynamical Systems
Define what it means for a map F : I → I ⊂ R to be chaotic according to Devaney.

Show that the sawtooth map,

F (x) = 2x [mod 1],

satisfies this definition for x ∈ [0, 1).

(a) In the following use binary representation to describe the action of F .

(i) Give a value for x that produces a chaotic sequence.

(ii) Show that there is only one fixed point of F .

(iii) Find all 2-cycles and 4-cycles of F and express them as fractions.

(b) Now consider Fn(x), the map F applied n times.

(i) Show that Fn(x) = 2nx [mod 1].

(ii) Use part (b)(i) to determine the number of fixed points of Fn. Explain how
this is consistent with your answers in part (a)(iii).

(iii) Hence show that the number of 2k cycles of F is 22
k − 22

k−1
when k ⩾ 1.

[Cycles starting a different points count as different cycles.]
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33C Principles of Quantum Mechanics
(a) Consider the commutators [Li, Xj ] and [Li, Pj ] between orbital angular mo-

mentum and the position and momentum operators. Write L in terms of X and P and
use the canonical commutation relations between position and momentum to determine
these commutators.

(b) Express L ·L in the form c1X ·P+ c2(X ·X)(P ·P)+ c3(X ·P)(X ·P) where c1,
c2, and c3 are constants you should determine. Hence, by expressing X and P as operators
acting on wavefunctions, determine the relation between L ·L and the spherical Laplacian
∇2

S2 . [Hint: recall that ∇2 = ∂2r + (2/r)∂r + r−2∇2
S2 .]

(c) Consider the hydrogen atom and neglect the spin of the electron. Give a basis
that spans the degenerate energy subspace corresponding to the first excited state (n = 2
in the usual labelling). Focussing exclusively on this subspace, consider the following two
scenarios.

(i) The Hamiltonian is perturbed by ∆H = gL · L where g is a constant.
Compute the new energy eigenstates and eigenvalues exactly.

(ii) The Hamiltonian is perturbed by ∆H = E(t)X3 +B(t)P3, where E(t) and
B(t) are time-dependent functions. Determine which matrix elements of
∆H must vanish using the result for the commutators [L3, X3] and [L3, P3]
and the transformation of X3 and P3 under parity. Now define

z(t) := E(t)⟨2, 0, 0|X3|2, 1, 0⟩+B(t)⟨2, 0, 0|P3|2, 1, 0⟩ ∈ C

and assume z(t) = c eiωt/ℏ for some real constants c and ω. Find an
exact solution of the Schrödinger equation given an initial state of the form
A0|2, 0, 0⟩+A1|2, 1, 0⟩ where A0, A1 ∈ C.

Part II, Paper 4



25

34B Applications of Quantum Mechanics
Consider a particle of massm and electric charge e under the influence of a magnetic

field B and a periodic potential. In these circumstances, the Hamiltonian is

H =
1

2m
[p− eA(x)]2 + V (x) .

Here p = −iℏ∇ is the canonical momentum and V (x) is a periodic potential dictated by
the lattice Λ, that is, V (x) = V (x+ r) for all r ∈ Λ. The magnetic field B is constant and
we adopt the gauge

A(x) =
1

2
B× x .

(a) Evaluate the commutators

[pi + eAi, pj − eAj ] and [pi + eAi, pj + eAj ] .

(b) The translation operator is defined as Tr = eir·p/ℏ. Show that Tr does not
commute with H in the presence of a magnetic field.

In the presence of a magnetic field, it is useful to introduce the magnetic translation
operator, defined as

Tr = exp

{
i

ℏ
r · [p+ eA(x)]

}
.

Show how Tr acts on functions, and show that Tr commutes with the Hamiltonian.

(c) Show that

TrTr′ = exp

[
ie

ℏ
(r× r′) ·B

]
Tr′Tr .

The magnetic flux through a cell of the lattice is defined as Φ = B · (r× r′). Under what
condition on Φ do the magnetic translations form an abelian group?

[Hint: you may use, without proof, that eMeN = eM+N+ 1
2
[M,N] if M and N commute

with [M,N].]
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35C Statistical Physics
(a) Define the latent heat L between the gas and liquid phases of a substance.

Starting with the Gibbs free energy, derive the Clausius–Clapeyron relation for the first-
order phase transition in the (T, p) plane

dp

dT
=

L

T (Vgas − Vliq)
.

What happens to L at the critical point?

(b) Consider a chain of N spin-1 atoms in an external magnetic field B, each with
Hamiltonian

H = −µBsz ,

where µ is a constant, and sz ∈ {−1, 0, 1}. Suppose that the spin chain is in a canonical
ensemble with inverse temperature β. Calculate the free energy F and the heat capacity
C. What is the high-temperature limit of −βF and C?

(c) Consider the same system as in part (b), but now suppose that the sign of the
external magnetic field B is instantly reversed by an experimenter. What happens to each
of β, F , and C?

Explain why the resulting system cannot be in thermal equilibrium with any gas.
If the system is coupled to a gas, in which direction will heat flow? Your answers should
make reference to the appropriate law(s) of thermodynamics.

Part II, Paper 4



27

36B Electrodynamics
(a) State Maxwell’s equations for the fields E, H, D = ϵE and B = µH in a

linear dielectric medium with electric and magnetic polarisation constants ϵ and µ. You
may assume the absence of free charges and currents. Show explicitly that Maxwell’s
equations admit plane-wave solutions propagating with speed v = 1/

√
ϵµ and determine

the magnetic polarisation vector B0 in terms of the corresponding electric polarisation
vector E0 and the wave vector k.

(b) Consider two such media, having distinct values ϵ+ > ϵ− of the electric
polarisation constant, filling the regions x > 0 and x < 0 respectively. The two media are
assumed to share a common value of µ. Write down, with brief justification, boundary
conditions for the components of the fields tangent and normal to the interface plane
x = 0. You should state clearly which field components are continuous and which are
discontinuous.

(c) Suppose an electromagnetic wave is incident from the region x < 0 resulting
in a transmitted wave in the region x > 0 and also a reflected wave for x < 0. The
angles of incidence, reflection and transmission are denoted θI , θR and θT respectively. By
constructing a corresponding solution of Maxwell’s equations, derive the law of reflection
θI = θR and Snell’s law of refraction, n− sin θI = n+ sin θT , where n± are the indices of
refraction of the two media in question.

(d) The incident, reflected and transmitted waves have polarisation vectors EI ,
ER and ET respectively. In the case that these vectors are all normal to the plane of
incidence (the plane spanned by the incident and reflected wave vectors), determine the
ratio |ER|/|EI | as a function of θI and show that it is always non-zero for 0 ⩽ θI ⩽ π/2.
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37E General Relativity

The metric gαβ for a four-dimensional spacetime satisfies the Einstein equations

Rµν −
1

2
gµνR = κTµν ,

where Rµν and R are the Ricci tensor and Ricci scalar, Tµν is the energy-momentum
tensor, and κ is a constant. We use units where c = 1 and assume throughout that
gαβ = ηαβ + hαβ where ηαβ = diag(−1, 1, 1, 1) is the Minkowski metric in Cartesian
coordinates and hαβ and its derivatives are small. Then the Riemann tensor is given by

Rµναβ =
1

2
(hµβ, να − hνβ, µα − hµα, νβ + hνα, µβ ) ,

to first order in small quantities.

(a) Let x0 = t and xi (i = 1, 2, 3) denote the Cartesian coordinates. Assume both
that (i) T00 = ρ is the mass density, where κρ is small, and all other components of the
energy-momentum tensor are negligible, and (ii) the metric is almost static, meaning that
derivatives of hαβ with respect to t are negligible. Find R00, working to first order in all
small quantities, and hence show that

−∇2h00 = κρ where ∇2 = δij∂i∂j . (†)

(b) A massive particle moves non-relativistically in the spacetime of part (a), with
vi = dxi/dt small. Starting from the geodesic equations, show that

dvi

dt
=

1

2
δij∂jh00 , (⋆)

working to first order in both vi and hαβ. [You may quote the formula for the Levi-Civita
connection Γ µ

αβ.]

By comparing equations (†) and (⋆) with the corresponding Newtonian equations,
express h00 and κ in terms of the Newtonian gravitational potential Φ and Newton’s
constant G, where ∇2Φ = 4πGρ.

(c) Consider a point massM at the origin r = 0, where r2 = δijx
ixj , in an otherwise

vacuum spacetime. Write down the Newtonian potential Φ for this point mass. Suppose
that

hij = f(r)xixj ,

for some function f(r), where indices i, j = 1, 2, 3 are raised and lowered using δij . By
considering the Ricci scalar, or otherwise, find a differential equation for f(r) and obtain
the general solution for r > 0.

[You may use, without proof, the identities

∂i∂i[ r
2f(r) ] = r2f ′′ + 6rf ′ + 6f and ∂i∂j [xixjf(r) ] = r2f ′′ + 8rf ′ + 12f ,

where the summation convention applies to repeated indices of type i, j = 1, 2, 3 .]
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38D Fluid Dynamics
(a) Consider the incompressible flow of a Newtonian fluid with constant dynamic

viscosity µ and density ρ subject to a conservative body force f = −∇ψ. Derive the
equation for the rate of change of kinetic energy of the fluid in a domain D with boundary
∂D in the form

d

dt

∫
D

1
2ρ|u|

2 dV +

∫
∂D

1
2ρ|u|

2u · n dS =

∫
D
u · f dV +

∫
∂D

u · σ · n dS − 2µ

∫
D
e : e dV,

where n is the unit normal vector directed out of the boundary ∂D, σ is the stress tensor
and e is the rate-of-strain tensor. Give the physical interpretation of each term in this
integral equation.

(b) Small-amplitude, free-surface waves on deep water occupying −∞ < z <
η(x, t) = A exp(ikx− iωt) can be described by a velocity potential

ϕ = B exp(kz) exp(ikx− iωt),

where A, B and k are constants, g is the gravitational acceleration, ω2 = gk and real parts
of complex quantities may be assumed. Determine B in terms of A, ω and k.

Assume now that the amplitude A is slowly varying, so A can be treated as constant
over one period of oscillation. Determine the mean rate of dissipation averaged over a
period of oscillation. Given that the total mean energy is 1

2ρg|A|
2, determine the slow

rate of decay of the wave amplitude.

[Hint: The mean over a period of the product of the real part of periodic complex
functions F and G is the real part of 1

2FG
∗.]

39A Waves
A perfect (but unusual) gas occupies a tube that lies parallel to the x-axis. The

gas is initially at rest, with density ρ0, pressure p0, and specific heat ratio γ = 3, and
occupies the region x > 0. At times t > 0, a piston, initially at x = 0, is pushed into the
gas at a constant speed u1. A shock wave then propagates at a constant speed V into the
undisturbed gas ahead of the piston. Downstream of the shock, i.e. in the region between
the piston and the shock, the density is ρ1 > ρ0 and the pressure is p1 > p0.

(a) Transform into a frame where the shock is at rest and write down the appropriate
expressions for conservation of mass, momentum and energy across the shock.

(b) Determine the ratio ρ1/ρ0 when the shock moves three times as fast as the
piston, i.e. when u1 = V/3.

(c) Determine the corresponding ratio p1/p0 when u1 = V/3.

(d) Express V in terms of p0 and ρ0 when u1 = V/3.

[You may assume that the internal energy per unit mass of perfect gas is p/[ρ(γ−1)].]
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40D Numerical Analysis
(a) State and prove the Householder-John theorem.

(b) Define the Jacobi method for solving a system Ax = b, with A ∈ Rn×n and
b ∈ Rn. Show that if A is a symmetric, positive-definite, tridiagonal matrix,

A =



a1 b1 0 · · · 0

b1 a2 b2
. . .

...

0 b2 a3
. . . 0

...
. . .

. . .
. . . bn−1

0 · · · 0 bn−1 an


,

then the Jacobi method converges.

[You may use without proof general convergence results of iterative methods for linear
systems based on the spectral radius, provided they are clearly stated.]

END OF PAPER
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