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SECTION I

1G Number Theory
(a) Let f(x, y), g(x, y) be binary quadratic forms. Define what it means for f and

g to be equivalent.

(b) A binary quadratic form f(x, y) = ax2 + bxy + cy2 is said to be primitive if
gcd(a, b, c) = 1 (i.e. there is no prime number p dividing each of a, b, and c). Show that
if f and g are equivalent, then f is primitive if and only if g is primitive.

(c) Compute the number of equivalence classes of primitive, positive definite binary
quadratic forms of discriminant −80.

2I Topics in Analysis
State Runge’s theorem about the uniform approximation of holomorphic functions

by polynomials.

Explain how to explicitly construct a sequence of polynomials converging uniformly
to 1/z on the semicircle {z : |z| = 1, Re z ⩽ 0}.

Show that there exists a sequence of polynomials Pn(z) such that

Pn(z) →


1 if |z| < 1 and Re z > 0,

0 if |z| < 1 and Re z = 0,

−1 if |z| < 1 and Re z < 0

pointwise as n→ ∞.

3K Coding & Cryptography
Explain what is meant by a Bose-Ray Chaudhuri-Hocquenghem (BCH) code with

design distance δ. Prove that, for such a code, the minimum distance between codewords
is at least δ. [Results about the Vandermonde determinant may be quoted without proof
provided they are clearly stated.]

How many errors will the code detect? How many errors will it correct? Justify
your answers.

Part II, Paper 3
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4F Automata & Formal Languages
(a) The following register machines M and N given explicitly by their programs

compute characteristic functions, i.e., fM,1 = χA and fN,1 = χB. Determine A and B.
Justify your answer.

M N
qS 7→ ?ε(0, q1, q0) qS 7→ ?0(0, q3, q0)
q0 7→ −(0, q2, q0) q0 7→ −(0, q2, q0)
q1 7→ +1(0, qH) q1 7→ +1(0, qH)
q2 7→ +0(0, qH) q2 7→ +0(0, qH)

q3 7→ −(0, q1, q3)
qH 7→ ?ε(0, qH, qH) qH 7→ ?ε(0, qH, qH)

(b) By modifying N or otherwise, give the explicit program of a register machine
that computes the characteristic function of the set {w1 ; w ∈ B}. Justify your answer.

(c) Suppose you are given the program of a register machine that computes the
characteristic function of a set X. Describe how to explicitly modify the given program
in order to obtain the program of a register machine that computes the characteristic
function of the complement B\X. Justify your answer.

5K Statistical Modelling
Define the generalized linear model in its most general form as introduced in the

lectures, which should include a link function, a dispersion parameter, and known weights
on the data points. Your answer should clearly describe the mathematical assumptions on
different components of the model. Write down the log-likelihood function of this model
(up to an additive constant).

What is the canonical link function for Poisson generalized linear models? Justify
your answer.

6A Mathematical Biology
A population n(t) is modelled by the Malthusian delay differential equation

dn

dt
(t) = r n(t− τ) ,

where r and τ > 0 are constants.

(a) Give a biological interpretation of the delay time τ .

(b) Suppose that n(t) = 1 for t ∈ [−τ, 0]. Show that n(t) = rt + 1 for t ∈ [0, τ ].
Determine n(t) for t ∈ [τ, 2τ ].

(c) Show that the delay differential equation admits a periodic solution when
rτ = −π/2. Why is this solution not appropriate for describing a population?

Part II, Paper 3 [TURN OVER]



4

7E Further Complex Methods
The beta function is defined by

B(p, q) =

∫ 1

0
(1− t)p−1 tq−1 dt,

for Re (p) > 0 and Re (q) > 0.

(a) By writing Γ(z)2 as a double integral, show that for Re (z) > 0,

Γ(z)2 = B(z, z)Γ(2z) ,

where Γ(z) denotes the gamma function. [Hint: You may find the transformation
(s, t) → (r, u), given by t = ru, s = r(1− u), helpful.]

(b) Deduce that B(z, z) ∼ 2/z as z → 0 with Re (z) > 0.

8B Classical Dynamics
Let C be a solid cone of height l with circular cross-section of radius R at the base.

(The height is the distance between the base and the vertex along the axis of symmetry.)
Denote the axis of symmetry by e3, which is directed from the vertex of C to its base. The
cone has uniform density ρ, so that the total mass is M = 1

3πR
2lρ.

The principal moments of inertia of C with respect to its centre of mass are

ICM
1 = ICM

2 =
1

80
πR2l(4R2 + l2)ρ and ICM

3 =
1

10
R4lρ .

Using standard Euler angles (ψ, θ, ϕ) to describe the orientation of C, the angular velocity
has components

ω = (ψ̇ + cos θ ϕ̇)e3 + (cosψ sin θ ϕ̇− sinψ θ̇)e2 + (sinψ sin θ ϕ̇+ cosψ θ̇)e1

with respect to the principal axes {e1, e2, e3}.

(a) Compute the centre of mass of C. State the parallel axis theorem. Find the
principal moments of inertia of C about its vertex.

(b) Let the vertex of C be fixed. Using the formulae for the angular velocity with
respect to the principal axes given above, write down the Lagrangian for the dynamics of
C, taking the magnitude of downward gravitational acceleration g to be constant. Identify
any ignorable (that is to say, cyclic) coordinates, and find the corresponding conserved
quantities. Obtain the Hamiltonian for the system.

(c) Find a Hamiltonian system on a two-dimensional phase space by reducing the
number of degrees of freedom by means of the ignorable coordinates you found in part (b).
Show that the configuration in which e3 is oriented vertically upward is an equilibrium
which is stable if the angular momentum about this axis is sufficiently large.
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9E Cosmology
The equation governing the evolution of density-perturbation modes δ(k, τ) in

conformal time τ is

δ′′(k, τ) +H(τ) δ′(k, τ)− 3

2
ΩM (τ)H(τ)2δ(k, τ) = 0 , (†)

where a prime denotes ∂
∂τ , H(τ) = a′/a, a is the scale factor, ΩM is the density of non-

relativistic matter relative to the total density, and k is the comoving wavevector.

In the following, we consider a flat, matter-dominated universe after equal matter-
radiation (τ ⩾ τeq), for which you may assume that ΩM ≈ 1 and a(τ) = (τ/τ0)

2, where τ0
is the conformal time today.

(a) By seeking a power-law solution of the form δ = τβ, show that the general
solution of equation (†) for the matter-dominated era (τeq ⩽ τ ⩽ τ0) takes the form

δ(k, τ) = A(k)τ2 +B(k)τ−3 , (∗)

where A(k), B(k) are arbitrary functions.

(b) Show that a mode with physical wavelength λ(τ) = 2πa(τ)/k, corresponding
to the comoving wavenumber k = |k|, crosses inside the cosmological horizon at time
τH = 2π/(k c). Now consider a perturbation mode δ(keq, τ) with wavevector keq that
crosses inside the cosmological horizon at τH = τeq, that is, at time of equal matter-
radiation. Using equation (∗), show that the linear growth of this perturbation mode is
given today by

Deq
..=

δ(keq, τ0)

δ(keq, τeq)
=

a(τ0)

a(τeq)
.

(c) Assume that for each wavevector k, the amplitude of the corresponding mode
at its horizon crossing time τH is given by |δ(k, τH)| = τ2H Â k1/2 with constant Â. Show
that the power spectrum today takes the form

|δ(k, τ0)|2 =
C

k4eq
k , keq ⩽ k ⩽ k0 ,

where the amplitude C should be specified in terms of Â and Deq. Here, k0 is the
wavenumber of a mode crossing inside the cosmological horizon at τ0.
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10C Quantum Information and Computation
Suppose you have a search space of dimension 4, with its elements encoded in binary

{00, 01, 10, 11}. You are searching for the element x0 = 11.

(a) Construct the circuit implementing the quantum oracle Uf : |x⟩ |y⟩ → |x⟩ |y ⊕ f(x)⟩,
for the function f , where f(x) = 1 if x = x0, otherwise f(x) = 0.

(b) Consider the following quantum circuit:

|0⟩

|0⟩

|1⟩ |−⟩

H

Uf

H X X H
|ψ⟩

H H X X H

H

A

(i) Prove that the boxed part, A, of the circuit implements the operator
I0 = I − 2|00⟩⟨00|, by showing that A |x1x2⟩ |−⟩ = I0 |x1x2⟩ |−⟩ for
x1, x2 ∈ {0, 1}. Hence, justify that the entire circuit implements the
initial Hadamard transformations and a single Grover iteration −Q =
H⊗2I0H

⊗2Ix0 , where Ix0 = I − 2 |x0⟩ ⟨x0| .

(ii) Compute the output state |ψ⟩.

(iii) What happens when we measure |ψ⟩ in the computational basis?

(iv) How many times do we have to repeat −Q to obtain x0 in this example?

Part II, Paper 3
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SECTION II

11G Number Theory
(a) Let θ ∈ R be an irrational number with continued fraction expansion θ =

[a0, a1, a2, . . . ]. Define the convergents pn, qn of θ. Show that if γ > 0, then there is a
formula for each n ⩾ 1:

[a0, a1, a2, . . . , an, γ] =
pnγ + pn−1

qnγ + qn−1
.

(b) Compute the continued fraction expansion of θ =
√
11.

(c) Let pn, qn be the convergents of θ =
√
11. Show that if n ⩾ 2 is even, then

p2n − 11q2n = −2.
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12F Automata & Formal Languages
(a) Let D = (Σ, Q, δ, q0, F ) be a deterministic automaton.

(i) Define what it means that a state q ∈ Q is inaccessible.

(ii) Define what it means that two states q, q′ ∈ Q are indistinguishable.

(iii) Define what it means that the automaton D is irreducible.

(iv) State the relationship between irreducibility and the size of the smallest
automaton for a regular language.

(b) Let N = (Σ, Q,∆, q0, F ) be a non-deterministic automaton and w = a0...an−1 ∈
W. We say that a sequence (p0, ..., pn) ∈ Qn+1 is a witnessing sequence for w if for all
i < n, we have pi+1 ∈ ∆(pi, ai). We say that it starts with q if p0 = q and that it ends
with q′ if pn = q′.

(i) Let q ∈ Q and w ∈ W. Define ∆̂(q, w) and what it means that w ∈ L(N).

(ii) Describe the subset construction that takes a non-deterministic automaton
N and constructs a deterministic automaton D such that L(D) = L(N).
[You should provide the construction of D but you do not need to prove
that L(D) = L(N).]

(iii) Prove that for q, q′ ∈ Q and w ∈ W, we have that q′ ∈ ∆̂(q, w) if and only
if there is a witnessing sequence for w that starts with q and ends with q′.

(c) We say that a non-deterministic automaton N = (Σ, Q,∆, q0, F ) is a Brzozowski
automaton if

(Br1) F = {q∗} is a singleton;

(Br2) for every q ∈ Q there is a w ∈ W and a witnessing sequence for w starting
from q and ending in q∗;

(Br3) for every w ∈ W there is a unique q ∈ Q such that there is a witnessing
sequence for w starting from q and ending in q∗.

LetN be a Brzozowski automaton, D be the result of the subset construction applied
to N , and D′ be the automaton D with all inaccessible states removed. Show that D′ is
an irreducible automaton such that L(D′) = L(N).

[In the entire question, you may use any results proved in the lectures, provided that
you state them clearly.]
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13A Mathematical Biology
A discrete population n = 0, 1, 2, . . . undergoes a stochastic birth-death process,

with birth rate α + βn and death rate γn(n − 1), where α, β, and γ are all positive
constants. Let Pn(t) be the probability that the population is n at time t.

(a) Write down the master equation for Pn(t).

(b) Determine a differential equation for the expectation value ⟨n(t)⟩.

(c) Assume that the probability distribution can be approximated by the Poisson
distribution Pn(t) = e−λ(t)λ(t)n/n! for some λ(t). Compute ⟨n⟩ and ⟨n(n − 1)⟩ in terms
of λ(t). Write down a differential equation for λ(t) and determine the value of ⟨n(t)⟩ as
t→ ∞.

(d) Treating n(t) as continuous, and renaming it x(t), the Fokker-Planck equation
for the probability P (x, t) takes the form

∂P

∂t
= −∂(uP )

∂x
+
∂2(DP )

∂x2
.

What are the functions u(x) and D(x) for the birth-death process above? Show that
d⟨x(t)⟩/dt is determined by the expectation value of u(x) and that the resulting differential
equation coincides with the equation for ⟨n(t)⟩ computed in part (b) above.
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14E Cosmology
(a) Consider non-relativistic particles of mass m in equilibrium at temperature T

with chemical potential µ. Assuming kBT ≪ mc2 and µ ≪ mc2, show that both Bose-
Einstein and Fermi-Dirac distributions reduce to the Maxwell-Boltzmann distribution

n =

(
4πgs
h3

)∫ ∞

0
dp p2 e−[E(p)−µ]/(kBT ) .

Using
∫∞
0 dp e−p2/σ2

= 1
2σ

√
π, show that for E(p) = mc2 + p2/(2m),

n = gs

(
2πmkBT

h2

) 3
2

e(µ−mc2)/(kBT ) . (†)

(b) The recombination of free electrons in the early universe is significantly affected
by the abundance of helium-4 in the universe, which, in terms of the baryon density nB,
is given by the parameter

Yp =
mHe

mH

nHe

nB
= 4

nHe

nB
≈ 1

4
.

In the following we neglect doubly-ionized helium (nHe++ ≈ 0). Then the recombination
of hydrogen and helium proceeds with ionization energies IH and IHe according to

H+ + e− ↔ H0 + γ , IH = (mH+ +me −mH0) c2 ≈ 13.6 eV ,

He+ + e− ↔ He0 + γ , IHe = (mHe+ +me −mHe0) c
2 ≈ 25.6 eV .

(i) Using these equilibrium processes and equation (†) together with ge = 2,
gH+/gH0 = 1

2 and gHe+/gHe0 =1, show that

ne nH+

nH0

=

(
2πme kBT

h2

)3/2

e−IH/(kBT ) ,

ne nHe+

nHe0
= 2

(
2πme kBT

h2

)3/2

e−IHe/(kBT ) .

(ii) The hydrogen and helium ionization fractions are XH+
..= nH+/nH and

XHe+
..= nHe+/nHe (with nH = nH0 + nH+ , nHe = nHe0 + nHe+). Show that

the free electron density is

F ≡ ne
nB

= αXH+ + β XHe+ ,

where α and β should be specified in terms of Yp.

(iii) Given the relation nB = η nγ = η
[
16πζ(3)/(hc)3

]
(kBT )

3 (with baryon-to-
photon ratio η), use the fractional densities XH+ , XHe+ and F to obtain a
closed set of two equations that describes recombination for both hydrogen
and helium. Verify that taking the Yp → 0 limit yields the usual expression
for Saha’s equation with only hydrogen.
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15C Quantum Information and Computation
(a) Given two equally likely states |α0⟩ and |α1⟩, show that the probability Ps of

correctly distinguishing between the states using a quantum measurement is bounded as
follows,

Ps ⩽
1

2

(
1 +

√
1− |⟨α0|α1⟩|2

)
,

and that the bound is tight. Consequently, show that |α0⟩ and |α1⟩ can be perfectly
distinguished, that is, Ps = 1, if and only if they are orthogonal.

(b) Consider the task of distinguishing between two equally likely unitary gates U1

and U2. This is accomplished by choosing some state |ψ⟩ and then distinguishing between
the outputs U1 |ψ⟩ and U2 |ψ⟩ as in part (a). Let us define the numerical range of a unitary
U as the following subset of the complex plane

N(U) := {⟨ψ|U |ψ⟩ : ||ψ|| = 1} ⊆ C .

Show that U1 and U2 can be perfectly distinguished if and only if 0 ∈ N(U †
2U1).

(c) Denote the spectrum (the set of all eigenvalues) of a unitary U by specU . Show
that the spectrum of any unitary matrix U is contained in the unit circle in the complex
plane: specU ⊆ {λ ∈ C : |λ| = 1}.

(d) The numerical range of a unitary U is equal to the convex hull of its eigenvalues;
that is, if specU = {λ1, λ2, . . . , λn}, we have

N(U) = conv(specU) =

{
n∑

i=1

piλi : pi ⩾ 0,
∑
i

pi = 1

}
.

Use this to draw a sketch of the numerical range of the unitary matrix

U =

1 0 0

0 eiπ/4 0

0 0 ei3π/4

 .
(e) The spectral arc length θ(U) ∈ [0, 2π) of a unitary U is the length of the smallest

arc (in radians) that contains all the eigenvalues of U on the unit circle. Show by means
of two figures that for the unitary phase gate

Uγ =

[
1 0
0 eiγ

]
,

where γ ∈ [0, 2π), the spectral arc length is given by

θ(Uγ) =

{
γ, if γ < π

2π − γ, if γ ⩾ π .

(f) Using parts (b)–(e), justify that two equally likely unitary gates U1 and U2 can

be perfectly distinguished if and only if θ(U †
2U1) ⩾ π.
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16H Logic and Set Theory
Let x be a set. A choice function for subsets of x is a function f : Px\{∅} → x such

that f(y) ∈ y for all non-empty subsets y of x.

(a) Let x be a set and f be a choice function for subsets of x. Use f and recursion
to show that there is an ordinal α and a bijection between α and x. Use this to show that
the axiom of choice implies the well-ordering principle.

(b) Show that the statement “for any two sets x and y, either there is an injection
from x to y or an injection from y to x” implies the axiom of choice.

[You may use Hartogs’s lemma without proof.]

(c) Define the notion of initial ordinal and define ℵα. Show that an ordinal is an
infinite initial ordinal if and only if it has cardinality ℵα for some ordinal α.

Working in ZFC, we write card(x) for the least ordinal α that is in bijection with
x. Let I be a set and {κi : i ∈ I} be initial ordinals. We define

∑
i∈I

κi := card

(⊔
i∈I

κi

)
and

∏
i∈I

κi := card

(∏
i∈I

κi

)
.

(d) Assume that {κi : i ∈ I} and {λi : i ∈ I} are initial ordinals such that for
every i ∈ I, we have κi < λi. Show that

∑
i∈I κi <

∏
i∈I λi.

[Hint: Construct an injection from the disjoint union to the product, and show that
there is no such surjection.]

(e) Using part (d) or otherwise, show that ℵω < ℵℵ0
ω . Deduce that 2ℵ0 ̸= ℵω.

[You may use standard properties of cardinal arithmetic without proof.]

Part II, Paper 3
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17F Graph Theory
(a) What does it mean for a graph G to be Eulerian? If |G| ⩾ 3, state and prove a

necessary and sufficient condition for G to be Eulerian.

Define the line graph L(G) of G. Show that L(G) is Eulerian if G is regular and
connected.

(b) Let G be a connected planar graph with n vertices, e edges and f faces. Prove
that n− e+ f = 2.

The size of a face is the number of edges that form its boundary. Deduce that
e ⩽ g(n− 2)/(g − 2), where g is the smallest size of a face.

(c) Let G be a (not necessarily planar) graph with n vertices and e edges. Suppose
that G is drawn in the plane, but with edges allowed to cross. (The edge xy cannot contain
any vertex except x or y.) Let t(G) be the number of pairs of edges which cross.

(i) Show that t(G) ⩾ e− 3n+ 6.

(ii) Suppose now that e ⩾ 4n. Show that t(G) ⩾ e3/64n2. [Hint: you may
wish to consider a random subset of V (G) containing each vertex of G
independently with probability 4n/e.]

18J Galois Theory
(a) List the transitive subgroups of S4.

(b) Let L/K be an extension of fields of characteristic not equal to 2. Suppose that
L = K(

√
a,
√
b) for some a, b ∈ K∗ with a, b, ab ̸∈ (K∗)2. Show that L/K is Galois of

degree 4, compute its Galois group, and draw the lattice of intermediate fields.

(c) Compute the minimal polynomials of α =
√

3 +
√
3, β =

√
3−

√
3, γ =√

3 +
√
6, and δ =

√
3−

√
6 over Q. Show that the hypotheses of part (b) are satisfied

by Q(α, β)/Q(
√
3) and Q(γ, δ)/Q(

√
6).

(d) Deduce that Gal(Q(α, β)/Q) ∼= D8. Draw the lattice of subgroups of D8, and
the lattice of subfields of Q(α, β), writing each field in the form Q(x1, . . . , xm).

[Hint: You may use that α+ β =
√
2γ and α− β =

√
2δ.]
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19J Representation Theory
Let Vn be the vector space of homogeneous polynomials in x, y of degree n over the

complex numbers.

(a) Define the standard action of G = SU2 on Vn.

Write down the matrix by which an element of G acts on V3, with respect to the
standard basis {xiyj : i ⩾ 0, j ⩾ 0, i+ j = 3} of V3.

Define the character of a finite dimensional complex representation V of G and
write down the character of Vn.

(b) Show every finite dimensional complex representation V of G is isomorphic to
V ∗.

(c) Show that for every irreducible finite dimensional complex representation V of G
the action of G on V ⊗V factors through G/{±I}. Is this true for complex representations
which are not irreducible?

(d) Decompose Vn ⊗ Vn into irreducibles.

(e) For any finite dimensional complex representation V of G, compute the character
of
∧2 V in terms of the character of V .

(f) Decompose
∧2 Vn into irreducibles.

[You must justify or prove your answers. You may use any results from lectures, but
you must quote them carefully. In part (d) you may not just quote the Clebsch–Gordon
formula.]

20F Algebraic Topology
(a) State a version of the Seifert–van Kampen theorem. Let (X,x0) be a based

topological space, and suppose that α : (S1, ∗) → (X,x0) is a based map. Prove that
there is an isomorphism

π1(X ∪α D
2, x0) ∼= π1(X,x0)/⟨⟨[α]⟩⟩.

Use this to construct a connected cell complex Y such that

π1(Y, y0) ∼= ⟨a, b | a2b−3⟩.

[You may assume a description of π1(S
1 ∨ S1, ∗) provided it is clearly stated.]

(b) What does it mean for p : X̃ → X to be a covering space? For the cell complex
Y constructed in part (a), suppose we have a covering space p : Ỹ → Y such that Ỹ is
path-connected, and, for ỹ0 ∈ p−1(y0), we have that p∗π1(Ỹ , ỹ0) is the normal subgroup
of π1(Y, y0) generated by a. Given any y ∈ Y , how many points are in p−1(y)? Give an
explicit description of Ỹ as a cell-complex.
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21I Linear Analysis
(a) State and prove the Ascoli-Arzelà theorem.

(b) Consider a sequence of differentiable functions fn : R → R with

sup
n⩾0

sup
x∈R

(|fn(x)|+ |f ′n(x)|) < +∞.

Show that there exist a subsequence fϕ(n) (where ϕ : N → N is strictly increasing) and a
continuous and bounded function f : R → R such that

∀R > 0, lim
n→∞

sup
|x|⩽R

|fϕ(n)(x)− f(x)| = 0.

Can we conclude that limn→∞ supx∈R |fϕ(n)(x)− f(x)| = 0? Justify your answer.

22H Analysis of Functions
Let dx denote the Lebesgue measure on Rn and L1(Rn) be the space of measurable

functions f : Rn → R such that
∫
Rn |f(x)| dx <∞.

(a) Denote by [f ] = {g ∈ L1(Rn) : f = g almost everywhere} the equivalence classes
for the almost everywhere equality relation, and show that ∥[f ]∥1 =

∫
Rn |f(x)| dx defines

a complete norm on L1(Rn) := {[f ] : f ∈ L1(Rn)}.

[You may use the Riesz-Fischer theorem without proof if clearly stated.]

(b) Let (X, ∥·∥X) be a Banach space such that: (i) the inclusion X ⊂ L1(Rn) holds,
and (ii) the convergence in ∥ · ∥X implies convergence almost everywhere on Rn along a
subsequence.

(i) Show that there exists a constant C > 0 such that ∥x∥1 ⩽ C∥x∥X for all
x ∈ X.

(ii) Must X be complete for ∥ · ∥1? Justify your answer.

[You may use results from Linear Analysis without proof if correctly stated.]
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23G Riemann Surfaces
Given a Riemann surface R and a covering map π : S → R, where S is a connected

Hausdorff topological space, explain how S can be given the structure of a Riemann surface
such that π is an analytic map.

What does it mean to say that S is simply connected? State the uniformisation
theorem and write down the group of analytic automorphisms Aut(R) for each simply
connected Riemann surface R.

If X is a topological space and G is a group of homeomorphisms of X, define what
it means to say that this action of G on X is a covering space action.

If R is the Riemann surface C∞ and H is a subgroup of Aut(R) whose action on R
is a covering space action, show that the quotient R/H is a Hausdorff space.

Give an example of a Riemann surface R and a group G of homeomorphisms of
R whose action is a covering space action but such that the quotient space R/G is not
Hausdorff. Must R/G be Hausdorff if R is simply connected?

24J Algebraic Geometry
In this question, all algebraic varieties are defined over a field k of characteristic

zero. Let V ⊂ Pn be a curve.

Define the degree deg(V ) of V ⊂ Pn, and prove that it is well-defined.

Suppose n < m and let φ : Pn → Pm be the linear embedding

(x0 : · · · : xn) 7→ (x0 : · · · : xn : 0 : · · · : 0).

For a curve V ⊂ Pn, show that the degree of V in Pn agrees with the degree of φ(V ) in
Pm.

Prove that the degree is not an isomorphism invariant by providing an example of
isomorphic curves V1, V2 ⊂ Pn with deg(V1) ̸= deg(V2).

Let S = (x0x2 − x21, x0x3 − x1x2, x1x3 − x22) ⊂ k[x0, x1, x2, x3] and define V = Z(S)
to be the zero locus of S in P3. By considering an affine piece or otherwise, show that
V is a curve in P3, and compute its degree. Prove that there do not exist homogeneous
polynomials F1, . . . , Fr such that V = Z(F1, . . . , Fr) and deg(V ) =

∏r
i=1 deg(Z(Fi)).

Give an example of two irreducible curves in a projective space Pn which have the
same degree but are not isomorphic. [You may use without proof the fact that a smooth
projective curve in P2 of degree d ⩾ 2 has genus g = (d− 1)(d− 2)/2.]
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25I Differential Geometry
(a) Given a surface S (2-manifold) in R3, define the first fundamental form

and express it in a local parametrisation, then define the Gauss map and the second
fundamental form, and express them in a local parametrisation. Define the Gauss
curvature and the mean curvature.

(b) Let s 7→ (Y (s), Z(s)) be a planar curve parametrised by arc-length in the yz-
plane with Y (s) > 0 for all s. The surface S of revolution attained by rotating this curve
about the z-axis is parametrised by ϕ(u, v) = (Y (u) cos v, Y (u) sin v, Z(u)).

(i) Calculate the first fundamental form, the Gauss map and the second
fundamental form in the parametrisation ϕ. Deduce that the Gauss
curvature K is equal to −Y ′′/Y and give an expression for the mean
curvature H in terms of Y and Z.

(ii) Given a curve α : I → S on a surface S parametrised by arc-length, define
what it means for the curve to be a geodesic, the Christoffel symbols, and
the geodesic equations in terms of the Christoffel symbols.

(iii) Given a surface of revolution S with the above parametrisation, α(t) =
ϕ(u(t), v(t)) a curve on S, prove that if α is a geodesic then [Y (u)]2 v̇ is
constant.

26H Probability and Measure
Let (Ω,A,P) be a probability space. We consider in this question real valued random

variables. We recall a ∧ b = min{a, b}.

(a) Show that Xn
(P )−−−→

n→∞
X ⇐⇒ limn→∞ E(|Xn−X|∧1) = 0 and that convergence

in probability implies almost sure convergence along a subsequence.

(b) Show that Xn
(P )−−−→

n→∞
X does not imply almost sure convergence Xn

a.s.−−−→
n→∞

X by

considering a sequence (Xn)n⩾1 of independent real random variables with P(Xn = 0) =
1− 1

n and P(Xn = 1) = 1
n .

(c) Let Xn
(P )−−−→

n→∞
X and suppose that for some 1 < r < +∞, (Xn)n⩾1 is bounded

in Lr. Show that ∀1 ⩽ p < r, Xn
Lp

−−−→
n→∞

X.
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27L Applied Probability
Let (ξi) be a sequence of i.i.d. non-negative random variables with ξ1 having a

probability density function and Eξ1 = 1/λ <∞.

(a) Define the renewal process Nt formed by the sequence (ξi). Assuming the law
of large numbers, show that Nt/t→ λ almost surely as t→ ∞.

Let L(t) denote the length of the renewal interval containing t.

(b) Define what it means for a random variable ξ̂1 to have the size-biased distribution
corresponding to ξ1. If ξ1 has an exponential distribution, show that L(t) converges in
distribution to ξ̂1 as t→ ∞. [Your proof should not use the equilibrium theorem of general
renewal processes.]

(c) For all x, t > 0, prove that P(L(t) ⩾ x) ⩾ P(ξ1 ⩾ x).

28L Principles of Statistics
(a) Consider a Bayesian model X | θ ∼ Pois(θ) where the parameter θ ∈ (0,∞)

has prior distribution π given by θ ∼ Gamma(α, λ) where α, λ > 0. Show that the
posterior distribution θ |X has a Gamma(α+X,λ+1) distribution. [Hint: A Gamma(α, λ)
distribution has density function f(y) = λαyα−1e−λy/Γ(α) for y > 0.]

(b) Consider now a decision problem involving a statistical model {Pθ : θ ∈ Θ} and
loss function L : Θ×Θ → [0,∞).

(i) What is meant by the risk of a decision rule δ : X → Θ? Given a prior
distribution π on Θ, what does it mean for δ to be a π-Bayes estimator?
What does it mean for δ to be minimax?

(ii) Suppose a decision rule δ has constant risk r, and there is a sequence
π1, π2, . . . of priors on θ where, writing rj < ∞ for the πj-Bayes risk of the
πj-Bayes estimator, we have that r = limj→∞ rj . Show that δ is minimax.

(iii) Suppose now that X = R and Θ = (0,∞). Consider the weighted quadratic
loss L(δ(x), θ) = θ−1(θ − δ(x))2 and a prior π for θ. Show that a π-Bayes

rule δπ is given by δπ(x) =
(
E(θ−1 |X = x)

)−1
.

(c) Finally show that in the model X ∼ Pois(θ) where θ ∈ Θ = (0,∞), the decision
rule δ(X) = X is minimax under the loss given in part (b) (iii). [Hint: If Y ∼ Gamma(α, λ)
for α > 1 and λ > 0, then E(Y −1) = λ/(α − 1).] [You may interchange expectations
and limits, that is apply the dominated convergence theorem, in your answer without
justification.]

Part II, Paper 3



19

29K Stochastic Financial Models
Consider the a discrete-time market model with interest rate r and one stock with

time-n price Sn. Suppose S0 > 0 is given and that Sn = Sn−1ξn for all n ⩾ 1, where
the stochastic process (ξn)n⩾1 generates the filtration. Suppose that there are constants
−1 < a < r < b such that the random variable ξn takes values in {1 + a, 1 + b} and that
0 < P(ξn = 1 + b) < 1 for every n ⩾ 1.

(a) Introduce a European call of maturity N and strike K. Use the fundamental
theorem of asset pricing to show that the call has a unique time-0 no-arbitrage price
EC(N,K) of the form

EC(N,K) =
N∑

n=0

w(n,N)

(
S0(1 + a)n(1 + b)N−n −K

)+

where the positive numbers w(n,N) are to be determined in terms of the given constants.

(b) Let EP(N,K) be the unique time-0 no-arbitrage price of a European put of
maturity N and strike K. Show that

EP(N,K) = (1 + r)−NK − S0 + EC(N,K).

(c) Find positive numbers u and v such that

EC(N + 1,K) = u EC

(
N,

K

1 + a

)
+ v EC

(
N,

K

1 + b

)
for all N and K.

(d) A forward start call option is the right, but not the obligation, to buy one share
of the stock at time N for the price λSM , where 0 ⩽ M ⩽ N and λ are given constants.
Let FSC(M,N, λ) be its unique time-0 no-arbitrage price. Determine a strike K such that
the following holds:

FSC(M,N, λ) = EC(N −M,K).
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30D Asymptotic Methods
(a) Consider the function

I(x) =

∫
C
f(z)exϕ(z)dz, (†)

where C is a complex contour, x is real and positive, f and ϕ are complex-valued functions,
ϕ possesses a simple saddle point z0, and f(z0) ̸= 0. Suppose C can be deformed so that
it passes through z0 without changing the value of I(x).

Show that the saddle point’s leading order asymptotic contribution to I is

f(z0)

√
2π

x|ϕ′′(z0)|
exϕ(z0)+iα, as x→ ∞,

where α is the angle of the tangent to the steepest descent curve at z = z0.

[You may quote, without proof, results from Laplace’s method for real integrals.]

(b) The Legendre polynomials can be expressed by the Schläfli integral:

Pn(t) =
1

2n+1πi

∮
C

(z2 − 1)n

(z − t)n+1
dz,

where n is a positive integer, t = cos θ, with 0 < θ < π, and C is any closed anti-clockwise
contour encircling t.

(i) Express Pn(t) in the form

Pn(t) =
1

2n+1πi

∮
C
f(z, t)enϕ(z,t)dz,

for some functions f and ϕ, and show that the saddle points of ϕ are located
at z = z± = e±iθ.

(ii) Show that Arg[ϕ′′(z±)] = ∓(θ+π/2). Hence sketch an appropriate contour
C that passes through z+ and z−, calculating its angle α at each saddle
point.

(iii) Find the leading order asymptotic approximation of Pn(t) as n→ ∞, in the
form

Pn(t) ∼ A cos
(
nθ + 1

2θ −
1
4π
)
,

where you should determine A(θ).
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31A Dynamical Systems
(a) State and prove Dulac’s Theorem. What is the divergence test?

(b) Consider the system

ẋ = µx− y − (x3 + xy2 − λx)(x2 + y2),

ẏ = x+ µy − (y3 + x2y − λy)(x2 + y2),

for a real parameter µ and constant λ > 0.

(i) Show that there is a fixed point at the origin and classify its stability.

(ii) Find how the number of periodic orbits varies with the value of µ and hence
identify two bifurcation points.

[Hint: use polar coordinates (r, θ).]

(iii) Identify the type of bifurcation occurring at the larger value of µ and,
without detailed computation, write down its normal form. Draw the steady
and periodic solutions in a (µ, r) diagram.

(iv) Show that, as µ varies, the locations of the periodic orbits are consistent
with the divergence test.

32D Integrable Systems
(a) Use the Gelfand–Levitan–Marchenko equation

K(x, y) + F (x+ y) +

∫ ∞

x
K(x, z)F (z + y)dz = 0,

with F (x) = β0 exp (8χ
3t− χx) to find the one-soliton solution

u(x, t) = − 2χ2

cosh2 [χ(x− 4χ2t− ϕ)]

to the KdV equation
ut − 6uux + uxxx = 0,

where u = u(x, t). Here β0 and χ are constants, and ϕ is another constant that you should
determine.

[You may use any facts about the inverse scattering transform without proof.]

(b) By considering the operators A†A and AA† where A = ∂x + χ tanh (χx), show
that the Schrödinger operator −∂2x + U with a potential

U(x) = u(x, t = 0, ϕ = 0)

admits only one bound state. Find the corresponding energy level.
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33C Principles of Quantum Mechanics
(a) Write down the Hamiltonian for a two-dimensional quantum harmonic oscillator

with unit mass and frequency. Determine the energy eigenvectors |E⟩ and eigenvalues E
and discuss their degeneracy.

(b) Define the angular momentum operator L and explicitly compute its commut-
ation relations with H. Hence constrain the form of ⟨E|L|E′⟩.

(c) Consider the operators Tij = a†iaj where i, j ∈ {x, y}, and ax and ay are the
annihilation operators in the x and y directions respectively. Compute the commutator
[Tij , Tkl] and hence [Tij , H].

(d) Now consider T a = 1
2σ

a
ijTij for a = 1, 2, 3 where σa are the Pauli matrices

satisfying [σa, σb] = 2iϵabcσ
c. Compute the commutators [T a, T b]. Relate L to the T a.

Using these results and what you know about the representations of the group SU(2),
determine the possible angular momentum eigenvalues L|E, ℓ⟩ = ℓ|E, ℓ⟩ that an energy
eigenvector |E⟩ can have. Compare your result to the degeneracy discussed in part (a).[

Hint: the Pauli matrices are σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

]
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34B Applications of Quantum Mechanics
Consider a system of three atoms arranged on a circle, which can also be viewed as a

one-dimensional crystal with atoms equally spaced by a distance a under periodic bound-
ary conditions. The atoms are labelled 0, 1 and 2, and the wavefunction corresponding to
an electron bound to the n-th atom is denoted by ψn(x). The periodic boundary conditions
imply that ψn is identified with ψn+3.

The atomic Hamiltonian is H0 with H0|ψn⟩ = E0|ψn⟩. The tunnelling between
atomic sites is represented by a potential V , which has matrix elements

⟨ψn|V |ψn⟩ = α ∀ n ,
⟨ψn|V |ψn′⟩ = −A for n ̸= n′ ,

where α and A are real constants and n, n′ = 0, 1, 2. The stationary state of the total
Hamiltonian, H = H0 + V , is denoted by Ψ and can be written as

|Ψ⟩ =

2∑
n=0

cn|ψn⟩ ,

with H|Ψ⟩ = E|Ψ⟩ and cn ∈ C for n = 0, 1, 2.

(a) Assuming ⟨ψn|ψm⟩ = δnm, show that the coefficients (c0, c1, c2) satisfy the linear
equations  E0 + α −A −A

−A E0 + α −A
−A −A E0 + α

 c0
c1
c2

 = E

 c0
c1
c2

 .

Write out explicitly the energy eigenvalues of the system. Show that the possible solutions
for (c0, c1, c2) are

(1, 1, 1) , (1, ω, ω2) , (1, ω2, ω) ,

where ω is a cube root of unity. [Hint: x3−3A2x−2A3 = 0 has a double root at x = −A.]

(b) Interpret these solutions in terms of a wavenumber k and determine the possible
values of k. Write the corresponding eigenvectors |Ψk⟩ in terms of |ψn⟩. What is the
Brillouin zone for this system?

(c) Let ψn(x) = ψ(x− na). Show that, for each value of k, Ψk(x) can be written as

Ψk(x) = uk(x) e
ikx ,

uk(x) =
2∑

n=0

ψ(x− na) e−ik(x−na) .

Check that uk(x+ a) = uk(x). State Bloch’s theorem in one dimension and justify why it
applies to this system.
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35C Statistical Physics
This question concerns a Fermi gas of non-relativistic, non-interacting electrons

confined to a two-dimensional planar sheet with total area A, at chemical potential µ > 0.
Note that the electron has gs = 2 spin states.

(a) Calculate the density of states g(E) of the 1-particle system (including the
numerical coefficient). Write down the Fermi–Dirac distribution.

(b) Suppose the system is at absolute zero (T = 0). Show that the total energy
of the system is Etot = 1

2NEF , where EF is the Fermi energy and N is the number of
electrons. Calculate the degeneracy pressure p.

(c) Show that at finite temperature T > 0, the change in the number of electrons
N relative to the T = 0 state is given by

∆N = X

∫ ∞

−EF

dE′ [sgn(βE′/2)− tanh(βE′/2)
]
,

where E′ = E − EF , sgn(x) = x/|x| is the sign function, and X is a coefficient which
you should determine. Explain why, at low temperatures, ∆N ≈ 0 to a very good
approximation. Work out the corresponding formula for the change of the total energy
∆Etot, and use its scaling with respect to β to show that

∆Etot ∝ T 2.

[You need not work out the constant of proportionality.]
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36B Electrodynamics
Starting from a suitable general solution of Maxwell’s equations, which you may

state without derivation, find the total power P emitted through a large spherical surface
of radius R by a localised source with time-dependent electric dipole moment p(t) in the
dipole approximation,

P ≃ µ0
6πc

|p̈(t−R/c)|2 .

You should state clearly the conditions under which the approximation is valid.

A simple model of a pulsar consists of a solid uniform sphere of mass M and radius
R spinning with angular frequency Ω around an axis ẑ. The body has a time-dependent
magnetic dipole moment p that is inclined at a constant angle α to the z-axis and rotates
according to

p(t) = p0 [sinα cos(Ωt) x̂+ sinα sin(Ωt) ŷ + cosα ẑ] ,

where p0 is a real constant. Calculate the total power P emitted by the pulsar in the
dipole approximation. Assuming that the angular frequency of rotation Ω(t) slowly varies
with time so that energy is conserved, calculate the time taken for this system to lose half
its initial rotational energy E0 due to emission of radiation. [You may assume that the
rotational energy of a solid uniform sphere of radius R and mass M is E = IΩ2/2 with
moment of inertia I = 2MR2/5.]
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37E General Relativity

The Schwarzschild metric, in units with G = c = 1, is given by

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2( dθ2 + sin2 θ dϕ2 ) . (∗)

(a) Show that for a light ray that is radial (dθ= dϕ=0) and ingoing (dr/dt < 0),
for r > 2M the quantity

v = t + r + 2M log
∣∣∣ r

2M
− 1

∣∣∣
is constant.

(b) Express the Schwarzschild metric (∗) in terms of coordinates r, v, θ, ϕ, with v
defined as above for r > 0. What can be deduced about the nature of the metric at
r = 2M?

(c) Determine all possible radial trajectories for light rays for r > 0. For these
solutions, find dt∗/dr as a function of r, where t∗ = v − r, and hence sketch the solutions
in the r-t∗ plane.

(d) Comment on the contrasting behaviour of light rays in the regions r > 2M and
r < 2M and, by considering light cones at representative points, discuss the implications
for the motion of massive particles.

(e) An astronaut Alice (A) sends radial light signals at proper time intervals ∆τA
to an observer Bob (B) who receives them at proper time intervals ∆τB. Alice and Bob
are at rest in the coordinate system t, r, θ, ϕ with rA = 2M + ε, where 0 < ε ≪ M , and
rB ≫M . Find an approximate expression for ∆τB/∆τA and comment on the significance
of your result.
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38D Fluid Dynamics
A steady, two-dimensional, laminar plume (narrow, quasi-vertical flow) rising from

a point source of buoyancy in an otherwise stationary environment can be modelled using
the boundary-layer equations

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ

∂2u

∂y2
+ b(x)δ(y),

∂u

∂x
+
∂v

∂y
= 0,

where u and v are vertical and horizontal velocity components, respectively, with respect to
Cartesian coordinates x vertical and y horizontal, and where δ is the Dirac delta function,
so that b(x) represents a buoyancy force confined to the vertical axis y = 0. The symbols
ρ, µ and p represent the fluid’s density, dynamic viscosity and pressure respectively.

(a) Show that
d

dx

∫ ∞

−∞
ρu2 dy = b(x).

(b) Given that b(x) = Bx−1/5, where B is constant, show that the width of the
plume ∆ and the vertical velocity u scale as

∆ ∼
(
µ2

ρB

)1/3

x2/5, u ∼
(
B2

ρµ

)1/3

x1/5.

(c) Introduce a stream function ψ(x, y) and consider a similarity solution ψ(x, y) =
u∆f(η), where f only depends on the similarity variable η = y/∆. Show that f(η) satisfies
an ordinary differential equation of the form

f ′′′ + c1(f
′)2 + c2ff

′′ = δ(η),

where primes denote differentiation with respect to η, for some constants c1 and c2 that
you should determine.

[Hint: For any constant a, δ(ay) = |a|−1 δ(y).]
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39A Waves
Let ϕ(x, t) be a real-valued function that satisfies the equation

∂2ϕ

∂t2
− c2

∂2ϕ

∂x2
+A2c2ϕ = 0,

where both A and c are positive constants.

(a) Consider wave solutions of frequency ω and wavenumber k.

(i) Find the dispersion relation for such waves.

(ii) Sketch both the phase velocity cp and the group velocity cg as functions of
k.

(iii) Do wave crests move faster or slower than a wave packet?

(b) Suppose that ϕ(x, 0) is real and that

ϕ(x, 0) =

∫ ∞

−∞
a(k)eikxdk,

∂

∂t
ϕ(x, 0) = 0,

where a(k) is a given function.

(i) Use the method of stationary phase to obtain an approximation for ϕ(V t, t)
for fixed 0 ⩽ V < c and large t.

[Hint: You will need the result
∫∞
−∞ e−au2

du =
√
π/a for Re(a) ⩾ 0, a ̸= 0.]

(ii) Now suppose the initial condition is even, so that ϕ(x, 0) = ϕ(−x, 0).
Consider the limit of large t and deduce an approximation for the sequence
of times at which F (t) = ϕ(V t, t) satisfies both F (t) = 0 and F ′(t) > 0.
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40D Numerical Analysis
Consider the following two Cauchy problems: the diffusion equation

∂u

∂t
=
∂2u

∂x2
, 0 ⩽ t ⩽ 1, x ∈ R, (†)

with initial condition u(x, 0) = u0(x); and the wave equation

∂2v

∂t2
=
∂2v

∂x2
, 0 ⩽ t ⩽ 1, x ∈ R,

with initial conditions v(x, 0) = v0(x) and ∂v
∂t (x, 0) = v1(x). Further consider the

discretisation of the diffusion equation,

un+1
m − 1

2
µ
(
un+1
m+1 − 2un+1

m + un+1
m−1

)
= unm +

1

2
µ
(
unm+1 − 2unm + unm−1

)
, (⋆)

and the discretisation of the wave equation,

vn+1
m − 2ρvnm + vn−1

m = µ
(
vnm+1 − 2vnm + vnm−1

)
, (⋆⋆)

where m ∈ Z, n = 1, . . . , N , µ > 0 is the Courant number, and ρ ∈ [1, 2] is a constant
parameter. The notation fnm here denotes the function f evaluated at the nth time step
and located at a spatial grid point labelled by index m. In all parts of the question below
regarding stability, consider the 2-norm ∥ · ∥2.

(a) Derive an expression for the amplification factor in a Fourier analysis of stability
applied to a finite-difference discretisation of a linear partial differential equation.

(b) Determine the values of µ that make the method in equation (⋆) stable for the
diffusion equation as described above.

(c) Determine the values of µ, as a function of ρ, that make the method in equation
(⋆⋆) stable for the wave equation as described above.

(d) Suppose we replace the Cauchy problem (x ∈ R) in equation (†) with the finite
domain 0 ⩽ x ⩽ 1, on which we apply Dirichlet boundary conditions u(0, t) = u(1, t) = 0.
Determine the values of µ that make the method in equation (⋆) stable for this problem.

[You may use basic spectral properties of Toeplitz symmetric tridiagonal (TST)
matrices without proof.]
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