
MAT2

MATHEMATICAL TRIPOS Part II

Tuesday, 10 June, 2025 1:30pm to 4:30pm

PAPER 2

Before you begin read these instructions carefully.

The examination paper is divided into two sections. Each question in Section II
carries twice the number of marks of each question in Section I. Section II questions
also carry an alpha or beta quality mark and Section I questions carry a beta quality
mark.

Candidates may obtain credit from attempts on at most six questions from
Section I and from any number of questions from Section II.

Write on one side of the paper only and begin each answer on a separate sheet.

Write legibly; otherwise you place yourself at a grave disadvantage.

At the end of the examination:

Separate your answers to each question.

Complete a gold cover sheet for each question that you have attempted, and place
it at the front of your answer to that question.

Complete a green main cover sheet listing all the questions that you have
attempted.

Every cover sheet must also show your Blind Grade Number and desk
number.

Tie up your answers and cover sheets into a single bundle, with the main cover
sheet on the top, and then the cover sheet and answer for each question, in the
numerical order of the questions.

STATIONERY REQUIREMENTS
Gold cover sheets
Green main cover sheet
Script paper
Rough paper

You may not start to read the questions
printed on the subsequent pages until
instructed to do so by the Invigilator.



2

SECTION I

1G Number Theory
Let N = 136, and let G = (Z/NZ)× denote the multiplicative group of units

modulo N .

(a) Compute the order of G.

(b) Compute the least integer m ⩾ 1 such that for any g ∈ G, gm ≡ 1 mod N .

(c) Write down an element g ∈ G of order m.

2I Topics in Analysis
State Chebyshev’s equal ripple criterion.

Let Tn be the Chebyshev polynomial of degree n satisfying Tn(cos θ) = cos(nθ) for
all θ ∈ R. Determine in terms of Tn a minimizer for sup−1⩽t⩽1 |tn − q(t)| among all the
polynomials q of degree less than n.
[You may assume without proof that the coefficient of Tn(t) at t

n is 2n−1.]

Let f be a polynomial of degree at most n and such that |f(t)| < 1 for −1 ⩽ t ⩽ 1.
By considering the roots of Tn − f , or otherwise, show that

|f(t)| < max{1, |Tn(t)|}, for all t ∈ R.

3K Coding & Cryptography
Suppose codewords 000 and 111 are sent with probabilities 1/5 and 4/5 respectively

through a Binary Symmetric Channel with error probability p = 1/4. If we receive 001
how should we decode if we use (i) ideal observer, (ii) maximum likelihood, (iii) minimum
distance decoding? Justify your answers.

In light of this give some positives and negatives of the three decoding methods.

Part II, Paper 2
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4F Automata & Formal Languages
(a) Say what it means for a language L to satisfy the context-free pumping lemma.

(b) For each of the following languages over the alphabet {0,1}, either give a
context-free grammar that produces the language or prove that the language is not context-
free. We write wR for the reverse word of w, i.e., if w = a0...an−1 then wR = an−1...a0.

(i) The language L := {0n1n0n ; n > 0}.
(ii) The language L := {wwR ; w ∈ B+} of even length palindromes.

(iii) The language L := {wwR ; w ∈ B+ such that the number of 0s in w is equal
to the number of 1s in w}.

(iv) The language L := {0n1m0n+m ; n,m > 0}.

Part II, Paper 2 [TURN OVER]
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5K Statistical Modelling
The potato dataset contains the crop yields of 60 equally divided plots in a farm,

each randomly planted with one of three genotypes of potato. There are two possible
alleles (A, a) and three possible genotypes (aa, Aa, AA). The count column counts the
number of A alleles in genotype. Consider the following R code with truncated output.

> potato[c(1, 20, 21, 40, 41, 60), ]

genotype count yield

1 aa 0 9.038067

20 aa 0 10.199812

21 Aa 1 10.421516

40 Aa 1 11.793761

41 AA 2 12.786507

60 AA 2 11.214858

> summary(model1 <- lm(yield ~ genotype - 1, potato))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

genotypeaa 9.8328 0.2062 47.68 <2e-16 ***

genotypeAa 11.0535 0.2062 53.60 <2e-16 ***

genotypeAA 11.8059 0.2062 57.24 <2e-16 ***

> summary(model2 <- lm(yield ~ I(count >= 1), potato))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.8328 0.2161 45.511 < 2e-16 ***

I(count >= 1)TRUE 1.5969 0.2646 6.035 1.19e-07 ***

> anova(model2, model1)

Analysis of Variance Table

Model 1: yield ~ I(count >= 1)

Model 2: yield ~ genotype - 1

Res.Df RSS Df Sum of Sq F Pr(>F)

1 58 54.148

2 57 48.487 1 5.6612 6.6551 0.01249 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

After introducing necessary mathematical notation, write down the statistical
models fitted above with all assumptions that are used to calculate the p-values. Which
hypothesis below is tested in the analysis of variance, and what can you conclude about
it? Write down the R code to test the other hypothesis using analysis of variance.

1. Full dominance: the effect of genotype on crop yield only depends on whether the
genotype contains A allele or not.

2. No dominance: the effect of genotype on crop yield only is linear in the number of
A alleles.

Part II, Paper 2
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6A Mathematical Biology
A population of healthy foxes, S(x, t), is territorial and tends not to move. In

contrast, rabid infected foxes, with population I(x, t), change their behaviour and migrate.
The dynamics of foxes is captured by the following, non-dimensionalised, equations:

dS

dt
= −IS ,

dI

dt
= ∇2I + IS − µI ,

dR

dt
= µI ,

where µ is a constant.

(a) Give a biological explanation for each term on the right-hand side of these
equations. What is the meaning of the population R(x, t)?

(b) Consider the spatially homogeneous case. Define the reproductive ratio for this
system. Explain the reasoning behind the statement that rabies spreads among foxes only
if the reproductive ratio is greater than 1.

(c) Suppose foxes move only in one spatial dimension. By writing S(x, t) = S(ξ)
and I(x, t) = I(ξ), where ξ = x − ct and c > 0, write down the equations for S(ξ) and
I(ξ) that govern a travelling wave in this system.

(d) Consider the situation in which S(ξ) → 1 and I(ξ) → 0 as ξ → ∞. By linearising
about the leading edge of a wavefront, determine the minimum velocity at which a wave
of infection spreads.

7E Further Complex Methods
(a) The function F (z) is defined for all z ∈ C \ {±i} by

F (z) =

∫ z

0

1

1 + t2
dt , (†)

where the path taken for the integral is unrestricted except that it does not pass through
either of the points ±i. Show that the function F (z) is multivalued. What are the possible
values of F (1)?

(b) A curve B joins the points ±i along the imaginary axis, slightly displaced to
the left of 0. Consider the function FB(z) defined for z ∈ C \ B by the integral (†), but
with the restriction that the path of integration does not cross B. Show that FB(z) is a
single-valued function.

(c) Show that, for large |z|, FB(z) =
1
2π +O(|z|−1). Hence, calculate the integral

lim
R→∞

∮
γR

FB(t)

t
dt ,

where the contour γR is an anti-clockwise circle of radius R.

Part II, Paper 2 [TURN OVER]
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8B Classical Dynamics
(a) Explain very briefly how to introduce action-angle variables ϕ, I for a Hamilto-

nian system determined in the standard way by a Hamiltonian H(q, p) defined for (q, p) ∈
R2. [You may assume that all orbits are bounded for your discussion.] Furthermore, briefly
explain what is meant by the principle of adiabatic invariance of the action.

(b) Consider the case

H(q, p) =
p2

2m
− 1

|q|
,

where m is a positive constant. Explain why, for solutions with H = E = −|E| < 0, the
magnitude of q must remain bounded. Find the smallest possible qmax = qmax(|E|) such
that the interval [−qmax, qmax] contains all possible values of q(t) for such a solution.

Calculate the action I in terms of |E| and m. Assuming further that the adiabatic
invariance principle holds for this system, if m varies slowly over a long time interval,
doubling in magnitude, how does the energy change?

[Hint: you may make use of the integral
∫ 1
0

√
1− x2dx = 1

4π.]

Part II, Paper 2
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9E Cosmology
Prior to the synthesis of light elements (kBT ≳ 1 MeV), neutrons and protons are

kept in equilibrium by the weak interactions

n+ νe ↔ p+ e− , p+ ν̄e ↔ n+ e+ .

The ratio of the weak interaction rate ΓW ∝ T 5, which maintains equilibrium, relative to
the Hubble expansion rate H ∝ T 2, is

ΓW
H

≈
(
kBT

κ

)3

where κ = 0.7 MeV . (†)

(a) Assuming that the chemical potentials for all leptons are small, µe− ≪ kBT etc.,
show that, in equilibrium, the neutron-to-proton ratio can be expressed as

nn
np

≈ e−Q/(kBT ) ,

where Q = (mn − mp)c
2 = 1.29 MeV is the mass difference between a neutron and a

proton.

(b) Using equation (†), briefly explain why the neutron-to-proton ratio effectively
‘freezes out’ once kBT < 0.7 MeV. At this time, the ratio is nn/np ≈ 1/6, but it decreases
to a final value nn/np ≈ 1/7 when deuterium forms at kBT ≈ 0.07 MeV. Briefly specify
why.

(c) Briefly explain why eventually almost all neutrons are captured in helium-4,
and estimate the resulting helium mass parameter Yp = ρHe/ρB, where ρHe is the helium-4
density, ρB = mp nB, and nB is the baryon number density.

(d) Consider an otherwise identical universe where the constant κ in equation (†)
is much larger than 0.7MeV. Describe how this would affect the ‘freeze-out’ described by
equation (†) and the helium mass parameter Yp. Briefly discuss potential implications for
stellar lifetimes and the origin of life in this alternative universe.
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8

10C Quantum Information and Computation
Let |ψ⟩ denote a 2-qubit state. Let A = {|a0⟩ , |a1⟩}, B = {|b0⟩ , |b1⟩} and

C = {|c0⟩ , |c1⟩} be three orthonormal bases of C2, where,

|a0⟩ = |0⟩ , |b0⟩ =
1

2
|0⟩+

√
3

2
|1⟩ , |c0⟩ =

1

2
|0⟩ −

√
3

2
|1⟩ ,

|a1⟩ = |1⟩ , |b1⟩ =
√
3

2
|0⟩ − 1

2
|1⟩ , |c1⟩ =

√
3

2
|0⟩+ 1

2
|1⟩ .

Suppose the first qubit of the state |ψ⟩ is measured in the basis A and the second qubit is
measured in the basis B. Let Pψ(A,B) denote the probability that these two measurements
either yield the outcome (a0, b0) or the outcome (a1, b1). Probabilities Pψ(B, C) and
Pψ(C,A) are defined analogously.

(a) Give expressions for Pψ(A,B), Pψ(B, C) and Pψ(C,A).

(b) What transformations relate (i) the basis A to the basis B, and (ii) the basis A
to the basis C? Show that

|a0a0⟩+ |a1a1⟩√
2

=
|b0b0⟩+ |b1b1⟩√

2
=

|c0c0⟩+ |c1c1⟩√
2

. (∗)

(c) For |ψ⟩ = |0⟩ ⊗ |0⟩, show that

Pψ(A,B) + Pψ(B, C) + Pψ(C,A) ⩾ 1 .

(d) Denote the state in equation (∗) by |ϕ+⟩. For |ψ⟩ = |ϕ+⟩, determine Pψ(A,B)+
Pψ(B, C) + Pψ(C,A).

Part II, Paper 2
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SECTION II

11I Topics in Analysis
(a) Let T ⊂ R2 be a triangle with I, J, K the three sides of T and ∂T = I ∪J ∪K.

Prove that the following two statements are equivalent:

(i) If A, B, C are closed subsets of R2 such that I ⊂ A, J ⊂ B, K ⊂ C and
T ⊂ A ∪B ∪ C, then A ∩B ∩ C ̸= ∅.

(ii) There does not exist a continuous map f : T → ∂T such that f(I) ⊂ I,
f(J) ⊂ J and f(K) ⊂ K.

(b) State Brouwer’s fixed point theorem in the plane. Prove, using Brouwer’s
fixed point theorem, that there exists a complex number z with |z| ⩽ 1 such that
z6 − 2z5 + 4z2 + 9z + 2 = 0.

(c) Let I = [−1, 1] and let β, γ : I → I × I be continuous paths such that
β(−1) = (a,−1), β(1) = (b, 1) and γ(−1) = (−1, c), γ(1) = (1, d) with a, b, c, d ∈ I.
By considering a suitable continuous map I × I → I × I prove that the paths β and γ
intersect.

[ If you use the Jordan curve theorem, you must prove it.]

Part II, Paper 2 [TURN OVER]
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12K Coding & Cryptography
Consider a cryptosystem ⟨M,K,C⟩. Let e, d be the respective encryption and

decryption functions. Model the key and messages as random variables k,m taking values
in K,M , respectively and such that m = d(c, k) ∈M and c = e(m, k) ∈ C.

Define, both in words and formally, the unicity distance, U , of a cryptosystem.

Prove that

U =
log |K|

log |Σ| −H

where Σ is the alphabet of the ciphertext and H = H(m). Make clear any assumptions
you make.

Suppose M = {0, 1, 2} is emitted from a memoryless source with probabilities

P (m = 0) = 1/2, P (m = 1) = p and P (m = 2) = 1/2− p

where 0 ⩽ p ⩽ 1/4. Let the key k = (k0, k1, k2) be chosen uniformly from the set of binary
3-tuples i.e. K = {(k0, k1, k2) : ki ∈ {0, 1}}. A sequence of messages m1,m2, . . . ,mn is
encrypted to a sequence of ciphertexts c1, c2, . . . , cn by

ci = mi + ki mod 3 (mod 3)

for 1 ⩽ i ⩽ n.

Show that, if the unicity distance of the cryptosystem is at least 20, then we must
have H(2p, 1− 2p) ⩾ 0.87 (you may take log2(3) = 1.585).

Given that H(2p, 1 − 2p) = 0.87 is satisfied when p = 0.15, find all values of
p ∈ [0, 1/2] that give a unicity distance of at least 20.

Now suppose p = 0. Propose a new cipher for this source which has infinite unicity
distance.

Part II, Paper 2
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13E Further Complex Methods
(a) Show that under the change of variable z = cosx the equation

d2w

dx2
+ n2w = 0

becomes

(1− z2)
d2w

dz2
− z

dw

dz
+ n2w = 0. (†)

(b) Show that equation (†) is a Papperitz equation corresponding to the Papperitz-
symbol or P -symbol

P


1 −1 ∞
0 0 −n z
1
2

1
2 n

 ,

explaining carefully the meaning of the symbol and the different elements appearing in it.

(c) Recall that the notation F
(
A,B;C; ζ

)
is used to denote the solution of the

equation corresponding to the P -symbol

P


0 1 ∞
0 0 A ζ

1− C C −A−B B

 ,

for which F
(
A,B;C; 0

)
= 1.

Show that two linearly independent solutions of equation (†) are

w1(z) = F
(
n,−n; 12 ;

1
2(1− z)

)
and

w2(z) = (1− z)1/2F
(
−n+ 1

2 , n+ 1
2 ;

3
2 ;

1
2(1− z)

)
,

explaining clearly any results on transforming Papperitz equations and P -symbols that
you use.

(d) Deduce that F
(
−1

2 ,
3
2 ;

3
2 ;u
)
= (1− u)1/2, clearly justifying your reasoning.

Part II, Paper 2 [TURN OVER]
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14B Classical Dynamics
This question concerns a double pendulum, consisting of a simple pendulum of mass

M and length l pivoted at the origin with angle θ1 with respect to the vertical, together
with another simple pendulum of mass m, also of length l and angle θ2 with respect to the
vertical, pivoted at the first mass M . The whole system moves freely in a vertical plane
under the influence of a downward uniform gravitational acceleration of magnitude g. All
the constants m, M , l and g are positive and, in addition, define ω0 =

√
g/l.

(a) Show that the Lagrangian for the system is

L =
1

2
Ml2θ̇21 +

1

2
m
[
l2θ̇21 + l2θ̇22 + 2l2 cos(θ1 − θ2)θ̇1θ̇2

]
+Mgl cos θ1 +mg(l cos θ2 + l cos θ1) .

(b) Write down the equations of motion and expressions for any conserved quantities.
Furthermore, show that θ1 = 0 = θ2 is an equilibrium point, and derive the linearized
equations of motion for small oscillations

(θ1, θ2) = (0, 0) + (z1, z2) , |z1|+ |z2| = o(1) ,

around it.

(c) Find the four normal modes and show that the equilibrium point is stable.
Consider the case when µ = m/M ≪ 1. Show that the characteristic frequencies are ±ω
and ±ω′, for some positive ω and ω′ with ω − ω′ = α

√
µ + O(µ), where α is a constant

you should find.

Part II, Paper 2
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15C Quantum Information and Computation
Let N be an odd integer that is not equal to the power of a prime number. Let a

be an integer coprime to N with 1 < a < N .

(a) Define the order of amodN .

(b) Let f : Z → ZN be the modular exponentiation function that has period r equal
to the order of amodN . Write down an explicit form for f and show that it is one-to-one
within each period.

(c) Suppose r from part (b) is even and (ar/2 + 1) is not divisible by N . How can
one use Euclid’s algorithm to obtain a factor of N? Justify your answer.

(d) Continuing from part (c), let m be the smallest integer for which 2m > N2, and
let B and b be integers such that 2m = Br + b with B = ⌊2mr ⌋. Consider the state

|φ1⟩ =
1√
A

A−1∑
j=0

|x0 + jr⟩ ,

where x0 ∈ {0, 1, . . . , 2m − 1} and A =

{
B + 1 if x0 ⩽ b
B if x0 > b

.

(i) For a positive integer M , let QFTM denote the quantum Fourier transform
modulo M . Give the action of QFTM on the state |x⟩, where x ∈ ZM .

(ii) Show that

|φ2⟩ := QFT2m |φ1⟩ =
2m−1∑
u=0

g(u) |u⟩ ,

and give a closed-form expression for g(u).

(iii) Suppose |φ2⟩ is measured in the basis {|u⟩}2m−1
u=0 to obtain a value of c

satisfying ∣∣∣∣c− k
2m

r

∣∣∣∣ < 1

2
,

for some k ∈ {0, 1, 2, . . . , r− 1} that is coprime to r. Prove that there is at
most one fraction k/r with a denominator r < N satisfying∣∣∣∣ c2m − k

r

∣∣∣∣ < 1

2N2
. (∗)

(iv) Suppose N = 21, a = 10, and you get the measured outcome c = 427.
Using equation (∗) and a suitable continued fraction expansion, find r.[
Hint:

∣∣427
512 − 5

6

∣∣ < 1
2(21)2

]
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16H Logic and Set Theory
Let L be a first-order language.

If M is an L-structure, we say that ϑ : M → M is an automorphism of M if it is a
bijection, and for all m1, . . . ,mn ∈M and all operation symbols ω of L (with arity n)

ϑ(ωM (m1, . . . ,mn)) = ωM (ϑ(m1), . . . , ϑ(mn)),

and for every predicate symbol φ of L (with arity n){
(ϑ(m1), . . . , ϑ(mn)) : (m1, . . . ,mn) ∈ φM

}
= φM .

We write Aut(M) for the set of automorphism of M . The set Aut(M) forms a group
under composition. [You do not need to prove this.]

(a) Define the following notions:

(i) φ is a sentence in L;

(ii) T is a theory in L;

(iii) M is a model of T ;

(iv) T is consistent.

(b) By appealing to a suitable theorem from the lectures, show that T is consistent
if and only if it has a model.

(c) State the compactness theorem of first-order predicate logic and prove it using
part (b) or otherwise.

For the remainder of this question, fix a consistent theory T in L. Expand L to a
new language Lf obtained from L by adding a unary operation symbol f . Note that any
Lf -structure can be thought of as a pair (M, θ), where M is an L-structure and θ is the
interpretation in M of the additional operation symbol f .

(d) Specify a consistent theory Tf in Lf such that Tf ⊃ T and an Lf -structure
(M,ϑ) is a model of Tf if and only if M is a model of T and ϑ ∈ Aut(M). Justify your
claim.

Let X be any set and let LX be the expansion of L with the additional operation
symbols {fx : x ∈ X}. Fix any group G and consider the expansion LG of L and form
the following theory in LG: use the theories Tfg from (d) and let

TG :=
⋃
g∈G

Tfg ∪
{
(∃x)¬(fgx = fhx) : g, h ∈ G, g ̸= h

}
∪
{
(∀x)(fgfhx = fkx) : g, h, k ∈ G, gh = k

}
.

We call a group G T -good if there is a model M of T such that Aut(M) contains an
isomorphic copy of G and T -bad if it is not T -good.

[QUESTION CONTINUES ON THE NEXT PAGE]
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(e) Let G be a group. Show that the following are equivalent:

(i) G is T -bad;

(ii) TG is inconsistent;

(iii) there is a finite X ⊆ G such that TG ∩ LX is inconsistent.

(f) Show that there is a theory T ∗ in the language of groups such that for any group
G, G is a model of T ∗ if and only if G is T -good.

17F Graph Theory
In this question, no form of Menger’s theorem or of the max-flow min-cut theorem

may be assumed without proof.

(a) Let G be a bipartite graph with vertex classes X and Y . What is a matching
from X to Y ? State and prove Hall’s marriage theorem, giving a necessary and sufficient
condition for G to contain a matching from X to Y .

We define the matching number of a graph G to be the maximum size of a set of
independent edges in G.

(i) If G is a k-regular bipartite graph with |G| = n (for some k > 0), show that
G has matching number n/2.

(ii) If G is an arbitrary k-regular graph with |G| = n (for some k > 0), show
that G has a matching number at least ( k

4k−2)n.

(iii) For k = 2, write down an infinite family of graphs G for which equality
holds in (ii).

(b) Define the eigenvalues of a graph G. Let G be bipartite with vertex classes X
and Y . If 0 is not an eigenvalue of G show that G contains a matching from X to Y .

Part II, Paper 2 [TURN OVER]
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18J Galois Theory
Let L/K be a finite extension of fields. Define what it means for L/K to be normal,

separable, or Galois. Let K be an algebraic closure of K.

(a) Write L = K(α1, . . . , αn) for some α1, . . . , αn ∈ L. Show by induction on n
that 1 ⩽ #HomK(L,K) ⩽ [L : K] and that the upper bound is an equality if L/K is
separable.

(b) Show that #Aut(L/K) ⩽ #HomK(L,K) with equality if L/K is normal.

(c) Deduce that if L/K is normal and separable then L/K is Galois.

(d) Find a prime number p such that the extension Fp(X)/Fp(X5) is Galois. [You
may assume that all splitting fields are normal.]

19J Representation Theory
(a) Let ρ : G → GLn(C) be a representation of a finite group G. Prove that ρ is

isomorphic to a representation ρ′ : G→ GLn(C) with

ρ′(G) ⩽ Un = {A ∈ Matn(C) | AAT = I}.

(b) Let V be a finite dimensional complex representation of a group G. A bilinear
form

(−,−) : V × V → C

on V is G-invariant if (v, w) = (gv, gw) for all v, w ∈ V and g ∈ G.

Suppose now that V is an irreducible representation of G.

(i) Show that any G-invariant bilinear form on V is either non-degenerate or
zero, and that any two G-invariant bilinear forms are proportional.

(ii) Show that any non-zero G-invariant bilinear form satisfies (w, v) = λ(v, w)
for all v, w ∈ V , where λ ∈ {±1} does not depend on v and w.

(c) Let H ⩽ G be a subgroup of a finite group G, and V a finite dimensional
complex representation of H. Define the induced representation IndGH(V ), and compute
its character in terms of the character of V .

Show that if W is a finite dimensional complex representation of G, then the
representations IndGH(W ⊗ V ) and W ⊗ IndGH(V ) are isomorphic.

Part II, Paper 2



17

20G Number Fields
(a) Define the class group of a number field. [You do not need to prove that it is a

group.]

(b) Prove that the class group of a number field is finite. [You may use without
proof the fact that, for every number field K, there is a constant C such that every ideal
I ⊂ OK contains a non-zero element α with |N(α)| ⩽ CN(I).]

(c) Let K be a number field and I ⊂ OK an ideal. Prove that there is a positive
integer n such that In is a principal ideal.

(d) A proper ideal I ⊂ OK is called a primary ideal, if for all α, β ∈ OK such that
αβ ∈ I but α /∈ I, there is a positive integer k such that βk ∈ I. Prove that an ideal in
OK is primary if and only if it is a power of a prime ideal.

21F Algebraic Topology
Let (X,x0) be a based topological space. Define the fundamental group π1(X,x0),

and show that the composition law is well-defined and satisfies the group axioms.

Let U(2) be the group of unitary 2 × 2 matrices, with the subspace topology from
C2×2. Let I ∈ U(2) denote the identity matrix.

(a) Let γ : [0, 1] → U(2) be given by γ(t) =

(
e2πit 0
0 1

)
. Show that for non-zero

k ∈ Z, [γ]k is never the identity in π1(U(2), I). [You may use without proof a description
of π1(S

1, ∗) provided it is clearly stated.]

(b) Show that π1(U(2), I) is abelian. [You may use without proof the fact that
matrix multiplication gives a continuous map U(2)× U(2) → U(2).]

22I Linear Analysis
(a) State the inversion theorem. State and prove the closed graph theorem.

(b) Now let X and Y be Banach spaces and let S ∈ L(X,Y ) be injective. We write
S−1 for the inverse map to S, so that S−1 is a linear map from the image of S to X.

(i) Give an example to show that S−1 need not be continuous.

(ii) If T ∈ L(X,Y ) has the property that the image of T is contained in the
image of S, show that S−1 ◦ T is continuous.

(iii) Give a counterexample to show that (ii) need not remain true if we drop
the assumption that X is complete.
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23H Analysis of Functions
(a) State and prove the Rellich-Kondrashov compactness theorem for the embedding

of H1
0 (Ω) into L

2(Ω), where Ω is a bounded open subset of Rd.

[You may use the Banach-Alaoglu and Plancherel theorems without proof.]

(b) Is the embedding of H1(R) into L2(R) compact? Justify your answer.

(c) Consider a bounded sequence fn in H1(R) such that: (i) there is C > 0 so that
|fn(x)| ⩽ C(1 + x2)−1 for all x ∈ R and n ⩾ 1, and (ii) fn converges weakly to zero in
L2(R). Prove that fn converges strongly to zero in L2(R).

24G Riemann Surfaces
State and prove the identity theorem for Riemann surfaces.

Define what it means for h : U → R to be a harmonic function, where U is a
non-empty open connected subset of R2. Show that h ∈ C∞(U).

Define also a harmonic function H : R → R, where R is a Riemann surface. Show
that this is independent of the atlas chosen for R.

Suppose we have two functions f, g : C → C such that the product f · g, defined
pointwise by (f ·g)(z) = f(z)g(z), is identically zero on C. Must one of f or g be identically
zero on C if:

(i) Both f and g are continuous on C?

(ii) Both f and g are continuous on C and never simultaneously zero?

Now suppose we have two functions f, g : R2 → R such that f · g is identically zero
on R2. Must one of f or g be identically zero on R2 if:

(iii) Both f and g are in C∞(R2)?

(iv) Both f and g are harmonic?
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25J Algebraic Geometry
In this question, all varieties are over an algebraically closed field k of characteristic

zero.

Let X ⊂ An be an affine algebraic variety defined over k. Define the tangent space
TX,P of X at a point P ∈ X, and define the dimension of X in terms of the tangent spaces
of X.

Suppose that X = Z(f) ⊂ An where f is a non-constant polynomial. Show from
your definition that X has dimension n− 1. [Any form of the Nullstellensatz may be used
if you state it clearly.]

Now suppose that n ⩾ 3 and X = Z(f) ⊂ An where f is a non-constant irreducible
polynomial of degree at least 2. Let P ∈ X be a smooth point of X, and translate TX,P
by P to view it as an embedded hyperplane with P ∈ TX,P ⊂ An. Show that X ∩ TX,P is
singular at P .

Now let Y := {φ : A2 → A3 | φ is linear but not injective}. Show that Y is the zero
locus of an ideal I which is generated by three quadrics. Compute the dimension of Y
and identify any singular points of Y . [You may assume without proof that I is a radical
ideal.]
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26I Differential Geometry
(a) Define what is a regular curve and its arc-length, and prove that a regular curve

can always be parametrised by arc-length. When so, define its torsion, and prove that the
torsion is zero for planar curves.

(b) Consider a regular simple planar closed curve α : I = [a, b] → R2 enclosing
an open bounded convex set Ω. We consider a line L ⊂ R2 outside Ω. Without loss of
generality we assume L = {y = 0} and Ω ⊂ {y > 0} and denote by x0 and x1 the minimum
and maximum x-coordinate of α(I). You may assume that there are two smooth functions
u± : [x0, x1] → R so that

Ω = {(x, y) : x ∈ (x0, x1) and y ∈ (u−(x), u+(x))}

with u− ⩽ u+ and u− convex and u+ concave. Then we define the following symmetrised
set

SL(Ω) :=

{
(x, y) : x ∈ (x0, x1), and y ∈

(
−u+(x)− u−(x)

2
,
u+(x)− u−(x)

2

)}
.

(i) Prove that the areas enclosed satisfy A(SL(Ω)) = A(Ω).

[Hint: Decompose the area into a trapezoid and two caps and figure out how
they are transformed by the symmetrisation.]

(ii) Prove that the perimeter of SL(Ω) is at most the perimeter of Ω with
equality if and only if Ω has an axis of symmetry parallel to L.

[Hint: Calculate the perimeters following the decomposition of the previous
hint, and reduce the inequality to be proven to a Minkowski inequality.]

(iii) Deduce that any convex perimeter-minimizing domain Ω with fixed area
and whose boundary is a regular curve must admit axes of symmetry in all
directions.

27H Probability and Measure
Given a function f : R → R, its Fourier transform is f̂(ξ) =

∫
R e

−ixξf(x) dx for
ξ ∈ R.

(a) State and prove the monotone convergence theorem.

(b) Let θn(x) =
(
1− |x|

n

)
+
where x+ = max{x, 0}. Compute θ̂n.

(c) Prove that there exists a universal constant α > 0 such that: for any f ∈ L1∩L∞

whose Fourier transform satisfies f̂(ξ) ⩾ 0 for all ξ ∈ R, one has

∥f̂∥L1 ⩽ α∥f∥L∞ .
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28L Applied Probability
(a) Consider a right-continuous continuous-time Markov chain X on Z starting from

0 such that q0,1 = q0,−1 = 1/2 and

qi,i+1 =
2qi
3
, qi,i−1 =

qi
3
, q−i,−i−1 =

2q−i
3
, q−i,−i+1 =

q−i
3

∀i ⩾ 1;

with qi = 3|i| for i ∈ Z.

Is X recurrent? Is X explosive? Does X have an invariant distribution? Justify
your answers.

(b) Let X ∼ Markov(Q) be an irreducible right-continuous continuous-time Markov
chain on a countable state space with generator Q. Are the following statements true?
Prove or give a counterexample.

(i) If the jump chain Y is positive-recurrent, then X is positive-recurrent.

(ii) If X is positive-recurrent, then the jump chain Y is positive-recurrent.

(c) Consider an M/M/1 queue with arrival and service rates λ > 0 and µ > 0
respectively. After service, each customer returns to the beginning of the queue with
probability p ∈ (0, 1). Let (Lt)t⩾0 denote the queue length.

(i) For which parameters is L transient, and for which is it recurrent?

(ii) When is it positive recurrent?

(iii) Find the invariant distribution when it exists and the expected queue length
at equilibrium.

(iv) What is the distribution of the departure process at equilibrium?

[Clearly state all results you use. You may assume the recurrence and transience
properties of simple random walks on Z. ]
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29L Principles of Statistics

(a) Consider a statistical model X1, . . . , Xn
i.i.d.∼ f(·, θ), θ ∈ Θ ⊆ Rp, that satisfies

the usual regularity conditions.

(i) Define the score function Sn(θ) and Fisher information matrix In(θ).

(ii) Show that Eθ(S1(θ)) = 0. [You may interchange integration and differenti-
ation without justification.]

(iii) Recall that the score test statistic Tn for the null hypothesis H0 : θ ∈ Θ0 is
given by

Tn :=
1

n
Sn(θ̃)

⊤I1(θ̃)
−1Sn(θ̃),

where θ̃ maximises the log-likelihood over θ ∈ Θ0. Show that in the case of

a simple null H0 : θ = θ0, we have Tn
d→ χ2

p as n→ ∞.

(b) Now consider the model X1, . . . , Xn
i.i.d.∼ N(µ, σ2) where µ ∈ R and σ2 > 0.

(i) Consider the composite null H0 : µ ∈ R, σ2 = 1. Show that the score test
statistic Tn for H0 is given by

Tn =

(
1√
2n

n∑
i=1

{(Xi − X̄)2 − 1}

)2

,

where X̄ is the sample mean.

(ii) Determine, with proof, the asymptotic distribution of Tn as n → ∞ under
the null hypothesis H0. [Hint: If Z ∼ χ2

1 then Var(Z) = 2.]
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30K Stochastic Financial Models
Let (Zn)0⩽n⩽N be a real-valued process adapted to the filtration (Fn)0⩽n⩽N where

F0 is trivial and N < ∞ is not random. Suppose E(|Zn|) < ∞ for all 0 ⩽ n ⩽ N . Let
(Vn)0⩽n⩽N be a supermartingale such that Vn ⩾ Zn almost surely for all 0 ⩽ n ⩽ N .

(a) Show that E(Zτ ) ⩽ V0 for any stopping time τ . [You may use any result from
the course if carefully stated.]

(b) Let

An =

n−1∑
k=0

[
Vk − E(Vk+1|Fk)

]
for 1 ⩽ n ⩽ N . Show that (An)1⩽n⩽N is previsible and non-decreasing.

(c) Set A0 = 0 and let Mn = Vn + An for 0 ⩽ n ⩽ N . Show that (Mn)0⩽n⩽N is a
martingale.

(d) Now assume VN = ZN and

Vn = max{Zn,E(Vn+1|Fn)},

and set AN+1 = ∞. Show that min{Vn − Zn, An+1 −An} = 0 for all 0 ⩽ n ⩽ N .

(e) Let τ∗ = min{0 ⩽ n ⩽ N : An+1 > 0}. Show that τ∗ is a stopping time such
that E(Zτ∗) = V0.
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31L Mathematics of Machine Learning
(a) Define the shattering coefficient s(H, n) and the VC dimension V C(H) for a

hypothesis class H. State the Sauer-Shelah lemma.

(b) In each of the following cases, find V C(Hi),

(i) H1 = {1[a,b] : a, b ∈ R}.

(ii) H2 = {δ(21[a,b] − 1) : a, b ∈ R, δ ∈ {−1, 1}}.

(c) Let H3 = {x 7→ sgn(xTMx) :M ∈ Rd×d}. Show that

V C(H3) ⩽

(
d+ 1

2

)
.

[You may use any theorems from lectures if they are precisely stated.]

(d) Consider

F = {
J∑
j=1

βjhj(x) : J <∞, hj ∈ H3, βj > 0 for j = 1, . . . , J, ∥β∥1 ⩽ 1}.

Prove that

R̂(F(x1:n)) ⩽

√
(d2 + d) log(n+ 1)

n
.

[You may use any theorems from lectures about convex analysis and sub-Gaussian random
variables if they are precisely stated.]
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32D Asymptotic Methods
The incomplete gamma function γ(x, y) is defined by

γ(x, y) =

∫ ∞

y
tx−1e−t dt,

for real positive x and y.

(a) Using integration by parts, show that for fixed finite x,

γ(x, y) ∼ yx−1e−y
∞∑
n=0

an(x) y
−n, as y → ∞,

where you should determine the coefficients an(x).

(b) Give the leading-order term in the asymptotic approximation of γ(x, y) for fixed
finite y and as x→ ∞.

(c) Suppose that x → ∞ and y → ∞ with y/x = λ, where λ > 1 is a constant.
Calculate the first two terms of the asymptotic expansion of γ(x, y), in the form

γ(x, y) ∼ yx−1e−y
[
f(λ) + x−1g(λ)

]
,

where f(λ) and g(λ) are functions that you should determine.

[Recall that
∫∞
0 tne−αtdt = α−n−1n!, for n a positive integer and α > 0.]
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33A Dynamical Systems
State the Centre Manifold Theorem for the dynamical system ẋ = f(x, µ) in Rn

where µ is a real parameter. What is the key step in generating an extended centre
manifold?

Consider the system

ẋ = x(µ− y2 − 2x2),

ẏ = y(1− x2 − y2),

where x, y ⩾ 0 and µ > 0.

(a) Show that the fixed point (0, 1) has a bifurcation at µ = 1. Find a fixed point
on the x-axis and determine the value of µ = µc > 1 at which it has a bifurcation.

(b) By finding the first approximation to the extended centre manifold, construct
the normal form near the bifurcation point (0, 1) when µ ≈ 1. Hence identify the type of
bifurcation. By appealing to a symmetry of the system, explain why this bifurcation is
expected.

(c) Show that there is another fixed point with x > 0, y > 0 and show how its
structure is consistent with your normal form in part (b).

(d) Draw a sketch of the values of x at the fixed points as functions of µ indicating
the bifurcation points and the regions where each branch is stable. [Detailed calculations
are not required.]

34D Integrable Systems
(a) Define a completely integrable system on a 2n-dimensional phase space M , and

state the Arnold–Liouville theorem.

(b) Consider M = R2n with coordinates (pi, qi), i = 1, . . . , n, and the standard
Poisson structure. Let

H =
1

2

(
p1

2 + · · ·+ pn
2 +W1

2q1
2 + · · ·+Wn

2qn
2 + a1q1 + · · ·+ anqn

)
,

where W1, . . . ,Wn, a1, . . . , an are constants with Wk ̸= 0 for all k.

(i) Find n independent functions F1, F2, . . . , Fn in involution with
∑n

i=1 Fi =
H, and demonstrate that Hamilton’s equations with Hamiltonian H are
completely integrable.

(ii) Find the action variables.
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35C Principles of Quantum Mechanics
(a) State the commutation relations for the spin operator S and describe the

associated irreducible representations {|s, σ⟩}, where s and σ are quantum numbers you
should specify. Determine the Hermitian conjugate and the trace of S.

(b) Henceforth consider only the Hilbert space of a particle of spin 3/2 and use the
basis {|σ⟩} of eigenvectors of Sz. Using the relation

S±|σ⟩ =
√
s(s+ 1)− σ(σ ± 1)ℏ|σ ± 1⟩ , (1)

write down Sx and Sy as matrices.

(c) Let n = (cosφ, sinφ, 0) be a vector in R3, using the standard basis. Derive the
states |n, 3/2⟩ for which the spin along the direction n is always measured to be 3

2ℏ.

(d) Let H = −γB · S be the Hamiltonian of the system, where γ is a constant and
B = Bẑ is an external magnetic field. Compute the state of the system at time t assuming
that it started at time t = 0 from (i) |ẑ, 3/2⟩, and (ii) |x̂, 3/2⟩. Briefly interpret the results.
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36B Applications of Quantum Mechanics
(a) A particle moving in an attractive potential V1(x) has a ground-state energy

E1, while a particle moving in an attractive potential V2(x) has a ground-state energy E2.
Using the variational method, show that E1 ⩾ E2 if V1(x) ⩾ V2(x) for all x ∈ R3.

[Hint: use the wavefunction of the particle in V1(x) as a trial function for V2(x).]

(b) Consider a one-dimensional Hamiltonian H = T +V , with kinetic energy T and
the attractive potential

V (x) = − α

|x|n
,

where α and n are positive constants. The exact ground state of the Hamiltonian H is
ψ0(x). By considering the trial function ψ(x) = ψ0(λx), use the variational method to
show that there are no bound states for n > 2.

(c) Consider a two-level quantum system, where the Hamiltonian H0 admits two
eigenstates: |ψ1⟩ with energy E1, and |ψ2⟩ with energy E2. You may assume that the
states are orthogonal, normalised, and non-degenerate, and that E1 < E2.

Consider the perturbation Hp, with matrix elements

⟨ψ1|Hp|ψ1⟩ = ⟨ψ2|Hp|ψ2⟩ = 0 ,

and
⟨ψ1|Hp|ψ2⟩ = ⟨ψ2|Hp|ψ1⟩ = h ,

and h constant. Find the exact eigenvalues of the Hamiltonian H = H0 +Hp.

Estimate the ground-state energy of H using the variational method, where the trial
function is

|ψβ⟩ = sinβ|ψ1⟩+ cosβ|ψ2⟩ ,

and β is an adjustable parameter. How does your answer compare to the exact ground
state?
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37C Statistical Physics
(a) Starting with the first law of thermodynamics for the energy E, derive a formula

for the variation of the enthalpy H. Define the temperature T and volume V as derivatives
of H. From this, deduce the Maxwell relation

∂T

∂p

∣∣∣∣
S

=
∂V

∂S

∣∣∣∣
p

,

where p is the pressure and S is the entropy.

(b) Determine the enthalpy H of a diatomic ideal gas in terms of N and T , where
the temperature T lies in a range for which vibrations of the molecule freeze out but
rotations do not.

(c) A freely moving piston is inserted in a cylindrical container. The chamber below
the piston contains the diatomic gas from part (b), which is at an initial temperature T0
and thermally insulated from the outside environment. This piston is initially at a pressure
p0 due to the outside atmosphere. Consider the following two processes and calculate the
change of temperature, ∆T , in each case. [See figures depicting the two processes below.]

(i) A weight is placed onto the piston, thereby increasing the pressure to p1 on
the piston. [You may assume this process is adiabatic.]

(ii) The pressure is held fixed while the base of the cylinder is heated such that
an amount of heat Q is gradually added to the gas in the cylinder. As
a result, the gas does some amount of work W on the piston, pushing it
upward. [Hint: use enthalpy.]

diatomic 
gas

piston

weight

diatomic 
gas

piston

(i) (ii)

heat source
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38E General Relativity

(a) Consider a spacetime with metric gµν . Write down the covariant derivative
∇αgµν in terms of the connection Γ γ

α β, which is assumed to satisfy Γ γ
α β = Γ γ

β α. Determine
the unique choice for the connection that ensures ∇αgµν = 0. In the remainder of this
question we use this connection.

(b) If Rµναβ is the Riemann curvature tensor, then

∇α∇βUµ − ∇β∇αUµ = −RνµαβUν (∗)

for any covariant vector field Uµ. By setting Uµ = ∂µϕ in equation (∗), where ϕ is a scalar
field, show that

Rµαβγ +Rµβγα +Rµγαβ = 0 .

State clearly any property of a vector field of the form ∂µϕ that your argument depends
on.

(c) From equation (∗), derive an analogous expression for ∇α∇βWµν −∇β∇αWµν ,
where Wµν is a general covariant tensor field of rank 2, stating clearly any assumptions
you make. By making a suitable choice for Wµν , deduce that

Rµαβγ = −Rαµβγ .

(d) Define the Ricci tensor Rαβ and show that it is symmetric. For certain
spacetimes,

Rµαβγ = K( gµβgαγ − gµγgαβ ) ,

where K is a scalar. Compute the Ricci tensor and Ricci scalar and deduce that K
is constant, assuming that the dimension n of the spacetime is four. How would this
conclusion change for other values n > 1? [Identities involving covariant derivatives of the
Ricci tensor may be used without proof but should be clearly stated.]
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39D Fluid Dynamics
Write down the Stokes equations governing the flow of incompressible viscous fluid

at zero Reynolds number, and show that the pressure and vorticity are harmonic.

A rigid sphere of radius a moves with velocity U through fluid of dynamic viscosity
µ that is stationary far from the sphere. Write down the boundary conditions that should
be applied to the normal and tangential components of the fluid velocity u on the surface
of the sphere, explaining each in physical terms.

The velocity and pressure fields at a point x in the fluid can be written as

u =

(
3

4

a

r
+

1

4

a3

r3

)
U+

(
3

4

a

r3
− 3

4

a3

r5

)
(U · x)x,

p =
3

2
µa

U · x
r3

,

where the origin lies at the centre of the sphere and r = |x|.

Using suffix notation, or otherwise, calculate the velocity gradient (∇u)ij =
∂uj/∂xi. Hence:

(i) determine an expression for the vorticity;

(ii) calculate ∇(1/r) and ∇2(1/r), and use your answers to argue directly that
the pressure and vorticity are harmonic;

(iii) prove that the flow is incompressible;

(iv) determine the stress (σ · n)i = σijnj on the surface of the sphere, where n
is the outward unit normal to the sphere;

(v) determine the force exerted by the fluid on the sphere.
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40A Waves
Consider the linearized Cauchy momentum equation, which governs small and

smooth displacements u(x, t) in a uniform, linear, isotropic and elastic solid of density
ρ,

ρ
∂2u

∂t2
= (λ+ µ)∇(∇ · u) + µ∇2u, (†)

where λ and µ are the Lamé moduli.

(a) Show that this equation supports two distinct classes of wave motion: P-waves
for the dilatation θ = ∇·u with phase speed cP ; and S-waves for the rotation ω = ∇×u
with phase speed cS . You should express cP and cS explicitly in terms of the Lamé moduli.

(b) Consider plane-wave solutions to equation (†) of the form u = f(k̂ · x − ct),
where k̂ is a unit vector. By direct substitution into equation (†), determine the form that
f must take for P-waves and for S-waves, and express the dilatation and rotation in terms
of these forms for each class of waves.

[Hint: You may find the vector identity ∇2q = ∇(∇ · q)−∇× (∇× q) useful. ]

(c) A planar interface at z = 0 separates two elastic solids of different densities and
elastic moduli. A harmonic P-wave with wavevector k lying in the (x, z) plane is incident
from z < 0 at an oblique angle. Show in a diagram the directions of all the reflected and
transmitted waves, labelled with their polarisations, assuming that none of these waves
are evanescent. State the boundary conditions on the components of the displacement and
the stress that would, in principle, determine the amplitudes.

(d) Now consider a harmonic P-wave of unit amplitude with k = k(sinϕ, 0, cosϕ)
incident on the planar interface z = 0 between two elastic and inviscid liquids with wave
speed cP and modulus λ in z < 0 and wave speed ĉP = 2cP and modulus λ̂ in z > 0.
Obtain solutions for the reflected and transmitted waves. Show that the magnitudes of
these two waves are equal if

sin2 ϕ =
3Z2 − 4ZẐ + Ẑ2

Ẑ(Ẑ − 4Z)
,

where Z = λ/cP and Ẑ = λ̂/ĉP .
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41D Numerical Analysis
Let N be an integer power of 2. The discrete Fourier transform (DFT) F2N : C2N →

C2N is defined by

Y = F2Ny, where Yk =
2N−1∑
n=0

yn exp

(
−πi
N
nk

)
, 0 ⩽ k ⩽ 2N − 1, (�)

while the discrete cosine transform (DCT) CN : RN → RN and the discrete sine transform
(DST) SN : RN → RN are defined by

Z = CNx, where Zk =
N−1∑
n=0

xn cos

[
π

N

(
n+

1

2

)
k

]
, 0 ⩽ k ⩽ N − 1,

Z̃ = SNx, where Z̃k =
N−1∑
n=0

xn sin

[
π

N

(
n+

1

2

)
(k + 1)

]
, 0 ⩽ k ⩽ N − 1,

for N even.

(a) Show that there exists an algorithm that computes the DFT of a vector of length
2N for which the number of multiplications required is O(N logN).

(b) Let x ∈ RN and y ∈ R2N be related by yn = xn for 0 ⩽ n ⩽ N − 1 and
yn = x2N−n−1 for N ⩽ n ⩽ 2N − 1. With Y defined as in equation (†), show that

1

2
exp

(
− πi

2N
k

)
Yk =

N−1∑
n=0

xn cos

[
π

N

(
n+

1

2

)
k

]
, 0 ⩽ k ⩽ 2N − 1.

(c) Use parts (a) and (b) to show that there exists an algorithm to compute the
DCT of a vector of length N using O(N logN) multiplications.

(d) Let x ∈ RN and ξ ∈ RN be related by ξn = (−1)nxn for 0 ⩽ n ⩽ N − 1. By
considering the DCT of ξ, or otherwise, show that there exists an algorithm to compute
the DST of a vector of length N using O(N logN) multiplications.
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