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SECTION I

1G Number Theory
(a) Using Fermat factorisation, find a non-trivial factorisation of N = 14351.

(b) Let N ⩾ 1 be an odd, composite integer that is not a square, and let k ⩾ 1. We
say that Fermat factorisation for N succeeds after k steps if the first value r ⩾

√
N such

that r2 −N is a square is r = ⌊
√
N⌋+ k.

Suppose that N = 3p, where p > 3 is a prime number. Find the value of k such
that Fermat factorisation for N succeeds after k steps.

2I Topics in Analysis
State Liouville’s theorem on approximation of algebraic numbers by rationals.

Prove that the number

∞∑
n=0

1

10nn is transcendental.

Deduce that there are uncountably many transcendental numbers.

3K Coding & Cryptography
State and prove Kraft’s inequality.

Describe Shannon-Fano Coding. Explain why it works and give an upper bound on
its expected word length.

Part II, Paper 1
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4F Automata & Formal Languages
Consider the following table with classes of formal languages in the rows and closure

properties in the columns (where “union”, “intersection”, and “complement” stand for
closed under union, intersection, and complement, respectively). Fill the twelve entries
of the table with “Yes” and “No”, depending on whether the class of formal languages
in the row has the closure property given in the column or not. You do not need to give
arguments for “Yes” answers. For each “No” answer, either provide a counterexample or
an argument why the class is not closed under the operation.

union intersection complement

regular ◦ ◦ ◦
context-free ◦ ◦ ◦
computable ◦ ◦ ◦
computably enumerable ◦ ◦ ◦

[If you give a counterexample from the lectures, you do not have to prove that it is
a counterexample, provided that you state it correctly.]

5K Statistical Modelling
A random variable Y > 0 is said to follow the Weibull distribution with parameters

λ > 0 and k > 0 if X = (Y/λ)k follows the exponential distribution with rate parameter 1
(so the probability density function of X is e−x, x > 0). Let Y1, . . . , Yn be an independent
and identically distributed sample from this Weibull distribution.

Show that the probability density function of Y is given by

fλ(y) =
k

λ

(y
λ

)k−1
e−(y/λ)k , y > 0.

For the rest of this question, suppose k is fixed. Show that {fλ ; λ > 0} is a
one-parameter exponential family, and write down its natural parameter and sufficient
statistic.

Show that E(Y k) = λk, then find the maximum likelihood estimator of λ from
Y1, . . . , Yn.
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6A Mathematical Biology
A large group of people, of fixed number, are debating a proposition. The group

consists of those in favour of the proposition, Y (t), those opposed, N(t), and those who
are undecided, U(t). Debates can change people’s minds. The outcome of a continuous
debate taking place over time is modelled by the equations

dY

dt
= −βY N ,

dN

dt
= (β − α)Y N + ζU ,

dU

dt
= αY N − ζU .

The constants α, β and ζ are positive.

(a) Briefly give an interpretation of α, β, and ζ.

(b) Show that those in favour of the proposition and those opposed cannot exist in
equilibrium. Determine the stability of any equilibria.

(c) Using part (b), determine if there are values of α, β and ζ for which everyone
eventually favours the proposition, irrespective of the initial conditions.

7E Further Complex Methods
Consider the improper integral∫ ∞

−∞

1

x6 − 1
dx .

Explain what is meant by the Cauchy principal value of this integral, and evaluate it.

8B Classical Dynamics
This question concerns a linear, triatomic molecule, consisting of two outer atoms

of mass m on either side of an inner atom of mass M . All three atoms lie on a vertical
line, taken as the y-axis (directed upwards), at heights y1 > y2 > y3. The atoms move
under the influence of a uniform, downward gravitational acceleration of magnitude g, as
well as forces arising from the potential energy

1
2

[
k(y1 − y2)

2 + k(y2 − y3)
2
]
.

The constants m, M , k and g are positive.

(a) Write down the Lagrangian L(y1, ẏ1, y2, ẏ2, y3, ẏ3) for the system. Give an
expression for the centre of mass Y of the molecule, and determine its time evolution
Y (t) assuming Y (0) = A, where A is a constant.

(b) Introduce generalised coordinates

Qs = y1 + y3 and Qa = y1 − y3

and use your answer to part (a) to eliminate y2 and obtain a Lagrangian L̂ in terms of Qs

and Qa. Hence obtain a differential equation for Qa.

Part II, Paper 1



5

9E Cosmology
Consider the motion of light rays in a homogeneous and isotropic expanding universe

with scale factor a(t). Light emitted by a distant galaxy at wavelength λe is observed on
Earth to have wavelength λ0. The galaxy redshift z is defined by

1 + z =
λ0
λe
.

(a) Assuming that the galaxy remains at a fixed comoving distance, show that the
redshift is related to the scale factor by

1 + z =
a(t0)

a(te)
,

where the light is emitted at time te and observed today at time t0.

(b) Suppose the galaxy is located at comoving position x and let L be the amount
of energy emitted by the galaxy in photons per unit time. Show that the total energy per
unit time crossing a sphere centred on the galaxy and intercepting the Earth is

L

(1 + z)n
,

where n is an integer you should determine. Hence, show that the energy per unit time
per unit area reaching the Earth is

L

4πa2(t0)x2 (1 + z)n
.
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10C Quantum Information and Computation
(a) Consider the following quantum circuit acting on a state |0⟩ |ψ⟩

|0⟩ H S† H

|ψ⟩ U

where H =
1√
2

[
1 1
1 −1

]
and S =

[
1 0
0 i

]
. Show that on measuring the first qubit in the

computational basis, the probability of outcome 1 is

p(1) =
1

2
(1− Im ⟨ψ|U |ψ⟩) .

(b) Verify the following identity, where A and B are unitary matrices:

A⊗B
= A

B

(c) Consider a 2-qubit initial state |ψ⟩ and a matrix descriptionW = Z⊗Z+X⊗I.
By modifying any of the above circuits, draw new circuits to obtain ⟨ψ|W |ψ⟩ in terms
of outcome probabilities of 1-qubit measurements. [Hint: note that W is not a unitary
matrix but is a linear combination of orthogonal matrices.]

Part II, Paper 1
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SECTION II

11K Coding & Cryptography
Describe the Huffman coding scheme and prove that Huffman codes are optimal.

A Huffman code is used to encode letters a1, . . . , am with respective probabilities
p1 ⩾ p2 ⩾ · · · ⩾ pm. Prove that, if p1 < 1/3, all codewords have length at least 2. Prove
that, if p1 > 2/5, then there is a codeword of length 1.

Find a probability distribution for which both of the following codes are optimal.

(a) 0, 10, 110, 111

(b) 00, 01, 10, 11

12F Automata & Formal Languages
(a) Let C,D ⊆ B. Give definitions of the following concepts:

(i) C ⩽m D;

(ii) C ≡m D; and

(iii) C is a nontrivial index set.

(b) The proof of Rice’s theorem shows that nontrivial index sets I are not comput-
able by either proving K ⩽m I or B\K ⩽m I. State when the first or the second option
holds according to the proof of Rice’s theorem.

[Define your notation; you do not need to prove your claim.]

(c) For the nontrivial index sets

Emp := {w ∈ B ; Ww = ∅} and Inf := {w ∈ B ; Ww is infinite},

state in each case whether the first or the second option of (b) holds.

(d) Is the set {w ∈ B ; |w| is even} an index set? Justify your answer.

(e) Consider the nontrivial index set Two := {w ∈ B ; |Ww| ⩾ 2} and show that
K ≡m Two.

(f) Consider the nontrivial index set

Cof := {w ∈ B ; the complement of Ww is finite}

and show that both K ⩽m Cof and B\K ⩽m Cof .

[In the entire question, you may use any results proved in the lectures, provided that
you state them precisely and correctly.]
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13K Statistical Modelling
Suppose (X1, Y1), . . . , (Xn, Yn) ∈ Rp×R are independent and identically distributed

and the conditional distribution of Yi given Xi is given by

Yi | Xi ∼ N(XT
i β, σ

2v(Xi)),

where v(x) > 0 is a known function. We would like to use a sample of (X1, Y1), . . . , (Xn, Yn)
to estimate the unknown parameters β ∈ Rp and σ2 > 0. Let X ∈ Rn×p denote the matrix
with the ith row being Xi and let Y = (Y1, . . . , Yn)

T ∈ Rn.

(a) Show that the maximum likelihood estimator of β is given by

β̂(Σ) = (XTΣ−1X)−1XTΣ−1Y,

where Σ ∈ Rn×n is a diagonal matrix with the ith diagonal entry given by v(Xi).

(b) Explain why the R code below returns the estimator in (a), where X, Y, and
Sigma in the R environment store the value of X, Y , and Σ in the above model.

Y.tilde <- Y / sqrt(diag(Sigma))

X.tilde <- X / sqrt(diag(Sigma))

fit1 <- lm(Y.tilde ~ X.tilde - 1)

fit1$coefficients

Write down R code that returns the estimator β̂(In), where In ∈ Rn×n denote the
identity matrix.

(c) Sketch an argument that shows both β̂(Σ) and β̂(In) are consistent for estimating
β and are asymptotically normal when n → ∞. You may assume that the law of large
numbers and the central limit theorem can be used for this model.

(d) Suppose p = 1. Find an expression for

ρ = lim
n→∞

Var(β̂(Σ))

Var(β̂(In))
.

Your answer should depend on the distribution of X1.

(e) Do you expect ρ to be ⩾ 1 or ⩽ 1? Explain why. Prove it using your expression
of ρ in (d).
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14E Further Complex Methods
The Dirichlet beta function is defined as

β(s) =
∞∑
n=0

(−1)n

(2n+ 1)s
(†)

for Re (s) > 0 and by analytic continuation to C. The integral representation of equation
(†) for Re (s) > 0 is given by

β(s) =
1

Γ(s)

∫ ∞

0

ts−1

et + e−t
dt ,

where Γ is the gamma function.

(a) The Hankel representation is defined as

β(s) =
Γ(1− s)

2πi

∫ (0+)

−∞

ts−1

et + e−t
dt. (‡)

Draw a diagram to show the integration contour implied by the limits of the integral
in equation (‡). Show that this representation gives an analytic continuation of β(s) as
defined by equation (†) to all s ∈ C.

[You may assume that Γ(s)Γ(1− s) = πcosec (πs).]

(b) Use equation (‡) to evaluate β(0) and β(−2). Show that if n is a non-negative
integer then β(−2n− 1) = 0.

(c) Consider the poles of the integrand of equation (‡) on the imaginary axis, except
for the pole at t = 0, if it exists. For what conditions on s does the sum of the residues
at these poles converge? Assume that under these conditions it may be shown that the
integral in equation (‡) is equal to the sum of the residues multiplied by −2πi. Deduce
the reflection formula

β(1− s) = Γ(s)
(π
2

)−s
sin

(sπ
2

)
β(s),

explaining carefully why this formula is valid for all s ∈ C.

Part II, Paper 1 [TURN OVER]



10

15E Cosmology
(a) Consider the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric with co-

moving curvature constant k (not normalised to unity),

ds2 = −c2dt2 + a(t)2
[

dr2

1− k r2
+ r2(dθ2 + sin2 θdϕ2)

]
.

(i) Briefly comment on the three geometries described by this metric and, in
each case, calculate the proper distance between the points r = 0 and
r = ∆r along curves with dt = dθ = dϕ = 0.

(ii) For each geometry give new time and radial coordinates τ and χ that
transform the metric to

ds2 = a2(τ)
[
−c2dτ2 + dχ2 + f2(χ)(dθ2 + sin2 θdϕ2)

]
,

where the function f(χ) should be specified. Along which trajectories do
radial light rays (dθ = dϕ = 0) propagate in these coordinates?

(b) For an FLRW universe with vanishing cosmological constant the Friedmann and
continuity equations are(

ȧ

a

)2

+
kc2

a2
=

8πG

3c2
ρ , ρ̇ = −3

ȧ

a
(ρ+ P ) ,

where ρ is the energy density, P is the pressure and ȧ = da
dt . Consider an open universe

(k < 0) filled with dark energy ‘quintessence’, which has an equation of state P = −2
3ρ.

At t = t0 we take ρ(t0) = ρ0 and a(t0) = 1.

(i) Use the continuity equation to determine the rate at which the energy
density falls as the universe expands and show that(

ȧ

a

)2

=
γ

a
+
β

a2
,

where γ and β are positive parameters you should determine.

(ii) Solve the Friedmann equation for initial conditions a(0) = 0 to find the
scale factor a(t) = t(

√
β + γt/4).

(iii) Calculate the age of the universe t0 when a(t0) = 1. Compare t0 with the
inverse Hubble parameter H−1

0 at t0 in the limiting cases β ≫ γ and γ ≫ β.

(iv) Our present universe is observed to be accelerating, through measurements
of the deceleration parameter q0 ..= −ä(t0) a(t0)/ȧ(t0)2 ≈ −0.55. Can the
quintessence model outlined in this part of the question have q0 ⩽ −0.5 for
any parameter values?

Part II, Paper 1
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16H Logic and Set Theory
In this question, an ordinal is a transitive set well-ordered by ∈.

(a) Explain briefly why for every well-ordered set (a, r) there is a unique ordinal
isomorphic to (a, r), the order-type of (a, r).

(b) Let α < β be ordinals, and let γ be the order-type of the interval

β\α = {δ ∈ ON : α ⩽ δ < β}.

Explain briefly why α+ γ = β.

(c) What is the order-type of the interval ω1\ω? Justify your answer.

(d) Let α be a non-zero ordinal. Show that α = ωδ · n + η for ordinals δ, n and η
such that 1 ⩽ n < ω and η < ωδ.

(e) Let δ be an ordinal, and assume that ωδ = X ∪ Y . Show that at least one of X
and Y has order-type ωδ.

(f) Let α = X ∪ Y be a non-zero ordinal with both X and Y having order-type β.
Using (d) and (e) or otherwise, show that α < β+β+β. Is it always true that α < β+β?
Give a proof or counterexample.

17F Graph Theory
(a) State Menger’s theorem for a graph G. Define the connectivity κ(G) of G. State

and deduce the vertex form of Menger’s theorem from Menger’s theorem.

Let k ⩾ 2. Show that every k-connected graph of order at least 2k contains a cycle
of length at least 2k.

(b) Suppose G is a graph with |G| > 1. Define the edge connectivity λ(G) of G.
Let δ(G) be the minimum degree of G. Prove that

δ(G) ⩾ λ(G) ⩾ κ(G).

Let d, ℓ and k be any three positive integers with d ⩾ ℓ ⩾ k. Show that there exists
a graph G with δ(G) = d, λ(G) = ℓ and κ(G) = k.
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18J Galois Theory
Let K be a field containing a primitive cube root of unity ω. Consider the cubic

polynomial f(X) = X3 + aX + b ∈ K[X] with roots α1, α2, α3 in a splitting field. Let
g(X) = (X − u3)(X − v3) where u = α1 + ωα2 + ω2α3 and v = α1 + ω2α2 + ωα3.

(a) Define the discriminant of a monic polynomial, and show that

Disc(g) = −27Disc(f).

Write uv and u3 + v3 as polynomials in a and b. Hence, or otherwise, compute a formula
for Disc(f) in terms of a and b.

(b) Show that there is a formula in terms of radicals for the roots of a cubic
polynomial.

(c) Compute the Galois groups of the following polynomials, stating carefully any
results from the course that you use:

X3 − 21X − 22, X3 − 21X − 28, X3 − 21X − 34.

19J Representation Theory
Let G be the (infinite) group generated by two elements r and t such that

trt−1 = r−1, t2 = 1 and with all other relations a consequence of these.

(a) Let V be a finite dimensional complex representation of G. Show that if V is
irreducible, then dimV ⩽ 2.

(b) Find all one dimensional complex representations of G, and find all irreducible
two dimensional complex representations of G up to isomorphism.

(c) For every positive integer n ⩾ 3, there is a surjective homomorphism G → D2n

to the dihedral group of order 2n. Using this, we can regard a representation of D2n as a
representation of G. Which of the irreducible finite dimensional representations of G do
not arise in this way?

(d) Show that the following 2×2 matrices can be used to construct a two dimensional
representation ofG containing a one dimensional subrepresentation that has noG-invariant
complement:

A =

(
1 0
0 −1

)
, B =

(
1 1
0 1

)
.
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20G Number Fields
(a) Let f(X) be a monic polynomial with algebraic integer coefficients. Prove that

the roots of f are algebraic integers. [You may use without proof the characterization
of algebraic integers in terms of finitely generated modules, provided you state the result
precisely.]

(b) Determine the ring of integers OK in the fieldK = Q(
√
17). Justify your answer.

(c) Let α =
√

4 +
√
17. By computing NK|Q(α

2), or otherwise, show that α /∈ K.

(d) With α as in part (c), let L = Q(α). Show for β ∈ L that β ∈ OL if and only if
NL|K(β) ∈ OK and TrL|K(β) ∈ OK .

(e) Show that, if a+ bα ∈ OL for some a, b ∈ K, then 2a ∈ OK and 2b ∈ OK .

21F Algebraic Topology
State the Mayer-Vietoris theorem for a simplicial complex K which is the union of

subcomplexes M and N .

Let K be a non-empty simplicial complex in Rm, where we consider Rm as
lying in Rm+2 via the vectors (x1, . . . , xm, 0, 0). Let c1 = (0, . . . , 0, 1, 0) ∈ Rm+2,
c2 = (0, . . . , 0, 0, 1) ∈ Rm+2 and c3 = (0, . . . , 0,−1,−1) ∈ Rm+2. Let L be the collection
of simplices in Rm+2 given by

L := K ∪ {⟨v0, v1, . . . , vn, ci⟩ | ⟨v0, v1, . . . , vn⟩ ∈ K, i = 1, 2, 3}.

Show that L is a simplicial complex.

[You may use any results from lectures provided they are clearly stated.]

22I Linear Analysis
(a) Let X be a Banach space.

(i) Define the dual space X∗ of X, and show that it is a Banach space.

(ii) Find, with proof, the dual of lp for each 1 < p <∞.

(iii) Describe, without proof, the duals of l1 and c0.

(b) Let c denote the space of convergent real sequences, with the supremum norm.
Is c isomorphic to c0? Justify your answer.
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23H Analysis of Functions
[You may use results from Linear Analysis and Probability and Measure without

proof provided they are clearly stated.]

(a) Let µ and ν be finite measures on a measurable space (E, E) that are mutually
absolutely continuous.

(i) Show carefully that there exists a µ-integrable function w : E → [0,∞] such
that ν(A) =

∫
Aw dµ for every A ∈ E .

(ii) For which values of 0 < p < ∞ must
∫
E |w|p dµ be finite? Justify your

answer.

(b) Let νn be a sequence of probability measures on (E, E) for n ⩾ 1. Does there
always exist a probability measure µ on (E, E) such that all νn are absolutely continuous
with respect to µ? Give a proof or counter-example.

24G Riemann Surfaces
Give the definition of a Riemann surface.

If R is a Riemann surface, show that any open connected subset of R is also a
Riemann surface. Show also that if z1, . . . , zp ∈ R then R \ {z1, . . . , zp} is a Riemann
surface. Can it happen that a Riemann surface R with a countably infinite set of points
removed is still a Riemann surface?

Which of the following topological spaces can be given the structure of a Riemann
surface? Justify your answers.

(i) The unit sphere S2 = {(x, y, z) |x2 + y2 + z2 = 1} in R3.

(ii) The set X of points {(x, y, x/
√
x2 + y2, y/

√
x2 + y2)} in R4 where x and y

are not both zero.

(iii) The set Y of points {(z, w) ∈ C× C | zw − 2iw − iz − 2 = 0}.
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25J Algebraic Geometry
Define what it means to be a rational map between irreducible projective varieties.

Define what it means to be a regular point of a rational map between irreducible projective
varieties.

Consider the rational map φ : P2 99K P2 given by

(x : y : z) 7→ (xy : xz : z2).

Show that φ is not regular at the points (0 : 1 : 0), (1 : 0 : 0) and is regular at every
other point. Show that φ is a birational map which is an isomorphism on P2 \Z(xyz), the
complement of the union of the coordinate hyperplanes.

Let V ⊂ P2 be the subvariety given by the vanishing of x2z4 − x3y3 + z6. Show
that V is irreducible, and that φ determines a birational equivalence between V and a
non-singular plane cubic.

26I Differential Geometry
(a) Define the terms critical point, critical value and regular value. Let A ∈ Sn(R)

be a symmetric n × n matrix with real entries and f : Rn → R the map f(X) = XTAX
for a column vector X ∈ Rn. Show that f has only one critical value. Can it have more
than one critical point? Justify your answer.

(b) Let M2n(R) be the set of 2n × 2n matrices with real entries, and Spn(R) ⊂
M2n(R) the set of matrices A such that ATJA = J with J := ( 0n Idn

−Idn 0n
). Prove that

Spn(R) is a submanifold of M2n(R) with dimension 2n2 + n.

[You can use the pre-image theorem if properly stated.]

(c) Let Gr1,3(R) be the set of 3× 3 symmetric matrices with real entries P so that
P 2 = P and Trace(P ) = 1.

(i) Prove that Gr1,3(R) is a submanifold of S3(R) with dimension 2.

[Hint: You might want to first prove that given P ∈ Gr1,3(R), there exists
X ∈ R3 such that the solutions to P = Y Y T with |Y |2 = 1 for the Euclidean
norm are exactly Y ∈ {X,−X}. Then use this fact to construct local
parametrisations.]

(ii) Does Gr1,3(R) admit a global parametrisation by an open subset of R2?
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27H Probability and Measure
Let (Xj)j⩾1 be a sequence of independent real random variables with uniform density

pXj =
1
2j1[−j,j]. Let Sn = X1 + · · ·+Xn.

(a) State Lévy’s theorem from the lectures.

(b) Show that the characteristic function of n−3/2Sn satisfies

Φn−3/2Sn
(ξ) =

n
3n
2

ξnn!

n∏
j=1

sin

(
jξ

n3/2

)
.

(c) Show that n−3/2Sn converges in law to a limit to be determined.

[Hint: You can use the formula
∑n

j=1 j
2 = n(n+ 1)(2n+ 1)/6.]

(d) Let σ2j be the variance of Xj . Show that
(∑n

j=1 σ
2
j

)−1/2
Sn converges in law to

a limit to be determined.

28L Applied Probability
Let (Xt, t ⩾ 0) be a Poisson process on R+ with rate λ > 0.

(a) Assuming the infinitesimal definition of a Poisson process, find the distribution
of Xt.

(b) Now condition on the event Xt = n for some t > 0 and n ∈ N. What is the
probability that the last jump before t occurs before 3t/4? What is the distribution of the
number of jumps between t/4 and 3t/4?

(c) Suppose (Xt, t ⩾ 0) describes the arrival of particles into a system. Each particle
then lives for a length of time that is independent of the arrival process and independent
of the lives of other particles. The particle lifespans are exponentially distributed with
mean 1/µ. Find the distribution of the number of particles alive at time t.

[Clearly state all results you use. You may use that if N is a Poisson(λ) random
variable, then E(eθN ) = exp(λ(eθ − 1)).]

Part II, Paper 1



17

29L Principles of Statistics

(a) Suppose real-valued random variables ψ̂1, ψ̂2, . . . satisfy
√
n(ψ̂n − ψ)

d→ N(0, v)
as n → ∞ for v > 0 and deterministic ψ ∈ R. Suppose ϕ : R → R is continuously
differentiable at ψ. Write down the asymptotic distribution of

√
n(ϕ(ψ̂n) − ϕ(ψ)). [No

proof is necessary.]

(b) Suppose we have data X1, . . . , Xn
i.i.d.∼ Exp(θ) with rate θ > 0.

(i) Find the maximum likelihood estimator (MLE) θ̂n for the rate θ.

(ii) Without appealing to the general theory for MLEs, obtain, with justifica-
tion, an asymptotic confidence interval Ĉn for θ centred on θ̂n that satisfies
Pθ(θ ∈ Ĉn) → 1− α as n→ ∞ for a given α ∈ (0, 1).

(c) Now suppose that rather than observing the random variables Xi as in part (b),
we instead only observe data Y1, . . . , Yn where Yi = ⌊Xi⌋ is the greatest integer less than
or equal to Xi.

(i) Show that the MLE θ̃n for θ based on the data Y1, . . . , Yn is given by

θ̃n = log

(
1 + Ȳ

Ȳ

)
.

(ii) Without appealing to the general theory for MLEs, obtain, with justifica-
tion, the asymptotic distribution of

√
n(θ̃n − θ).

[Hint: Recall that if random variable Z follows a geometric distribution
supported on {0, 1, 2, . . .} with success probability p, then EZ = (1 − p)/p
and Var(Z) = (1− p)/p2.]
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30K Stochastic Financial Models
Let Z be a square-integrable random vector in Rn with E(Z) = b and Cov(Z) = V .

Assume that the n× n matrix V is positive definite.

(a) Find the vector θ ∈ Rn to maximise E(X)− 1
2Var(X) subject to X = θ⊤Z.

(b) Let θM be the maximiser from part (a). Consider the problem of maximising
F (E(X),Var(X)) subject to X = θ⊤Z, where F (·, σ2) is strictly increasing for all σ2 and
F (m, ·) is strictly decreasing for all m. Assuming that a maximiser θ∗ exists, show that it
is of the form θ∗ = λ θM where λ is a non-negative real number.

(c) Set XM = θ⊤MZ. For real constants α and β and for vectors φ ∈ Rn, consider
the expression

E[(α+ βXM − Y )2]

where Y = φ⊤Z. For any fixed φ, find the values α and β that minimise this expression,
and show that the minimum equals φ⊤Qφ for a symmetric matrix Q that you should
identify.

31L Mathematics of Machine Learning
Consider i.i.d. random variables (X1, Y1), . . . , (Xn, Yn) taking values in X ×{−1, 1}

and a convex surrogate loss (x, y) 7→ ϕ(yh(x)).

(a) Define the empirical Rademacher complexity, R̂(H(x1:n)), and the Rademacher
complexity, Rn(H), for a class of functions H mapping X to R. State the contraction
lemma for the Rademacher complexity.

(b) Fix s > 0. Let S ⊆ Rd×d be the set of symmetric, positive semidefinite matrices
with eigenvalues λ1 ⩾ λ2 ⩾ . . . ⩾ λd satisfying

∑d
i=1 λi ⩽ s. Show that S is a convex set.

(c) Suppose that X = {x ∈ Rd : ∥x∥2 ⩽ C}, and let H = {x 7→ xTMx : M ∈ S}.
Prove that

Rn(H) ⩽
C2s√
n
.

[Hint: If A ∈ Rd×d is a symmetric matrix with eigenvalues α = (α1, . . . , αd), then
Tr(ATA) = ∥α∥22.]

(d) Let ĥ minimise the empirical risk R̂ϕ(h) over h ∈ H, where ϕ is the hinge loss.
Let h∗ be the minimiser of the risk Rϕ(h) over h ∈ H. Quoting any necessary result from
the course, deduce that

ERϕ(ĥ)−Rϕ(h
∗) ⩽

K√
n
,

for a constant K which you must specify.
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32A Dynamical Systems
(a) Define a Lyapunov function for the system ẋ = f(x) around a fixed point at the

origin. State both the first and second Lyapunov Theorems and prove the first.

(b) Consider the system

ẋ = −x+ 2x2 + y2 + xy2,

ẏ = −y + 4x2 + 2y2 − 2x2y.

(i) Show that the fixed point at the origin is asymptotically stable.

(ii) Show that the basin of attraction of the origin includes the region

12x2 + 6y2 < 1.

(iii) Can the strict inequality in part (ii) be extended to include equality? Justify
your answer, stating carefully any results you need.

33D Integrable Systems
(a) Let U, V and Φ be n× n matrices that depend on x and y and satisfy

∂xΦ+ UΦ = 0, ∂yΦ+ V Φ = 0.

Find a compatibility condition for this system of linear partial differential equations that
involves only U and V .

(b) Let n = 3 and take

U =

∂xu 0 λ
1 −∂xu 0
0 1 0

 , V =

 0 e−2u 0
0 0 eu

λ−1eu 0 0

 ,

where λ is a constant parameter and u = u(x, y). Show that in this case the compatibility
conditions hold if u satisfies a partial differential equation of the form

∂x∂yu = F (u), (†)

for some function F (u) which should be determined.

(c) Find a one-parameter group of transformations Gα generated by the vector field
x∂x−αy∂y, where α is a constant, and determine the value of α for which Gα is a symmetry
group of the partial differential equation (†).

(d) For this value of α, find an ordinary differential equation characterising solutions
to equation (†) that are invariant under Gα.
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34C Principles of Quantum Mechanics
(a) A Fermi oscillator has Hilbert space H = C2 and Hamiltonian H = B†B, where

B2 = 0 and B†B +BB† = 1.

(i) Find the eigenvalues of H.

(ii) If |1⟩ is a state obeying H|1⟩ = |1⟩ and ⟨1|1⟩ = 1, find B|1⟩ and B†|1⟩.

(iii) Obtain a matrix representation of the operators B, B† and H.

(b) Now consider a composite system comprised of two decoupled Fermi oscillators,

with Ha = B†
aBa for a = 1, 2. The Hamiltonian of the composite system is Htot =

E1B
†
1B1 + E2B

†
2B2 where E1,2 are non-negative real numbers.

(i) Determine the exact eigenvectors and eigenvalues of Htot.

(ii) Write Htot, B1,2 and B†
1,2 as matrices in the basis of energy eigenvectors.

(iii) Assuming E1 ≪ E2 and treating E1B
†
1B1 as a small perturbation to the

unperturbed Hamiltonian H
(0)
tot = E2B

†
2B2, determine the eigenvectors and

eigenvalues of Htot to first order in perturbation theory. Discuss how your
derivation relates to degenerate perturbation theory.

(c) Finally assume E1 = 0 and E2 > 0, and consider the new Hamiltonian

H̃tot = E2B
†
2B2 + g(B1 +B†

1)

where g is a real constant.

(i) Determine the exact eigenvectors and eigenvalues of H̃tot.

(ii) Treating g(B1+B
†
1) as a small perturbation to the unperturbed Hamiltonian

H̃
(0)
tot = E2B

†
2B2, determine the eigenvectors and eigenvalues of H̃tot to

first order in perturbation theory. Discuss how your derivation relates to
degenerate perturbation theory.
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35B Applications of Quantum Mechanics
In this question you will study a one-dimensional particle of mass m governed by

the Schrödinger equation,

− ℏ2

2m

d2ψ

dx2
+ V (x)ψ(x) = E ψ(x) ,

where V (x) is a one-dimensional potential with V (x) → 0 as x → ±∞, and E > 0 is the
energy of the particle.

(a) For a particle incident from the negative x-direction, show that

ψ(x) = eikx − im

ℏ2k

∫ ∞

−∞
dx′eik|x−x′|V (x′)ψ(x′) (∗)

solves the Schrödinger equation, where k =
√
2mE/ℏ.

(b) Consider the following potential

V (x) = −λ [δ(x+ a) + δ(x) + δ(x− a)] ,

where a > 0, λ > 0 are constants and δ(x) is the Dirac delta function. For this potential,
write down a solution to the Schrödinger equation using equation (∗). Write explicitly
the set of three algebraic equations determining ψ(a), ψ(0), and ψ(−a), and express these
equations in matrix form.

By inspecting the asymptotic solution at x → +∞ and writing it as S++e
ikx, find

the scattering amplitude S++(k) in terms of ψ(a), ψ(0), and ψ(−a).

Show that solutions to the algebraic equation

1− γ − 2e−2ika (1 + γ) + e−4ika (1 + γ)3 = 0

correspond to singularities of S++, where γ = ikℏ2/(λm). By looking at limiting values of
a, argue that there are solutions to this algebraic equation on the imaginary k axis. What
is the interpretation of these singularities?
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36C Statistical Physics
(a) What is the definition of a partition function? Explain why this quantity is

useful to calculate.

(b) A spherical, hard planet with surface area A has an ideal-gas atmosphere
consisting of N atoms, each with mass m and no internal degrees of freedom. The
Hamiltonian for each atom is

H =
p2

2m
+mgz,

where z > 0 is the height above the surface. Assume that the gravitational acceleration
g is a constant and that the density of the gas becomes negligible at a height which is
still small compared to the radius of the planet. The gas is in thermal equilibrium at
temperature T . Calculate the following quantities for the atmosphere:

(i) The expected total energy ⟨E⟩ and the fractional fluctuations ∆E/⟨E⟩.

(ii) The average height ⟨z⟩ of an atom and the atmospheric pressure p(z)
considered as a function of height.

(iii) The entropy S, using the approximate form of Stirling’s formula,

lnN ! ≈ N lnN −N.

Express your final answer in terms of the thermal wavelength λ =

√
2πℏ2
mkBT

,

as well as the variables A, N , and ⟨z⟩. Comment on its relation to the
Sackur-Tetrode equation for a gas in a box of volume V ,

S = Nk

(
ln

V

λ3N
+

5

2

)
.
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37B Electrodynamics
A relativistic particle of mass m and charge q moves with four-velocity uµ in the

presence of a background electromagnetic field with field-strength tensor Fµν according to
the Lorentz force law,

duµ

dτ
=

q

m
Fµ

νu
ν .

Here τ is the proper time.

Assume that the electric and magnetic fields E and B are constant and homogenous
and that the particle starts from rest at the origin x = 0 at time t = 0 in some inertial
frame. Find the subsequent trajectory of the particle, giving its spacetime position (ct,x)
explicitly as a function of τ , in the following special cases:

(i) E = (E, 0, 0) and B = 0.

In this case consider a light signal directed along the positive x-axis emitted
from the point x = (−h, 0, 0) at time t = 0, where h > 0. Find the time
taken for the light signal to catch up with the particle and show that it never
catches the particle if h exceeds a critical value that you should determine.

(ii) E = (E, 0, 0) and B = (0, 0, E/c).

In this case you should show that the particle trajectory lies on a cubic
curve in the (x, y) plane that you should determine explicitly.
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38E General Relativity

The metric for a spherically symmetric static spacetime has line element

ds2 = −
(
1 +

r2

a2

)
dt2 +

(
1 +

r2

a2

)−1

dr2 + r2
(
dθ2 + sin2 θ dϕ2

)
,

where −∞ ⩽ t ⩽ ∞, r ⩾ 0, 0 ⩽ θ ⩽ π, 0 ⩽ ϕ ⩽ 2π, a is a positive constant, and units are
chosen with c = 1.

(a) Consider a time-like geodesic parametrised by proper time τ , with dots denoting
differentiation with respect to τ . Find the Euler-Lagrange equation corresponding to the
θ coordinate and explain why the geodesic may be assumed to lie in the equatorial plane
θ = π/2, without loss of generality. For such a geodesic, show that

1

2
ṙ2 + V (r) =

1

2

(
E2 − 1− h2

a2

)
,

where E =
(
1 + r2/a2

)
ṫ and h = r2ϕ̇ are constants of the motion and V (r) is a function

you should determine.

(b) Show that a massive particle fired from the origin, r = 0, attains a maximum
value of the radial coordinate, r = rmax, before returning to r = 0, and find the proper
time this journey (from r = 0 to rmax and back) takes.

(c) Show that circular orbits with r = r0 are possible for any r0 > 0 and determine
whether such orbits are stable. Show further that, on such an orbit, a clock measures
coordinate time.
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39D Fluid Dynamics
(a) State the principle of reversibility for Stokes flow.

(b) Consider a rigid cylinder falling downwards at zero Reynolds number near to a
rigid, vertical wall. The cylinder’s axis is horizontal and parallel to the wall (that is, it
is perpendicular to both the direction in which the cylinder falls and the normal of the
wall). Use part (a) to argue that the cylinder cannot migrate towards or away from the
wall as it falls, but it may rotate around its axis.

(c) Suppose the cylinder in part (b) has radius a, falls with speed V and rotates
with angular speed Ω. Its minimum distance from the wall is h0 ≪ a.

(i) Use geometrical arguments to show that the horizontal gap h(x) between the
wall and the cylinder satisfies h(x) ≈ h0

[
1 + x2/(2ah0)

]
for |x| ≪ a, where x

is the vertical distance above the axis of the cylinder.

(ii) Use lubrication theory to determine the velocity and hence the vertical flux
of fluid between the wall and the cylinder in terms of the vertical pressure
gradient. Given that the pressure is equal to the uniform ambient pressure
ahead of and behind the cylinder, determine the vertical flux in terms of V , Ω,
a and h0.

[Hint: Use a frame of reference in which the cylinder has no vertical motion.]

(iii) Given that the forces on the cylinder are dominated by those in the narrow gap
between it and the wall, and that there is no torque applied to the cylinder,
show that, in fact, the cylinder does not rotate.[
Hint: You may quote the following integrals:

∫ ∞

−∞

dt

1 + t2
= π,

∫ ∞

−∞

dt

(1 + t2)2
=
π

2
,

∫ ∞

−∞

dt

(1 + t2)3
=

3π

8
.

]
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40A Waves
Consider small and smooth perturbations of a compressible and homentropic fluid

with reference density ρ0, pressure p0, and sound speed c0.

(a) Using the linearized mass and momentum conservation equations, show that the
velocity potential ϕ satisfies the wave equation.

(b) Hence derive the energy equation

∂E

∂t
+∇ · I = 0,

and give expressions for the acoustic energy density E and the acoustic energy flux I.

(c) The fluid occupies the half space z > 0, and is bounded by a flexible membrane
of negligible thickness and mass at an undisturbed position z = 0. Small, smooth
acoustic perturbations in the fluid with velocity potential ϕ(x, z, t) deflect the membrane
to z = η(z, t). The membrane is supported by springs that, in the deflected state, exert a
restoring force µη per unit area on the membrane, where µ is a constant.

(i) Show that waves proportional to exp[ik(x−ct)] and propagating freely along
the membrane possess the dispersion relation

A2

(
c

c0

)4

+

(
c

c0

)2

− 1 = 0,

where A is a dimensionless parameter that you must determine.

(ii) Show that the wave’s time-averaged acoustic energy flux perpendicular to
the membrane ⟨Iz⟩ is zero, where you must carefully define the average ⟨·⟩.

(iii) Derive approximate expressions for the phase speed c in the two limits
A≪ 1 and A≫ 1, and briefly interpret the two limits.

Part II, Paper 1



27

41D Numerical Analysis
(a) Show that if A ∈ Rn×n is symmetric, there exists a symmetric and tridiagonal

matrix H ∈ Rn×n that has the same eigenvalues as A, and that can be computed in finitely
many arithmetic operations from the matrix elements of A.

(b) The standard QR algorithm (without shifts) is applied to a symmetric and
tridiagonal matrix H. For k = 0, 1, 2, ..., let Hk be the kth iteration of the QR algorithm

and recall that Hk+1 = Q
T
kHQk, where Qk is orthogonal and QkRk is the QR factorization

of Hk+1 (that is, the (k + 1)th power of H).

Suppose that the eigenvalues λi (i = 1, ..., n) of H satisfy |λ1| < |λ2| < · · · <
|λn−1| = |λn|, and let the corresponding normalised eigenvectors of H be w1,w2, . . . ,wn.
Suppose also that the first two canonical basis vectors, e1 and e2, can be written as
e1 =

∑n
i=1 biwi and e2 =

∑n
i=1 ciwi where bi and ci (i = 1, . . . , n) are non-zero constants.

(i) Show that if (H/λn)
ke1 → v1 and (H/λn)

ke2 → v2 as k → ∞, then v1 and
v2 are linear combinations of wn−1 and wn.

(ii) Let h
(k)
3,2 be the matrix element of Hk at the 3rd row and 2nd column. Show

that h
(k)
3,2 → 0 as k → ∞.

END OF PAPER
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