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SECTION I

1F Linear Algebra
Let V be a vector space and α : V → V a linear map. What is the dual space V ∗?

If B is a finite basis of V , define what is meant by the dual basis B∗ of V ∗ and prove that
B∗ is indeed a basis.

[No result about dimensions of dual spaces may be assumed.]

Let V = P2 be the space of real polynomials of degree at most 2 and consider the
linear maps from P2 to R

f0(p) = p(0), f1(p) =

∫ 1

0
p(t)dt, f2(p) =

∫ 0

−1
p(t)dt.

Show that f0, f1, f2 form a basis of P ∗
2 by exhibiting the basis of P2 to which it is dual.

[You may assume that {1, t, t2} is a basis of P2.]

2G Analysis and Topology
Let X be a complete, non-empty, metric space and T : X → X. What does it mean

to say that T is a contraction? State and prove the contraction mapping theorem.

Suppose that the nth iterate of T (i.e. T applied repeatedly n times), Tn, is a
contraction for some n > 0. Must T have a fixed point? If so, must it be unique?

3E Complex Analysis
State and prove the local maximum modulus principle. You may assume the mean

value property for holomorphic functions provided it is clearly stated.

Let D = {z ∈ C : |z| < 1}, and suppose f : D → D is a holomorphic function
satisfying f(0) = 0. Show that if Re f(z) ⩽ Im f(z) for all z ∈ D then f must be
constant. [You may find it helpful to consider eaf(z), where a is a constant to be chosen.]

4C Quantum Mechanics
A quantum particle of mass m is confined to move inside the rectangular box

{(x, y, z) : 0 ⩽ x ⩽ a , 0 ⩽ y ⩽ b , 0 ⩽ z ⩽ c }.

Derive the energy eigenvalues and eigenfunctions under the assumption that a < b < c.
(You need not normalize the eigenfunctions.)

What is the degeneracy of the ground state, i.e., the dimension of the eigenspace
corresponding to the lowest energy eigenvalue, and similarly for the next to lowest energy
eigenvalue (the first excited state)?

How do your conclusions change if a < b = c?
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5B Electromagnetism
Beginning with the Maxwell equations in vacuum, derive a wave equation for the

electric field E and show the plane wave of the following form is a solution:

E(x, t) = Re
(
E0 e

i(k·x−ωt)
)
, with k ·E0 = 0 ,

where k and E0 are constant vectors. Give an expression relating ω and k. Find the
corresponding plane wave solution for the magnetic field B.

Consider the specific solution

E = E0

(
0,

1√
2
,

1√
2

)
cos(kx− ωt) ,

for which you should state the wavevector direction and the polarisation vector. Calculate
the corresponding Poynting vector S = (1/µ0)E×B and its time-average. Briefly explain
its meaning.

6A Numerical Analysis
Consider the quadrature formula∫ 1

0
f(x)x dx ≈

1∑
i=0

aif(xi), xi ∈ [0, 1], f ∈ C[0, 1], (∗)

which is exact for polynomials of degree 1.

(a) For i = 0, 1, find expressions for the weights ai in terms of the nodes x0, x1.

(b) Define what it means for (∗) to be a Gaussian quadrature, and determine the
numerical values of the nodes x0, x1 in that case.

7H Markov Chains
Consider a Markov chain (Xn)n⩾0 on the state space {1, 2, 3, 4} with transition

matrix

P =


1/2 0 1/2 0
0 1/3 0 2/3
1/3 0 1/3 1/3
0 1/4 0 3/4


(a) List the communicating classes of the chain. For each class say whether it is open or
closed.

(b) Find limn→∞ Pn.
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SECTION II

8F Linear Algebra
Let Q be a quadratic form on a real vector space. What is the symmetric bilinear

form associated to Q and why does it exist? Define what it means for a symmetric bilinear
form to be positive semi-definite and positive definite.

State and prove Sylvester’s law of inertia, stating clearly any auxiliary result on the
diagonalization of real quadratic forms that you require.

Let ϕ be a non-degenerate, symmetric bilinear form on a 2n-dimensional real vector
space V and suppose that ϕ(v, v) = 0 for all v in a k-dimensional subspace E of V . Show
that k ⩽ n.

Given two real quadratic forms f(x) =
∑n

i,j=1 aijxixj and g(x) =
∑n

i,j=1 bijxixj , let
(f, g) denote the quadratic form

(f, g)(x) =

n∑
i,j=1

aijbijxixj .

Let a quadratic form l2(x) = (
∑n

i=1 lixi)
2 be the square of a real linear function.

Determine the rank and signature of the quadratic forms l2 and (l2, s2), where s(x) =∑n
i=1 sixi is another real linear function.

Deduce that if f and g are positive semi-definite quadratic forms, then so is (f, g).
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9E Groups, Rings and Modules
(a) A module M for a ring R is called irreducible if the only submodules N ⊆ M

are 0 and M .

(i) Show that a module M is irreducible if and only if for all m ∈ M , m ̸= 0,
the map R→M , r 7→ rm is surjective.

(ii) Let I = {r ∈ R | rm = 0 for all m ∈ M}. Show that if M is irreducible,
R/I is a field.

(b) Let V be a finite dimensional vector space over a field k, and φ : V → V a
k-linear map.

A subspace W ⩽ V is indecomposable if φ(W ) ⊆ W , and W can not be written as
a direct sum W ′ ⊕W ′′, with W ′ ̸= 0,W ′′ ̸= 0, φ(W ′) ⊆W ′, φ(W ′′) ⊆W ′′

(i) State the primary decomposition theorem for modules over a Euclidean
domain, and explain how it gives a decomposition

V = ⊕Vα,

where each summand is indecomposable.

Describe the minimal polynomial and the characteristic polynomial of φ in
terms of this decomposition.

(ii) Now suppose k = R. List the prime ideals in R[x].
For each prime ideal I in R[x] and n > 0 write an explicit matrix A that
represents the action of x on R[x]/In.

(iii) Let B =



0 1 0 0 0 0
−1 0 1 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 −2
0 0 0 0 1/2 0

.

Give the explicit normal form for B : R6 → R6 that you have described in
part (ii).
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10G Analysis and Topology
State what it means for a function f : Rn → Rm to be differentiable at x ∈ Rn, and

define the differential Df |x. You need not establish the uniqueness of the differential.

State the inverse function theorem.

LetM = Mat(n×n) be the space of real square matrices with n rows and n columns,
which can be identified with Rn2

. Consider the function F : M → M given by

F (A) = ATA.

Briefly explain why F is differentiable at A for all A ∈ M and determine DF |A. What is
KerDF |I?

Let O = {R ∈ M : RTR = I} and T = {B ∈ M : BT + B = 0}, each inheriting
their topology as a subspace of M.

By considering the map A 7→ F (A)+A−AT −I, or otherwise, show that there exist
open sets U, V ⊂ M with I ∈ U and 0 ∈ V , together with a continuously differentiable
bijection Φ : U → V , with continuously differentiable inverse, satisfying Φ(U∩O) = V ∩T .

Deduce that every point in O has an open neighbourhood which is homeomorphic
to an open set in T .

11E Geometry
(a) Define the disc model (D, gdisc) and the upper half-plane model (h, gh) for the

hyperbolic plane, and show that they are isometric.

If g =

(
a b
c d

)
∈ SL2(R), then g induces an isometry of h. What is the matrix of

the corresponding isometry of D?

(b) Define what is meant by a hyperbolic triangle in the hyperbolic plane, its vertices,
and ideal vertices.

Let ∆ be a hyperbolic triangle with only ideal vertices. What are its internal angles?
Compute the area of ∆.

Compute the area of a hyperbolic triangle with internal angles α, β, γ.

For fixed α, β, γ < π, show that SL2(R) acts transitively on the set of triangles
with these internal angles.
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12A Complex Methods
Recall the Heaviside function

H(t) :=

{
1, t ⩾ 0

0, t < 0
, t ∈ R,

and recall that a function h : R+ = [0,∞) → R is said to be T > 0 periodic if
h(t+ T ) = h(t) for all t ∈ R+.

(a) Let f : R+ → R be a bounded continuous function. Show that for any real number
α ⩾ 0,

L{f(t− α)H(t− α)}(s) = e−αsF (s), s > 0,

where L{f(t)}(s) = F (s) and L is the Laplace transform.

(b) Let g : R+ → R be continuous and T > 0 periodic, and define

gT (t) =

{
g(t), 0 ⩽ t ⩽ T

0, t > T
.

Show that

L{g(t)}(s) = L{gT (t)}(s)
1− e−sT

, s > 0.

(c) Find the Laplace transform of the periodic function h : R+ → R defined by

h(t) =

{
sin(t), 0 ⩽ t < π

0, π ⩽ t ⩽ 2π
, h(t+ 2π) = h(t), t ⩾ 0.
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13C Variational Principles
The equation of motion for a bead of mass m moving without friction on a cycloidal

shaped wire is the Euler-Lagrange equation for the functional

S[ϕ] =

∫ T

0

(
ma2(1− cosϕ)ϕ̇2 −mga(1 + cosϕ)

)
dt , T > 0 .

Write down the Euler-Lagrange equation for this functional, and show it implies that
u = cos(ϕ2 ) satisfies

ü+ ω2u = 0, (∗)

where ω2 is a positive number which you should find. [You should take m, g, a to be positive
constants.]

Using the change of dependent variable ϕ → u = cos(ϕ2 ), define a new functional

Ŝ[u] =
∫ T
0 f(u, u̇) dt such that Ŝ[u] = S[ϕ]; give a formula for f and give the Euler-

Lagrange equation for Ŝ. How is this equation related to (∗)?

Give the second variation functional δ2Ŝ(η), where the variation functions η vanish
at the endpoints t = 0 and t = T . Consider the solution u(t) = A cosωt of (∗) with fixed
endpoint conditions

u(0) = A, u(T ) = A cosωT,

on the interval 0 ⩽ t ⩽ T . By considering the orthonormal collection of functions

en(t) =

√
2

T
sin

nπt

T
,

find a number t0 such that A cosωt is a local minimizer of Ŝ if T < t0 but not for T > t0.

[Hint: you may assume all variations to be of the form η =
∑∞

n=1 cnen(t), and re-
arrange and interchange sums with derivatives as needed. Observe that ën = −(nπ/T )2en.]
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14D Methods
The function u(x, t) satisfies

∂2u

∂t2
= c2

∂2u

∂x2
on −∞ < x <∞

with

u(x, 0) = exp(−x2), ∂u

∂t
(x, 0) = 0,

where x is a space coordinate and t is time.

Define the spatial Fourier transform

ũ(k, t) =

∫ ∞

−∞
u(x, t)e−ikx dx,

and determine the differential equation and initial conditions satisfied by ũ(k, t). By
solving this differential equation, determine ũ(k, t) explicitly. Thence, by calculating an
appropriate integral, calculate u(x, t). Interpret your solution physically.
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15C Quantum Mechanics
(i) The angular momentum operators for a particle moving in three dimensional

space are

La = −iℏϵabcxb
∂

∂xc
.

Show that if f = f(r), where r2 = x21 + x22 + x23, is a smooth radial function, then if m,n
are nonnegative integers χm,n = (x1 + ix2)

mxn3f(r) satisfies L3χm,n = λχm,n for some λ
depending onm,n which you should find. Find an analogous relation for (x1−ix2)mxn3f(r).

(ii) The Hamiltonian for a particle moving in three spatial dimensions in a symmetric
harmonic potential V (x1, x2, x3) =

1
2mω

2(x21 + x22 + x23) =
1
2mω

2r2 is

HΨ = − ℏ2

2m

(
∂2Ψ

∂x21
+
∂2Ψ

∂x22
+
∂2Ψ

∂x23

)
+ V (x1, x2, x3)Ψ , (x1, x2, x3) ∈ R3 .

Find the lowest eigenvalue of H and its corresponding eigenfunction Ψ0. Next, find all the
eigenfunctions and eigenvalues of H, and determine the degeneracy of each eigenvalue, i.e.
the dimension of the corresponding eigenspace. (You are not required to normalize the
eigenfunctions.)

Find χ such that L3χ = 2ℏχ and Hχ = 7
2ℏωχ.

[Hint: in (ii) you may freely use the fact that the functions

ψn(x) = hn(x)e
−1
2x

2

,

where hn is the Hermite polynomial of degree n, constitute a complete orthogonal set and
satisfy

−1

2

∂2ψn

∂x2
+ 1

2x
2ψn = (n+ 1

2)ψn ,

∫
ψm(x)ψn(x)dx = 0 if n ̸= m.

Explicitly, the first three Hermite polynomials are given by

h0(x) = 1 , h1(x) = x and h2(x) = (2x2 − 1) . ]
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16D Fluid Dynamics
An infinite range of hills has elevation y = η(x) ≡ h cos kx in Cartesian coordinates

(x, y), where h and k are constants. High above the hills, the wind has uniform velocity
U = (U, 0). Assume that the air flow above the hills is a laminar, potential flow
u = U+∇ϕ.

Without approximation, write down the equation and boundary conditions satisfied
by ϕ. [Note that the vector n = (−ηx, 1) is normal to the surface.]

Now assume that both hk ≪ 1 and |∇ϕ| ≪ U . Describe these approximations in
physical terms.

Derive the linearised equation and boundary conditions satisfied by ϕ given these
approximations, taking care to explain all the approximations that you make.

Solve the linearised equations for ϕ, and use your solution to determine the difference
in pressure between the crests and troughs of the hills, assuming that the air has uniform
density ρ. What is the dominant physical reason for the pressure difference in the limits
(i) kU2/g ≪ 1 and (ii) kU2/g ≫ 1?

17H Statistics
Let X1, . . . , Xm and Y1, . . . , Yn be independent random variables. Assume Xi ∼

N(λ, 1) and Yj ∼ N(µ, 1) for each 1 ⩽ i ⩽ m and 1 ⩽ j ⩽ n, where the constants λ and µ
are unknown. Let X̄ = 1

m

∑m
i=1Xi and Ȳ = 1

n

∑n
j=1 Yj .

(a) Find the generalised likelihood ratio test of size α forH
(a)
0 : λ = 0 = µ versusH

(a)
1 : λ, µ

unrestricted. Express your answer in terms of the cumulative distribution function Fk of
the χ2

k distribution, for a suitable k.

(b) Find the generalised likelihood ratio test of size α for H
(b)
0 : λ = µ versus H

(b)
1 : λ, µ

unrestricted. Express your answer in terms of the cumulative distribution function Φ of
the N(0, 1) distribution.

(c) Show, regardless of the true values of λ and µ, that there is a positive probability that

the test from part (b) rejects H
(b)
0 but the test from part (a) does not reject H

(a)
0 .
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18H Optimisation
Given supplies (si)1⩽i⩽m, demands (dj)1⩽j⩽n and transport costs (cij)1⩽i⩽m,1⩽j⩽n,

consider the problem of minimising∑
i,j

cijxij subject to
∑
j

xij = si for all i,∑
i

xij = dj for all j,

xij ⩾ 0 for all i, j.

Assume that all supplies and demands are non-negative, that
∑

i si =
∑

j dj and that the
problem is not degenerate.

(a) Derive the dual problem. State the necessary and sufficient conditions for optimality
of the primal problem in terms of an optimal solution of the dual problem.

(b) Suppose (xij)ij is a basic feasible solution of the problem. How many ordered pairs
(i, j) are such that xij > 0?

(c) Explain the transportation algorithm. Your answer should include a method for
choosing an initial basic feasible solution as well as the details of the pivot step. Why
does the algorithm terminate at the optimal solution?

(d) Suppose that both the supplies (si)i and demands (dj)j are integer-valued. Show that
there is an integer-valued optimal solution (xij)ij .

END OF PAPER
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