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SECTION I

1E Groups, Rings and Modules
(a) Let R be a ring. Define what it means for R to be i) an integral domain,

ii) Noetherian, and iii) a Principal Ideal Domain (PID).

(b) Let R = {(f(x), g(y)) ∈ C[x]×C[y] | f(0) = g(0)}. Verify that this is a subring
of C[x]× C[y].

Let p : R → C[x], (f, g) 7→ f . Determine the kernel of p.

Is R an integral domain? A PID?

2G Analysis and Topology
For each of the following sequences of functions fn : R → R, determine whether

(fn)
∞
n=1 converges uniformly, justifying your answer:

i) fn(x) = tanh(nx),

ii) fn(x) = sin
(
x+ 1

n

)
,

iii) fn(x) =
exp

(
x+ 1

n

)
cosh(ax)

(your answer may depend on the value of a ∈ R),

iv) fn(x) = 2n

[
h

(
x+

1

n

)
− h

(
x− 1

n

)]
,

where h : R → R is differentiable with h′ uniformly continuous.

3B Methods
Consider the initial value problem for a second-order differential operator with

constant coefficients and a forcing term:

Ly(t) ≡ αy′′ + βy′ + γy = f(t), t > a, y(a) = y′(a) = 0 ,

with α ̸= 0. Write down the Green’s function G(t, τ) constructed to satisfy LG = δ(t−τ).

Use the Green’s function approach to determine an explicit solution for the forced
oscillator problem

y′′ + ω2y = sin(λt), t > 0 , y(0) = y′(0) = 0 .
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4B Electromagnetism
State Maxwell’s equations in the presence of charge density ρ and current density J.

Derive the continuity equation that ensures the conservation of charge,

∂ρ

∂t
+∇ · J = 0 .

Suppose that all non-zero ρ and J are confined to a finite time-independent volume D
(vanishing on the boundary ∂D). Show that the total charge Q in the region D remains
constant. In addition, prove the following relation:

d

dt

∫
D
x ρ d3x =

∫
D
J d3x .

5D Fluid Dynamics
Write down the Euler equations governing the inviscid flow u of an incompressible

fluid with no body force. Derive the corresponding vorticity equation.

At some initial time, the velocity

u = (A sin z,B sinx+A cos z,B cosx)

in Cartesian coordinates (x, y, z), where A and B are constants. Show that the vorticity
is parallel to u. Hence show that the vorticity is constant, independent of time.

Use the Euler equation to show that H ≡ 1
2ρ|u|

2 + p is uniform in space, where p is
the fluid pressure and ρ is its density.

[Hint: You may use the vector identities u × (∇ × u) = ∇(12 |u|
2) − u · ∇u and

∇× (a× b) = (∇ · b)a+ (b · ∇)a− (∇ · a)b− (a · ∇)b.]

6H Statistics
Let X be a random variable with the Exp(θ) distribution. Suppose the prior

distribution of θ is Γ(m,λ) for known parameters m and λ; that is, the prior density
is p(θ) = Cm,λθ

m−1e−λθ where Cm,λ = λm/Γ(m).

(a) Find the posterior distribution of θ.

(b) Show that the Bayesian estimator of θ for the loss function L(θ, a) = (θ− a)2 is given
by θ̂Bayes = (m+ 1)/(λ+X).

(c) What is the Bayesian estimator of θ for the loss function L(θ, a) = cosh
(
r(θ − a)

)
for

a given positive constant r < λ. [Recall that coshu = 1
2(e

u + e−u).]
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7H Optimisation
(a) What does it mean to say a set X ⊆ Rm is convex? Assuming X is convex, what does
it mean to say a function f : X → R is convex?

(b) Suppose f : Rn → R is convex. Let g : R+ × Rn → R be defined by g(t, x) = tf
(
x
t

)
,

where R+ = {t ∈ R : t > 0}. Show that g is convex.

(c) Suppose f : Rn → R has the property that there is a function λ : Rn → Rn such that

f(x)− f(y) ⩽ λ(x)⊤(x− y)

for all x, y ∈ Rn. Prove that f is convex.
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SECTION II

8F Linear Algebra
Let m be a positive integer and α ∈ C. What is a Jordan block Jm(α)?

Let p(x) be a polynomial with complex coefficients. Show that

p(J2(α)) =

(
p(α) p′(α)
0 p(α)

)
.

Let A be an n× n complex matrix. Define the Jordan normal form of A.

Show that the Jordan normal form of A is a diagonal matrix if and only if
Ker(A− λIn)

2 = Ker(A− λIn) for all λ ∈ C, where In is the identity matrix of size n.

Let A ∈ Mn(C) be an n× n complex matrix and let B be the Jordan normal form
of A. Show that B is also the Jordan normal form of the transpose matrix AT .

Show that A can be factorised as A = CD where the matrices C and D are
symmetric and C is non-singular.

9E Groups, Rings and Modules
Define what it means for a ring to be a Euclidean domain.

Let R be a Euclidean domain.

(a) Prove that R is a principal ideal domain (PID).

(b) Let p be a prime in R. Fix e ⩾ 1, and let φ : R/(pe) → R/(p) be the natural
ring homomorphism. Let a ∈ R/(pe).

Describe in terms of φ(a) (i) when a is a unit, and (ii) when a is nilpotent. You
must justify your answer.

(c) Let I = (pe11 pe22 . . . penn ) be an ideal inR, where p1, . . . , pn are irreducible elements,
pairwise non-associated, and e1, . . . , en ⩾ 1 are integers. Describe the units in R/I.

(d) Let d = p1p2 · · · pn, where p1, . . . , pn are as defined in (c). Prove that the
homomorphism R/I → R/(d) induces a surjective map on units, (R/I)∗ → (R/(d))∗.
Here we write S∗ for the set of invertible elements in a ring S.
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10G Analysis and Topology
Let X, Y be topological spaces. Briefly describe the product topology on the space

X × Y and show that the maps

ΠX : X × Y → X
(x, y) 7→ x

, and
ΠY : X × Y → Y

(x, y) 7→ y

are continuous.

Let ∆ = {(y1, y2) ∈ Y × Y : y1 = y2} be the diagonal in Y × Y . Show that ∆ is
closed if and only if Y is Hausdorff.

Suppose that f : X → Y is continuous and Y is Hausdorff. Show that the graph
of f

Γf = {(x, y) ∈ X × Y : y = f(x)}
is closed.

Let f : X → Y where X and Y are both compact Hausdorff spaces and suppose
that Γf is closed. By considering ΠX(Γf ∩ (X ×C)) for C a closed set in Y , or otherwise,
show that f is continuous.

Give an example of a discontinuous function f : R → R whose graph is closed to
show that the previous result need not hold if X and Y are only assumed to be Hausdorff.

[You may use results from lectures provided they are clearly stated.]

11F Geometry
(a) What is a topological surface?

Show that a regular hexagon Σ with opposite sides identified as shown is a compact
topological surface.

a

b

c

a

b

c

Explain briefly why Σ is homeomorphic to a torus.

Show that a cone C = {(x, y, z) : x2+y2−z2 = 0} in R3 is not a topological surface
but a half-cone C+ = {(x, y, z) ∈ R3 : x2 + y2 − z2 = 0, z > 0} is.

(b) By considering parametrizations, construct a map π : R2 \ {(0, 0)} → C+ which
is a local isometry. Show that if f is an isometry of C+ onto itself and f(p) = p for some
point p ∈ C+, then f is either a restriction to C+ of a reflection in a plane in R3 or the
identity map.

[The expression for the first fundamental form on R2 in polar coordinates can be
assumed without proof. You may assume that local isometries map geodesics to geodesics.]
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12 Complex Analysis OR Complex Methods

This is the joint question for Complex Analysis/Complex Methods. Attempt only
ONE of the sub-questions. On your answer sheet, specify the question number as either
“12.1G” or “12.2A”.

(12.1G) Complex Analysis

Use the residue theorem to give a proof of Cauchy’s derivative formula: if f is
holomorphic on D(a,R) = {z ∈ C : |z − a| < R} and |w − a| < r < R then

f (n)(w) =
n!

2πi

∫
|z−a|=r

f(z)

(z − w)n+1
dz.

Let (gk) be a sequence of holomorphic functions gk : D(a,R) → C which converges
locally uniformly to a holomorphic function g.

Show that
(
g
(n)
k

)
converges locally uniformly to g(n) for all n = 0, 1, . . ..

Suppose further that g has a zero of order m ⩾ 1 at a and vanishes nowhere else in
D(a,R). Show that for any 0 < ϵ < R there exists K ∈ N such that for all k ⩾ K, gk has
exactly m zeros in D(a, ϵ), counting with multiplicity.

(12.2A) Complex Methods

(a) Let f be a holomorphic function in the complex plane, except for potentially
n ∈ N points that are poles. Suppose also that

∫
γ p(z)

2f(z) dz = 0 for all complex
polynomials p and every closed contour γ avoiding the potential poles of f . Show
that f is entire.

(b) Suppose that h is entire, of the form h(z) = h(x + iy) = u(x, y) + iv(x, y), is real
on the real axis, and has positive imaginary part in the upper half-plane (that is
v(x, y) > 0 when y > 0).

(i) Show that h′(x) ⩾ 0 when x is real.

(ii) Show that if h(0) = 0, then h′(0) ̸= 0.
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13C Variational Principles
This question concerns the movement of a particle in space R3. Introduce cylindrical

coordinates (ρ, ϕ, z) and assume that the trajectory of the particle can be parameterized
as a curve

z 7→ (ρ(z), ϕ(z))

going from A = (ρ(z0), ϕ(z0), z0) to B = (ρ(z1), ϕ(z1), z1), and is such as to make the
following functional stationary:

F [ρ, ϕ] =

∫ z1

z0

n(ρ, ϕ, z)

√
1 +

(
∂ρ

∂z

)2

+ ρ2
(
∂ϕ

∂z

)2

dz , where z1 > z0 ,

where the function n = n(ρ, ϕ, z) is positive and smooth. Write down the Euler-Lagrange
equations for this functional.

In the case that n = n(ρ) depends only on ρ, show that there are special solutions
to the Euler-Lagrange equations of the form

ρ(z) = R, ϕ(z) = ϕ0 + ω(R)z,

where R and ϕ0 are constants, and ω = ω(R) solves an equation

n(R)Rω2 + a(1 +R2ω2)n′(R) = 0 (∗)

for some constant a which you should find. [You may assume (∗) has two solutions ±ω,
with ω > 0.]

Find a condition on a positive number L which implies that the points having
cylindrical coordinates (R,ϕ0, 0) and (R,ϕ0, L) can be joined by means of these special
solutions and sketch two of them.
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14B Methods
Consider a string of uniform mass density ρ that is stretched under tension τ along

the x-axis. The string undergoes small transverse oscillations in the (x, y) plane, with
displacement represented by y(x, t). Derive the equation of motion governing y(x, t),
identifying the wave speed c in terms of ρ and τ (neglecting gravity).

The string is fixed at both ends, x = 0 and x = L. Determine the general solution
for the oscillatory motion of the string using the method of separation of variables.

Assume the string is at rest for t < 0. At time t = 0, the string is struck by a
hammer within the interval [l− ϵ/2, l+ ϵ/2], where x = l represents the position along the
string. The hammer’s impact imparts a constant velocity v/

√
ϵ to the section of the string

within this interval, while the rest of the string remains unaffected. Calculate the total
energy imparted to the string by this blow. Determine the eigenmode coefficients for the
resulting string solution and the energy excited in each mode relative to the total energy.

In musical terms, the n = 7 eigenmode is generally regarded as dissonant. Where
can you strike the string in order to minimise the vibration of this mode? Briefly comment
on the power law fall-off of the energy in each mode as the hammer head narrows, ϵ → 0?
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15C Quantum Mechanics
This question concerns one dimensional quantum mechanics on the real line, with

the momentum operator given by p = −iℏ d
dx as usual. A pair of distinct one dimensional

Hamiltonians

H+ =
p2

2m
+ V+(x) and H− =

p2

2m
+ V−(x) , −∞ < x < +∞,

are said to be partners if there exists a function f = f(x) such that

H± =
1

2m
(p± if)(p∓ if) .

Show that [f(x), p] = iℏf ′(x). Taking the upper sign show that

V+(x) =
1

2m

(
f(x)2 − ℏf ′(x)

)
and find V−.

Choosing f appropriately, find a partner Hamiltonian H+ = p2

2m + V+(x) to

H− =
p2

2m
+ 2m

giving V+(x) explicitly in as simple a form as possible. [Hint: sech2z+tanh2z = 1.] Show
that limx→±∞ V+(x) = 2m.

By considering the solutions ek(x) = eikx to H−ek =
(
ℏ2k2
2m + 2m

)
ek and applying

the operator p + if , show that it is possible to generate a corresponding solution to the
partner Hamiltonian H+. Hence compute the reflection and transmission coefficients for
the Hamiltonian

p2

2m
− 4m sech2

(
2mx

ℏ

)
.
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16B Electromagnetism
Consider two different vector potential fields A1(x, y, z) = b1 (−y, x, 0) and

A2(x, y, z) = b2 (−y z, x z, 0), where b1, b2 are constants and the vertical direction is
aligned with the z-axis. Calculate the associated static magnetic fields B1(x, y, z) and
B2(x, y, z) and show they satisfy the vacuum Maxwell equations.

Consider a circular conducting loop of radius r and resistance R that is constrained
to lie horizontally and centred along the z-axis. For the two magnetic fields B1 and B2,
determine the respective magnetic fluxes through the loop at a vertical position z. Suppose
a current I flows around the loop in a clockwise direction and calculate the force F from
the magnetic field acting on the loop in each case.

Suppose the loop has a mass m and is allowed to fall from rest at position z0 under
the influence of gravity (with no initial current). What is the induced current that results
from its motion ż for the two different magnetic fields B1 and B2? Hence calculate any
resistive forces that emerge. Write down an equation of motion for the vertical position
in each case and identify the asymptotic behaviour of the trajectories. In one case, the
trajectory approaches a terminal velocity at which you should compare the power loss from
the current with the change in the gravitational potential energy. Briefly comment on the
behaviour of a superconducting loop with R = 0 if it is dropped in the same manner.

17A Numerical Analysis
Consider the scalar autonomous ODE of the form

y′ = f(y), y(0) = y0 ∈ R, (∗)

where y(t) exists and is unique for t ∈ [0, T ] and T > 0. Consider also the following two
Runge-Kutta methods:

k1 = f(yn), k2 = f
(
yn +

h

2
k1 +

h

2
k2
)
, yn+1 = yn +

h

2
(k1 + k2), (†)

same as (†) except k2 = f
(
yn +

h

4
k1 +

3h

4
k2
)
, (‡)

both producing a sequence {yn}n⩽N , where N = ⌊Th ⌋ and h > 0 is the step-size.

(a) Do the above Runge-Kutta methods have the same order? If so, determine the order.
If not, determine which method has the highest order.
[Hint: Think about how both methods can be written in terms of a single parameter.]

(b) For a numerical method approximating the solution of (∗), define the linear stability
domain. What does it mean for such a numerical method to be A-stable?

(c) Are any of the Runge-Kutta methods (†) and (‡) A-stable? If so, determine the
linear stability domain for the method(s).
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18H Markov Chains
Let T1, T2, . . . be independent and identically distributed random variables taking

values in {1, . . . , N}. Construct (Xn)n⩾0 as follows. First X0 = 0. For 1 ⩽ n ⩽ T1, let
X1 = T1 − 1 and Xn = Xn−1 − 1. Note that XT1 = 0. For T1 + 1 ⩽ n ⩽ T1 + T2, let
XT1+1 = T2 − 1 and Xn = Xn−1 − 1 until XT1+T2 = 0. This pattern repeats forever with
XT1+T2+1 = T3 − 1 and so forth.

(a) Let S0 = 0 and Sk = T1 + . . .+ Tk for k ⩾ 1. Show that

Xn = max{Sk+1 : Sk < n} − n

for n ⩾ 1.

(b) Find the transition probabilities of the Markov chain (Xn)n⩾0 in terms of the given
constants qj = P(T1 = j) for 1 ⩽ j ⩽ N .

(c) Show that there is a unique invariant distribution (πi)0⩽i⩽N−1 for the Markov chain
and compute it in terms of (qj)1⩽j⩽N .

(d) Find an example of (qj)1⩽j⩽N such that P(Xn = 0) does not converge as n → ∞.

Pick ε such that 0 < ε < 1 and consider a Markov chain (X
(ε)
n )n⩾0 on {0, . . . , N−1}

with X
(ε)
0 = 0 and transition matrix P (ε) = (p

(ε)
i,j )i,j given by

P (ε) = (1− ε)P + εI

where P = (pi,j)i,j is the transition matrix for (Xn)n⩾0 found in part (b) and I is the
N ×N identity matrix.

(e) Show that P(X(ε)
n = 0) converges as n → ∞, and compute the limit in terms of

(qj)1⩽j⩽N and ε.

END OF PAPER
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