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Before you begin read these instructions carefully

The examination paper is divided into two sections. Each question in Section II
carries twice the number of marks of each question in Section I. Section II questions
also carry an alpha or beta quality mark and Section I questions carry a beta quality
mark.

Candidates may obtain credit from attempts on at most four questions from
Section I and at most six questions from Section II.

If you attempt any of the joint Complex Analysis and Complex Methods questions,
you may submit an answer to at most one of the two subquestions.

Write on one side of the paper only and begin each answer on a separate sheet.

Write legibly; otherwise you place yourself at a grave disadvantage.

At the end of the examination:

Separate your answers to each question.

Complete a gold cover sheet for each question that you have attempted, and place
it at the front of your answer to that question.

Complete a green main cover sheet listing all the questions that you have
attempted.

Every cover sheet must also show your Blind Grade Number and desk
number.

Tie up your answers and cover sheets into a single bundle, with the main cover
sheet on the top, and then the cover sheet and answer for each question, in the
numerical order of the questions.
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You may not start to read the questions
printed on the subsequent pages until
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SECTION I

1F Linear Algebra
Define the determinant of an n × n matrix A. Define the adjugate matrix adj(A).

Express detA in terms of adj(A) and A.

For each n ⩾ 2 let An be the n× n matrix defined by

(An)ij =


2 i = j,

−1 |i− j| = 1,

0 otherwise.

What is detAn? Justify your answer.

2F Geometry
Let σ : U → Σ ⊂ R3 be a smooth parametrization of an embedded surface in R3

and let γ : [a, b] → Σ be a smooth curve on Σ. Define the energy of γ. Deduce from
the Euler–Lagrange equations of a stationary curve for the energy function the ordinary
differential equations on U defining the geodesics on σ(U) ⊂ Σ.

Suppose that a plane P ⊂ R3 contains the unit normal vector for Σ at each point of
the intersection Σ ∩ P . If a curve η is parametrized with constant speed and is contained
in Σ ∩ P , show that η is a geodesic on Σ.
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3 Complex Analysis OR Complex Methods

This is the joint question for Complex Analysis/Complex Methods. Attempt only
ONE of the sub-questions. On your answer sheet, specify the question number as either
“3.1G” or “3.2A”.

(3.1G) Complex Analysis

State and prove Jordan’s Lemma.

Find ∫ ∞

−∞

x sinx

1 + x2
dx.

(3.2A) Complex Methods

(a) State the Residue Theorem.

(b) Evaluate the integral ∫ ∞

−∞

cos(nx)

x4 + 1
dx, n ∈ N.

4C Variational Principles
Given a real symmetric n× n matrix A, consider the quadratic function

Q(x) = xTAx ,

on the unit sphere Sn−1 = {x ∈ Rn : xTx = 1}. Assume that x0 is a unit vector such that

Q(x0) ⩾ Q(x) , ∀ x ∈ Sn−1 .

Show that x0 is an eigenvector of the matrix A and determine the corresponding
eigenvalue E. How does this eigenvalue compare to the other eigenvalues of A?

For the case that

A =

(
1 t
t 1

)
−∞ < t < +∞

calculate E, as a function of t ∈ R, and draw a sketch to show that it is convex.
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5A Numerical Analysis
Consider the ODE of the form

y′(t) = f(t, y(t)), y(0) = y0 ∈ R, (∗)

where y(t) exists and is unique for t ∈ [0, T ] and T > 0.

(a) State the Dahlquist equivalence theorem regarding convergence of a multistep
method.

(b) Consider the following multistep method for (∗) with a parameter α ∈ R:

yn+3 + (2α− 3)(yn+2 − yn+1)− yn = hα
(
f(tn+2, yn+2)− f(tn+1, yn+1)

)
,

producing a sequence {yn}n⩽N , where N = ⌊Th ⌋ and h > 0 is the step-size. It is
given that the method is of at least order 2 for any α and also of order 3 for α = 6.
Determine all values of α for which the method is convergent, and find the order of
convergence.

6H Statistics
The distribution of a random variable X depends on an unknown parameter θ.

Consider testing the null hypothesis H0 : θ = θ0 versus the alternative hypothesis
H1 : θ = θ1. State and prove the Neyman–Pearson lemma in the case where X has a
probability density function p(x; θ).

Let X have probability density function p(x; θ) = 1
2θe

−θ|x| for x ∈ R and θ > 0.
Find the critical region of the most powerful test of size α when θ0 < θ1.

7H Optimisation
(a) Derive the dual problem to

maximise c⊤x subject to Ax ⩽ b, x ⩾ 0

where the vectors c ∈ Rn, b ∈ Rm and the m× n matrix A are given, and the inequalities
are interpreted component-wise.

(b) Find the optimal solution to

maximise 2x1 + 3x2 + 4x3 subject to x1 + 3x2 + x3 ⩽ 2,
x1 + x2 + 4x3 ⩽ 1,
x1, x2, x3 ⩾ 0.
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SECTION II

8F Linear Algebra
State the rank-nullity theorem, explaining all the quantities that appear in it.

Let U, V,W be vector spaces where U and V are finite-dimensional. If α : V →W ,
β : U → V are linear maps, prove that

rk(α ◦ β) ⩾ rk(α) + rk(β)− dimV.

If X and Y are matrices representing the same linear map between two finite-
dimensional vector spaces with respect to different bases, write down the relation satisfied
by X and Y . [You should explain the terms appearing in this relation.]

Let Mk(C) denote the vector space of all k× k complex matrices. Let A be a block

matrix of the form A =

(
P Q
R S

)
, where P ∈ Mn(C), S ∈ Mm(C) and P is invertible.

Show that
rk(A) = rk(P ) + rk(S −RP−1Q).

Deduce that
rk(In −QR) = rk(Im −RQ) + n−m

where Ir is the identity matrix of size r.

9E Groups, Rings and Modules
(a) Let H be a proper subgroup of a finite, non-abelian group G. Prove that if G is

simple, |G/H| ⩾ 5.

(b) Let S be a Sylow p-subgroup of a finite group G. Suppose that gSg−1∩S = {1}
for all g ∈ G \NG(S).

Show that the number of Sylow p-subgroups is congruent to 1 mod |S|.

(c) Let G be a simple group of order 168.

(i) Compute the number of Sylow 7-subgroups of G. Compute the number of
elements of G of order exactly 7.

(ii) Let S be a Sylow 2-subgroup of G. Show that there exists a Sylow
2-subgroup S′ of G, S ̸= S′, with S ∩ S′ ̸= {1}. Show S ∩ S′ contains
an element of order 2.
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10G Analysis and Topology
Given a metric space (X, d) state what it means for a function f : X → R to

be uniformly continuous. Let Cb,u(X) be the space of bounded, uniformly continuous,
functions f : X → R equipped with the metric

d′(f, g) = sup
x∈X

|f(x)− g(x)|.

Show that (Cb,u(X), d′) is complete.

Assume Rn carries the Euclidean metric and let C0(Rn) be the space of continuous
functions f : Rn → R satisfying f(x) → 0 as |x| → ∞. Show that C0(Rn) is a subset of
Cb,u(Rn). Is C0(Rn) a closed subset of Cb,u(Rn)? Is it compact? Justify your answer in
each case.

11F Geometry
Define an (allowable) parametrization of an embedded smooth surface S ⊂ R3.

Suppose that S is a surface of revolution, meaning for each real θ the rotation

Rθ =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1


defines a diffeomorphism of S onto itself. Stating any result(s) that you use, show that S
admits, around each point which is not on the z-axis, a local parametrization of the form

σ(u, v) = (f(u) cos v, f(u) sin v, g(u)) with (f ′(u), g′(u)) ̸= (0, 0),

where |v| < π, |u| < ε for some ε > 0.

We say that an embedded smooth Σ ⊂ R3 is a ruled surface if Σ admits a
parametrization of the form

ψ(s, t) = a(s) + tb(s), (s, t) ∈ I × R,

where I ⊂ R is an interval, a, b : I → R3 are embedded smooth curves and b(s) is a unit
vector for all s ∈ I. Explain why we must have a′(s)× b(s) + tb′(s)× b(s) ̸= 0 for all s, t.

Suppose that a path-connected, ruled surface Σ is also a surface of revolution.
Suppose also that for some s0 the affine line a(s0) + tb(s0), t ∈ R, in R3 neither meets
the z-axis, nor is parallel to the z-axis. Prove that then Σ is diffeomorphic to a one-sheet
hyperboloid x2 + y2 = 1 + z2.

[You may assume if you wish that a hyperboloid x2 + y2 = 1 + z2 is a complete
surface, not contained as a proper subset in any embedded smooth connected surface.]
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12 Complex Analysis OR Complex Methods

This is the joint question for Complex Analysis/Complex Methods. Attempt only
ONE of the sub-questions. On your answer sheet, specify the question number as either
“12.1G” or “12.2A”.

(12.1G) Complex Analysis

Let A = {z ∈ C : r < |z| < R} and suppose f : A→ C is holomorphic. Show that

f(z) =
∞∑

n=−∞
anz

n,

with the sum converging locally uniformly, where you should give an expression for the
coefficients an ∈ C in terms of a contour integral involving f .

Let D∗(R) = {z ∈ C : 0 < |z| < R} and suppose f : D∗(R) → C is holomorphic.
What does it mean in terms of the an for f to have a (i) removable singularity ; (ii) pole
of order k ⩾ 1; (iii) essential singularity at z = 0.

For each of the following holomorphic functions fi : D
∗(1) → C, determine the type

of the singularity at z = 0 :

(i) f1(z) =
1

z2
− 1

sin2 z
;

(ii) f2(z) =

∫ 1

−1
e−t2/z2dt.

(12.2A) Complex Methods

(a) Let f be an analytic function on an open disc D whose centre is the point z0 ∈ C.
Assume that |f ′(z)− f ′(z0)| < |f ′(z0)| on D. Prove that f is one-to-one on D.

(b) What does it mean for a function g : R2 → R to be harmonic?

(i) Suppose that ũ is a positive (ũ ⩾ 0) harmonic function on R2. Show that ũ is
constant.

(ii) Let u be a real valued harmonic function in the complex plane (we identify C
with R2) such that

u(z) ⩽ a
∣∣log(|z|)∣∣+ b

for all z ∈ C, where a and b are positive constants. Prove that u is constant.
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13B Methods
(a) Legendre’s differential equation on the domain −1 < x < 1 is given by

(
1− x2

) d2y
dx2

− 2x
dy

dx
+ λ y = 0 .

Put this equation in Sturm-Liouville form and show that the Sturm-Liouville operator is
self-adjoint with respect to an inner product you should specify. Briefly state some key
properties of the eigenvalues λk and eigenfunctions yk(x) of any Sturm-Liouville differential
equation.

Consider a series solution y(x) =
∑∞

n=0 anx
n of Legendre’s equation and show that

the coefficients an satisfy the recurrence relation

an+2

an
=

n(n+ 1)− λ

(n+ 1)(n+ 2)
.

Hence, show that polynomial solutions y(x) = Pℓ(x) of degree ℓ exist when λ = ℓ(ℓ + 1),
where ℓ is a non-negative integer (ℓ ⩾ 0). Find expressions for P1(x) and P3(x), adopting
the convention that Pn(1) = 1.

(b) Laplace’s equation in spherical polars for the axisymmetric case takes the form

∂2Φ

∂r2
+

2

r

∂Φ

∂r
+

1

r2
∂

∂x

((
1− x2

) ∂Φ
∂x

)
= 0 ,

where x = cos θ. State the general form of the solution Φ(r, x) obtained using the method
of separation of variables (derivation not required).

Suppose that on the sphere at r = R, the boundary condition is Φ(R, x) = x(1−x2).
Find the regular solution in the interior of the sphere.
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14C Quantum Mechanics
Consider the one-dimensional potential

V (x) =

{
0 if |x| > a ,

− 1
2a if |x| ⩽ a ,

where a > 0. Show that for positive a there exist normalizable and even solutions to the
stationary Schrödinger equation

− ℏ2

2m
ψ′′ + V (x)ψ = Eψ , −∞ < x < +∞ ,

with energy E = E(a) = −ℏ2κ(a)2
2m , where κ(a) > 0 satisfies an equation which you should

give. Show that for small positive a the energy is unique and the solution is unique up to
multiplication by a constant.

Now consider the limit a → 0+. Calculate the limiting value E0 = lima→0+E(a),
and show that this is the energy of a normalizable and even solution ψ0 to the stationary
Schrödinger equation with a singular potential V0; give V0 and ψ0 explicitly.

15B Electromagnetism
In a volume V , an electrostatic charge density ρ(x) induces an electric fieldE(x) with

electrostatic potential ϕ(x) which vanishes on the boundary. Use Maxwell’s equations, to
show that the electrostatic energy ,

U =
1

2

∫
V
d3x ρ(x)ϕ(x) ,

can be expressed in terms of the electric field E(x).

Consider three concentric spherical shells with uniformly distributed surface charges
Q1 = q, Q2 = −2q, Q3 = q, placed around the origin at radii r1 = R, r2 = 2R, r3 = 3R,
respectively. Use Gauss’s Law to find the electric field E(x) at all points in space. Likewise
determine the potential ϕ(x) everywhere. Calculate the total electrostatic energy U , both
by using the displayed equation above and using the electric-field formulation, and verify
that they agree.
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16D Fluid Dynamics
State Bernoulli’s equation for steady flow.

Starting from Euler’s equations governing steady, inviscid, flow u of an incompress-
ible fluid of density ρ subject to a conservative body force f = −∇χ, derive the integral
momentum equation ∫

∂V
(ρu · nu+ pn+ χn) dS = 0,

where p is the fluid pressure and n is the unit normal to the surface ∂V of a closed
domain V .

A large circular blood vessel of cross-sectional area A bifurcates symmetrically with
respect to its axis into two smaller circular blood vessels, each of cross-sectional area a
and each inclined at angle α to the axis of the larger blood vessel. The constant volume
flux through the system is q.

(i) Determine the pressure drop between a location in the larger vessel upstream of
the junction and a location in one of the smaller blood vessels downstream of the junction.

(ii) Given that the pressure inside the smaller vessels far downstream of the junction
is equal to the uniform pressure of the body tissue surrounding the vessels, determine the
force on the junction in terms of the parameters given above.

17A Numerical Analysis

(a) Define Householder reflections and show that a real Householder reflection is a
symmetric and orthogonal matrix.

(b) Let H ∈ Rn×n be a Householder reflection. Determine the eigenvalues of H and
their multiplicities.

(c) Show that for any A ∈ Rn×n there exist Householder reflections H1, . . . ,Hn such
that HnHn−1 · · ·H1A = R, where R is upper triangular.

(d) Show that if A is symmetric there exists an orthogonal matrix Q ∈ Rn×n such that
C = QAQT ∈ Rn×n is symmetric and tridiagonal (that is, only the diagonal, super
and subdiagonal have non-zero entries), and C can be computed in finitely many
operations (+,−,×,÷,

√
).
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18H Statistics
A data set contains the ordered pairs of observations (X1, Y1), . . . , (Xn, Yn). A

statistician models these data as Yi = Xiβ + εi, where X1, . . . , Xn are known real
parameters, the noise εi ∼ N(0, σ2) are independent and identically distributed, and
the real parameters β and σ2 are unknown.

(a) Find the maximum likelihood estimator β̂ for β and σ̂2 for σ2. Using standard

properties of normal random variables, show that β̂ and σ̂2 are independent.

(b) Find a (1−α)-confidence interval for β. Express your answer in terms of the cumulative
distribution function of the tk distribution for an appropriately chosen k.

(c) Let β̃ =
∑n

i=1 ciYi, where c1, . . . , cn are known constants. If β̃ is an unbiased estimator
of β, show that

Var(β̃) ⩾
σ2∑n
i=1X

2
i

.

For which choice of constants c1, . . . , cn is there equality for all (β, σ2)? [If you use the
Gauss–Markov theorem, you must prove it.]

(d) Another statistician models the same data as Xi = Yib+ ei, where now it is assumed
that Y1, . . . , Yn are known parameters, the noise ei ∼ N(0, s2) are i.i.d., and the real

parameters b and s2 are unknown. Let b̂ and ŝ2 be the maximum likelihood estimators of

b and s2 respectively. Show that b̂β̂ ⩽ 1, with equality only if σ̂2 = 0 = ŝ2.

19H Markov Chains
(a) What does it mean to say a Markov chain is reversible? Show that a random walk on
a finite connected graph is reversible.

Consider the random walk (Xn)n⩾0 on this graph, where X0 = A.

C

@@
@@

@@
@@

A B

~~~~~~~~

@@
@@

@@
@@

E F

D

~~~~~~~~

(b) Find the expected number of steps until the walk first returns to A.

(c) Find the probability that the walk returns to A before hitting F .

(d) Given that the walk returns to A before hitting F , find the conditional expected
number of steps until the walk first returns to A.

END OF PAPER
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