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SECTION I

1C Differential Equations
Find the stationary points of the function

V (x, y) = 1
3y

3 + x2y − y

and classify them by using the Hessian. Sketch the form of the contours of V .

A particle with position
(
x(t), y(t)

)
moves with velocity (ẋ, ẏ) = −∇V . Show that

its trajectory y(x) satisfies the equation

2xy
dy

dx
− y2 = x2 − 1 .

By use of a suitable integrating factor, or otherwise, find the equation of a general
trajectory in the form y2 = f(x, c), where c is an arbitrary constant.

2C Differential Equations
(a) Find the fixed points of the differential equation

dx

dt
= f(x), where f(x) = ax+ 2x2 − x3 ,

and determine, graphically or otherwise, the range of a in which each fixed point is stable.

(b) Find the fixed points of the difference equation

xn+1 = g(xn), where g(x) = b− 1
4x

2 ,

and determine the finite range of b in which there exists a stable fixed point.

[In both parts (a) and (b) you do not need to consider stability at the values of a or
b where the number of fixed points changes.]

3F Probability
Let Y be a random variable taking values in [0,∞) with probability density function

fY . Show that

E[Y ] =

∫ ∞

0
P(Y ⩾ y) dy .

Let X1, . . . , Xn be independent random variables uniformly distributed on {1, 2, . . . , n},
and let M = min{X1, . . . , Xn}. Show that E[M ] ⩽ e and, applying any inequality from
the course, deduce that P(M ⩾ 6) ⩽ 0.5. [Hint: (1 + x) ⩽ ex.]

Part IA, Paper 2



3

4F Probability
(a) A train can stop at n stations on a railway line. At each station, the conductor

makes a stop with probability 1/n, independently of previous stations. Let X be the total
number of stops made. What is the distribution of X?

For each k = 0, 1, 2, . . . , find limn→∞ P(X = k).

(b) Consider a modification of this process where, initially, the conductor stops at
each station with probability 1/n, but after the first time that the train does stop, the
probability of stopping at subsequent stations increases to 2/n. Compute E[X] and find
limn→∞ E[X].
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SECTION II

5C Differential Equations
(a) Let y1(x) and y2(x) be any two complementary functions for the equation

y′′ + p(x)y′ + q(x)y = f(x) . (1)

Define the Wronskian W (x) of y1 and y2. State a differential equation that is satisfied by
W (x) for any choice of y1 and y2. Assuming that W (x) ̸= 0 for any x, state briefly why
any solution of (1) can be written in the vector form(

y
y′

)
= u(x)

(
y1
y′1

)
+ v(x)

(
y2
y′2

)
(2)

for some (as yet unknown) coefficients u and v.

Obtain two coupled first-order differential equations for u(x) and v(x) by requiring
consistency between the two components of (2) and between (1) and (2). Deduce that

u′ = −y2f

W
, v′ =

y1f

W
.

(b) You are given that y1(x) = x−1/2e−x is a complementary function for the
equation

x2y′′ + xy′ − (x2 + 1
4)y = x7/2 , x > 0 . (3)

Determine the Wronskian to within a multiplicative factor. Hence find a second comple-
mentary function y2(x), choosing a convenient amplitude for it and thus the Wronskian.

Use the results of part (a) to determine the solution to (3).

6C Differential Equations
(a) For k,m > 0, find the solution x(t) of the equation

t2ẍ+ tẋ−m2x = tk

that satisfies the boundary conditions x(0) = x(1) = 0.

Show that no such solution exists if k = m = 0.

(b) Using matrix methods, or otherwise, find the general solution x(t) and y(t) to
the linear system of equations

tẋ− 4x+
6y

t
= t+ 2 ,

tẏ − 3tx+ 4y = t2 + t .

[Hint: You may find the substitution y(t) = tnz(t) helpful for a suitably chosen integer n.]
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7C Differential Equations
(a) The position x(t) of a mass m obeys the equation

mẍ+ bẋ+ kx = P

∞∑
n=1

δ(t− nt∗) ,

where b, k, P and t∗ are positive constants with b2 < 4mk and δ denotes the Dirac delta
function. By comparing the homogenous solutions, or otherwise, identify a frequency ω
such that, with τ = ωt, the scaled position y(τ) ≡ mωx(t)/P satisfies

y′′ + 2κy′ + (κ2 + 1)y =
∞∑
n=1

δ(τ − nT ) , (∗)

where the dimensionless parameters κ and T should be determined.

(b) Find the solution xn to the vector recurrence relation

xn+1 = Axn + b , x0 = a , (�)

where A is a 2× 2 matrix, det(A− I) ̸= 0 and a, b are vectors in R2.

(c) For each time interval nT < τ < (n + 1)T , the solution to (∗) is written as a
linear combination

y(τ) = Cnf(τ − nT ) +Dng(τ − nT )

of time-translated homogeneous solutions, where f(τ) = e−κτ cos τ and g(τ) = e−κτ sin τ .

By considering the variation of y and y′ across an infinitesimal interval including τ =
(n+1)T , find A and b such that xn ≡ (Cn, Dn) satisfies (�). [Hint: f

′(τ) = −g(τ)−κf(τ)
and g′(τ) = f(τ)− κg(τ).]

(d) Explain why y tends to a periodic function for κτ ≫ 1, and show that it is given
by an amplitude vector x∞ with

|x∞| =
{
[1− f(T )]2 + g(T )2

}−1/2
.

Consider the case 0 < κ ≪ 1. Find simple leading-order approximations to |x∞|
when T = kπ for an integer k with κk ≪ 1. Comment physically on this result.
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8C Differential Equations
(a) Consider a change of variables from x and t to η = x/tp and τ = t, where p

is a constant. Use the chain rule to express ∂/∂x and ∂/∂t in terms of η, τ , ∂/∂η and
∂/∂τ . Show that the substitution θ(x, t) = H(τ)Y (η) transforms the nonlinear diffusion
equation

∂θ

∂t
=

1

m+ 2

∂

∂x

(
θm

∂θ

∂x

)
,

where m > 0, into the ordinary differential equation

−d(ηY )

dη
=

d

dη

(
Y mdY

dη

)
(∗)

provided H(τ) and p are chosen appropriately. Find the solution to (∗) that satisfies
Y (±1) = 0. [You may assume Y ′(0) = 0 by symmetry.]

(b) The solution in part (a) is perturbed by setting θ(x, t) = H(τ)
{
Y (η)+ϵτ−λy(η)

}
,

where ϵ ≪ 1. You are given that the function y(η) must then obey the equation

−d(ηy)

dη
− (m+ 2)λy =

d2

dη2
(Y my) . (�)

For the case m = 1 show that (�) reduces to

(1− η2)y′′ − 2ηy′ + 6λy = 0 .

You are given that regularity at η = ±1 requires y(η) to be a polynomial. By
considering series solutions around η = 0, show that y is a polynomial if λ = 1

6k(k + 1)
for some positive integer k.

9F Probability
In a group of n > 3 people, each pair is friends with probability 1/2, independently

of every other pair.

(a) A triad is a set of three people who are all friends with each other. Show that
the probability that there are at least n3/24 triads is at most 1/2.

(b) The person, or persons, with the most friends has M friends, and the person, or
persons, with the least friends has L friends. Show that the mean and median of M + L
are both equal to n− 1. [The median is defined by inf{x : P(M + L ⩽ x) ⩾ 1/2}].

(c) Now suppose that each pair of people in the group are friends with probability
(1 + ε) log n

n− 1
for some ε > 0, independently of every other pair. Show that

P(L = 0) ⩽ n−ε.
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10F Probability
Write N = {1, 2, 3, . . . }. For any sequence x = (x1, . . . , xn) ∈ Nn, let Ni(x) denote

the number of times that i ∈ N appears in the sequence x and letM(x) = max{x1, . . . , xn}.
Let (Xi) be a sequence of random variables taking values in N, with P(X1 = 1) = 1 and

P
(
Xn+1 = i | X1 = x1, . . . , Xn = xn

)
=



Ni(x)− 1
2

n+ 1
if 1 ⩽ i ⩽ M(x) ,

1 + 1
2M(x)

n+ 1
if i = M(x) + 1 ,

0 if i > M(x) + 1

for all n ⩾ 1.

(a) Let An ⊆ Nn be the set of sequences such that, if x ∈ An then x1 = 1 and
xi ⩽ max{x1, . . . , xi−1}+ 1 for all i ⩽ n. Prove that

P
(
(X1, . . . , Xn) ∈ An

)
= 1 .

(b) Letting X = (X1, . . . , Xn) and Mn = M(X), show that

P
(
N1(X) = 1

)
=

∏n−1
i=1 (i+

1
2)

n!
and P

(
NXn(X) = 1

)
=

1 + 1
2E[Mn−1]

n
.

(c) Let x and y be two sequences in An, with M(x) = M(y) and such that(
N1(x), . . . , NM(x)(x)

)
is a permutation of

(
N1(y), . . . , NM(y)(y)

)
. Show that

P(X1 = x1, . . . , Xn = xn) = P(X1 = y1, . . . , Xn = yn) .

(d) Using the result in part (c), prove that P
(
N1(X) = 1

)
= P

(
NXn(X) = 1

)
.

Obtain an expression for E[Mn]. [Hint: Consider a bijection π : An → An such that the
frequency of the first element of x is the same as the frequency of the last element in π(x).]
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11F Probability
A tree, like the example shown, has a root and splits into

two branches at every branching point; branches never rejoin.
Consider a random path from the root which, at each branching
point, goes left or right with equal probability, and independently,
until it reaches a leaf. Let X1 be the number of branching points
traversed by this path, and let (Xi) be a sequence of independent
random variables with the same distribution as X1.

Let ℓ be the number of leaves in the tree, and suppose there
are at most b branching points on the path between the root and
any leaf. Define a random variable L = n−1

∑n
i=1 2

Xi .

(a) State and prove Markov’s inequality.

(b) Show that E[L] = ℓ.

(c) Prove that for all α > 0,

P

(∣∣∣∣L− ℓ

ℓ

∣∣∣∣ ⩾ α

√
2b

nℓ

)
⩽

1

α2
.

(d) Let Φ be the distribution function of a standard normal random variable. Show
that for all α > 0,

lim
n→∞

P

(∣∣∣∣L− ℓ

ℓ

∣∣∣∣ ⩾ α

√
2b

nℓ

)
⩽ 2− 2Φ(α).

[You may use without proof any theorem from the course in this part.]
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12F Probability
Let E1, . . . , En be independent random variables with an exponential distribution

of mean 1, with n ⩾ 2. Let S be an independent random variable with probability density
function

f(s) =
sn−1e−s

(n− 1)!
for s > 0 .

Define

(X1, . . . , Xn) =

((
1 +

E1

S

)−n

, . . . ,

(
1 +

En

S

)−n
)
.

(a) Show that the moment generating function of S is MS(t) = (1− t)−n for t < 1.

(b) Find the joint distribution function and joint probability density function of
(X1, X2). What is the marginal distribution of X1?

(c) Let K be the least integer k ∈ {1, . . . , n− 1} such that Xk < Xk+1, with K = n
if there is no such integer. Show that

E
[ K∑

i=1

Si

]
=

n∑
i=1

(
n+ i− 1

i

)
.

END OF PAPER
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