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Paper 1, Section II

25J Algebraic Geometry
Define what it means to be a rational map between irreducible projective varieties.

Define what it means to be a regular point of a rational map between irreducible projective
varieties.

Consider the rational map φ : P2 99K P2 given by

(x : y : z) 7→ (xy : xz : z2).

Show that φ is not regular at the points (0 : 1 : 0), (1 : 0 : 0) and is regular at every
other point. Show that φ is a birational map which is an isomorphism on P2 \Z(xyz), the
complement of the union of the coordinate hyperplanes.

Let V ⊂ P2 be the subvariety given by the vanishing of x2z4 − x3y3 + z6. Show
that V is irreducible, and that φ determines a birational equivalence between V and a
non-singular plane cubic.

Paper 2, Section II

25J Algebraic Geometry
In this question, all varieties are over an algebraically closed field k of characteristic

zero.

Let X ⊂ An be an affine algebraic variety defined over k. Define the tangent space
TX,P of X at a point P ∈ X, and define the dimension of X in terms of the tangent spaces
of X.

Suppose that X = Z(f) ⊂ An where f is a non-constant polynomial. Show from
your definition that X has dimension n− 1. [Any form of the Nullstellensatz may be used
if you state it clearly.]

Now suppose that n ⩾ 3 and X = Z(f) ⊂ An where f is a non-constant irreducible
polynomial of degree at least 2. Let P ∈ X be a smooth point of X, and translate TX,P
by P to view it as an embedded hyperplane with P ∈ TX,P ⊂ An. Show that X ∩ TX,P is
singular at P .

Now let Y := {φ : A2 → A3 | φ is linear but not injective}. Show that Y is the zero
locus of an ideal I which is generated by three quadrics. Compute the dimension of Y
and identify any singular points of Y . [You may assume without proof that I is a radical
ideal.]

Part II, 2025 List of Questions [TURN OVER]
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Paper 3, Section II

24J Algebraic Geometry
In this question, all algebraic varieties are defined over a field k of characteristic

zero. Let V ⊂ Pn be a curve.

Define the degree deg(V ) of V ⊂ Pn, and prove that it is well-defined.

Suppose n < m and let φ : Pn → Pm be the linear embedding

(x0 : · · · : xn) 7→ (x0 : · · · : xn : 0 : · · · : 0).

For a curve V ⊂ Pn, show that the degree of V in Pn agrees with the degree of φ(V ) in
Pm.

Prove that the degree is not an isomorphism invariant by providing an example of
isomorphic curves V1, V2 ⊂ Pn with deg(V1) ̸= deg(V2).

Let S = (x0x2 − x21, x0x3 − x1x2, x1x3 − x22) ⊂ k[x0, x1, x2, x3] and define V = Z(S)
to be the zero locus of S in P3. By considering an affine piece or otherwise, show that
V is a curve in P3, and compute its degree. Prove that there do not exist homogeneous
polynomials F1, . . . , Fr such that V = Z(F1, . . . , Fr) and deg(V ) =

∏r
i=1 deg(Z(Fi)).

Give an example of two irreducible curves in a projective space Pn which have the
same degree but are not isomorphic. [You may use without proof the fact that a smooth
projective curve in P2 of degree d ⩾ 2 has genus g = (d− 1)(d− 2)/2.]

Paper 4, Section II

24J Algebraic Geometry
In this question, all algebraic varieties are defined over an algebraically closed field

k of characteristic zero.

State the Riemann–Roch theorem, giving a brief explanation of each term.

A smooth projective curveX is covered by two affine pieces (with respect to different
embeddings) which are affine plane curves with equations y2 = f(x) and v2 = g(u)
respectively, with f a square-free polynomial of even degree 2n > 4 and u = 1/x, v = y/xn

in the function field of X.

Determine the polynomial g(u).

Using a well-chosen rational differential, compute the canonical divisor KX of X,
and show that it has degree 2n− 4.

Compute the genus of X.

Write down a basis for the space L(KX) of rational functions with poles bounded
by KX . Conclude that X cannot be embedded into P2.

Part II, 2025 List of Questions
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Paper 1, Section II

21F Algebraic Topology
State the Mayer-Vietoris theorem for a simplicial complex K which is the union of

subcomplexes M and N .

Let K be a non-empty simplicial complex in Rm, where we consider Rm as
lying in Rm+2 via the vectors (x1, . . . , xm, 0, 0). Let c1 = (0, . . . , 0, 1, 0) ∈ Rm+2,
c2 = (0, . . . , 0, 0, 1) ∈ Rm+2 and c3 = (0, . . . , 0,−1,−1) ∈ Rm+2. Let L be the collection
of simplices in Rm+2 given by

L := K ∪ {⟨v0, v1, . . . , vn, ci⟩ | ⟨v0, v1, . . . , vn⟩ ∈ K, i = 1, 2, 3}.

Show that L is a simplicial complex.

[You may use any results from lectures provided they are clearly stated.]

Paper 2, Section II

21F Algebraic Topology
Let (X,x0) be a based topological space. Define the fundamental group π1(X,x0),

and show that the composition law is well-defined and satisfies the group axioms.

Let U(2) be the group of unitary 2 × 2 matrices, with the subspace topology from
C2×2. Let I ∈ U(2) denote the identity matrix.

(a) Let γ : [0, 1] → U(2) be given by γ(t) =

(
e2πit 0
0 1

)
. Show that for non-zero

k ∈ Z, [γ]k is never the identity in π1(U(2), I). [You may use without proof a description
of π1(S

1, ∗) provided it is clearly stated.]

(b) Show that π1(U(2), I) is abelian. [You may use without proof the fact that
matrix multiplication gives a continuous map U(2)× U(2) → U(2).]

Part II, 2025 List of Questions [TURN OVER]
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Paper 3, Section II

20F Algebraic Topology
(a) State a version of the Seifert–van Kampen theorem. Let (X,x0) be a based

topological space, and suppose that α : (S1, ∗) → (X,x0) is a based map. Prove that
there is an isomorphism

π1(X ∪α D2, x0) ∼= π1(X,x0)/⟨⟨[α]⟩⟩.

Use this to construct a connected cell complex Y such that

π1(Y, y0) ∼= ⟨a, b | a2b−3⟩.

[You may assume a description of π1(S
1 ∨ S1, ∗) provided it is clearly stated.]

(b) What does it mean for p : X̃ → X to be a covering space? For the cell complex
Y constructed in part (a), suppose we have a covering space p : Ỹ → Y such that Ỹ is
path-connected, and, for ỹ0 ∈ p−1(y0), we have that p∗π1(Ỹ , ỹ0) is the normal subgroup
of π1(Y, y0) generated by a. Given any y ∈ Y , how many points are in p−1(y)? Give an
explicit description of Ỹ as a cell-complex.

Paper 4, Section II

21F Algebraic Topology
Let X be a triangulable space. State a formula for the rational homology groups

Hi(X;Q) given the ordinary homology groups Hi(X). Define the Euler characteristic
χ(X) of X. For K a simplicial complex triangulating X, state and prove a formula
relating χ(X) to numbers of simplices in K.

Let ∆3 denote the simplicial complex given by a standard 3-simplex together with
all its faces. For each i, which standard abelian group is isomorphic to Hi(∆

3)?

Let (∆3)′ be the barycentric subdivision of ∆3, and letM be the 2-skeleton of (∆3)′.

(i) Calculate the Euler characteristic of |M |.
(ii) Use this to compute the simplicial homology groups Hi(M).

(iii) Suppose f : |M | → |M | is a homeomorphism. Must f have a fixed point?
Briefly justify your answer.

Part II, 2025 List of Questions
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Paper 1, Section II

23H Analysis of Functions
[You may use results from Linear Analysis and Probability and Measure without

proof provided they are clearly stated.]

(a) Let µ and ν be finite measures on a measurable space (E, E) that are mutually
absolutely continuous.

(i) Show carefully that there exists a µ-integrable function w : E → [0,∞]
such that ν(A) =

∫
Aw dµ for every A ∈ E .

(ii) For which values of 0 < p < ∞ must
∫
E |w|p dµ be finite? Justify your

answer.

(b) Let νn be a sequence of probability measures on (E, E) for n ⩾ 1. Does there
always exist a probability measure µ on (E, E) such that all νn are absolutely continuous
with respect to µ? Give a proof or counter-example.

Paper 2, Section II

23H Analysis of Functions
(a) State and prove the Rellich-Kondrashov compactness theorem for the embedding

of H1
0 (Ω) into L

2(Ω), where Ω is a bounded open subset of Rd.

[You may use the Banach-Alaoglu and Plancherel theorems without proof.]

(b) Is the embedding of H1(R) into L2(R) compact? Justify your answer.

(c) Consider a bounded sequence fn in H1(R) such that: (i) there is C > 0 so that
|fn(x)| ⩽ C(1 + x2)−1 for all x ∈ R and n ⩾ 1, and (ii) fn converges weakly to zero in
L2(R). Prove that fn converges strongly to zero in L2(R).

Part II, 2025 List of Questions [TURN OVER]
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Paper 3, Section II

22H Analysis of Functions
Let dx denote the Lebesgue measure on Rn and L1(Rn) be the space of measurable

functions f : Rn → R such that
∫
Rn |f(x)| dx <∞.

(a) Denote by [f ] = {g ∈ L1(Rn) : f = g almost everywhere} the equivalence classes
for the almost everywhere equality relation, and show that ∥[f ]∥1 =

∫
Rn |f(x)| dx defines

a complete norm on L1(Rn) := {[f ] : f ∈ L1(Rn)}.
[You may use the Riesz-Fischer theorem without proof if clearly stated.]

(b) Let (X, ∥·∥X) be a Banach space such that: (i) the inclusion X ⊂ L1(Rn) holds,
and (ii) the convergence in ∥ · ∥X implies convergence almost everywhere on Rn along a
subsequence.

(i) Show that there exists a constant C > 0 such that ∥x∥1 ⩽ C∥x∥X for all
x ∈ X.

(ii) Must X be complete for ∥ · ∥1? Justify your answer.

[You may use results from Linear Analysis without proof if correctly stated.]

Part II, 2025 List of Questions
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Paper 4, Section II

23H Analysis of Functions
(a) Let H be a (real) Hilbert space and xn a sequence in H that converges weakly

to x in H as n→ ∞.

(i) Prove that ∥x∥H ⩽ lim infn ∥xn∥H .

(ii) Prove that ∥xn∥H → ∥x∥H if and only if ∥xn − x∥H → 0.

(iii) Must xn converge strongly to x along a subsequence? Justify your answer.

(b) Let Ω ⊂ Rn be open and bounded. For u ∈ H1
0 (Ω) and V ∈ L∞(Ω), we define

the functional

E(u) :=

∫

Ω

(
|Du|2 + V u2

)
dx.

(i) Show that for any sequence un ∈ H1
0 (Ω) that converges weakly to u in

H1
0 (Ω), we must have E(u) ⩽ lim infnE(un).

[You may use the Rellich-Kondrashov theorem without proof.]

(ii) Let λ = inf E where

E =
{
E(u) : u ∈ H1

0 (Ω), ∥u∥L2(Ω) = 1
}
.

Show that there exists w ∈ H1
0 (Ω) such that ∥w∥L2(Ω) = 1 and E(w) = λ.

(iii) Prove that

inf

{∫

R
(Du)2 dx : u ∈ H1(R), ∥u∥L2(R) = 1

}
= 0.

Is this infimum attained? Justify your answer.

Part II, 2025 List of Questions [TURN OVER]
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Paper 1, Section II

35B Applications of Quantum Mechanics
In this question you will study a one-dimensional particle of mass m governed by

the Schrödinger equation,

− ℏ2

2m

d2ψ

dx2
+ V (x)ψ(x) = E ψ(x) ,

where V (x) is a one-dimensional potential with V (x) → 0 as x → ±∞, and E > 0 is the
energy of the particle.

(a) For a particle incident from the negative x-direction, show that

ψ(x) = eikx − im

ℏ2k

∫ ∞

−∞
dx′eik|x−x

′|V (x′)ψ(x′) (∗)

solves the Schrödinger equation, where k =
√
2mE/ℏ.

(b) Consider the following potential

V (x) = −λ [δ(x+ a) + δ(x) + δ(x− a)] ,

where a > 0, λ > 0 are constants and δ(x) is the Dirac delta function. For this potential,
write down a solution to the Schrödinger equation using equation (∗). Write explicitly
the set of three algebraic equations determining ψ(a), ψ(0), and ψ(−a), and express these
equations in matrix form.

By inspecting the asymptotic solution at x → +∞ and writing it as S++e
ikx, find

the scattering amplitude S++(k) in terms of ψ(a), ψ(0), and ψ(−a).
Show that solutions to the algebraic equation

1− γ − 2e−2ika (1 + γ) + e−4ika (1 + γ)3 = 0

correspond to singularities of S++, where γ = ikℏ2/(λm). By looking at limiting values of
a, argue that there are solutions to this algebraic equation on the imaginary k axis. What
is the interpretation of these singularities?

Part II, 2025 List of Questions
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Paper 2, Section II

36B Applications of Quantum Mechanics
(a) A particle moving in an attractive potential V1(x) has a ground-state energy

E1, while a particle moving in an attractive potential V2(x) has a ground-state energy E2.
Using the variational method, show that E1 ⩾ E2 if V1(x) ⩾ V2(x) for all x ∈ R3.

[Hint: use the wavefunction of the particle in V1(x) as a trial function for V2(x).]

(b) Consider a one-dimensional Hamiltonian H = T +V , with kinetic energy T and
the attractive potential

V (x) = − α

|x|n ,

where α and n are positive constants. The exact ground state of the Hamiltonian H is
ψ0(x). By considering the trial function ψ(x) = ψ0(λx), use the variational method to
show that there are no bound states for n > 2.

(c) Consider a two-level quantum system, where the Hamiltonian H0 admits two
eigenstates: |ψ1⟩ with energy E1, and |ψ2⟩ with energy E2. You may assume that the
states are orthogonal, normalised, and non-degenerate, and that E1 < E2.

Consider the perturbation Hp, with matrix elements

⟨ψ1|Hp|ψ1⟩ = ⟨ψ2|Hp|ψ2⟩ = 0 ,

and
⟨ψ1|Hp|ψ2⟩ = ⟨ψ2|Hp|ψ1⟩ = h ,

and h constant. Find the exact eigenvalues of the Hamiltonian H = H0 +Hp.

Estimate the ground-state energy of H using the variational method, where the trial
function is

|ψβ⟩ = sinβ|ψ1⟩+ cosβ|ψ2⟩ ,
and β is an adjustable parameter. How does your answer compare to the exact ground
state?

Part II, 2025 List of Questions [TURN OVER]
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Paper 3, Section II

34B Applications of Quantum Mechanics
Consider a system of three atoms arranged on a circle, which can also be viewed as a

one-dimensional crystal with atoms equally spaced by a distance a under periodic bound-
ary conditions. The atoms are labelled 0, 1 and 2, and the wavefunction corresponding to
an electron bound to the n-th atom is denoted by ψn(x). The periodic boundary conditions
imply that ψn is identified with ψn+3.

The atomic Hamiltonian is H0 with H0|ψn⟩ = E0|ψn⟩. The tunnelling between
atomic sites is represented by a potential V , which has matrix elements

⟨ψn|V |ψn⟩ = α ∀ n ,
⟨ψn|V |ψn′⟩ = −A for n ̸= n′ ,

where α and A are real constants and n, n′ = 0, 1, 2. The stationary state of the total
Hamiltonian, H = H0 + V , is denoted by Ψ and can be written as

|Ψ⟩ =
2∑

n=0

cn|ψn⟩ ,

with H|Ψ⟩ = E|Ψ⟩ and cn ∈ C for n = 0, 1, 2.

(a) Assuming ⟨ψn|ψm⟩ = δnm, show that the coefficients (c0, c1, c2) satisfy the linear
equations 


E0 + α −A −A
−A E0 + α −A
−A −A E0 + α






c0
c1
c2


 = E




c0
c1
c2


 .

Write out explicitly the energy eigenvalues of the system. Show that the possible solutions
for (c0, c1, c2) are

(1, 1, 1) , (1, ω, ω2) , (1, ω2, ω) ,

where ω is a cube root of unity. [Hint: x3−3A2x−2A3 = 0 has a double root at x = −A.]
(b) Interpret these solutions in terms of a wavenumber k and determine the possible

values of k. Write the corresponding eigenvectors |Ψk⟩ in terms of |ψn⟩. What is the
Brillouin zone for this system?

(c) Let ψn(x) = ψ(x− na). Show that, for each value of k, Ψk(x) can be written as

Ψk(x) = uk(x) e
ikx ,

uk(x) =
2∑

n=0

ψ(x− na) e−ik(x−na) .

Check that uk(x+ a) = uk(x). State Bloch’s theorem in one dimension and justify why it
applies to this system.

Part II, 2025 List of Questions
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Paper 4, Section II

34B Applications of Quantum Mechanics
Consider a particle of massm and electric charge e under the influence of a magnetic

field B and a periodic potential. In these circumstances, the Hamiltonian is

H =
1

2m
[p− eA(x)]2 + V (x) .

Here p = −iℏ∇ is the canonical momentum and V (x) is a periodic potential dictated by
the lattice Λ, that is, V (x) = V (x+ r) for all r ∈ Λ. The magnetic field B is constant and
we adopt the gauge

A(x) =
1

2
B× x .

(a) Evaluate the commutators

[pi + eAi, pj − eAj ] and [pi + eAi, pj + eAj ] .

(b) The translation operator is defined as Tr = eir·p/ℏ. Show that Tr does not
commute with H in the presence of a magnetic field.

In the presence of a magnetic field, it is useful to introduce the magnetic translation
operator, defined as

Tr = exp

{
i

ℏ
r · [p+ eA(x)]

}
.

Show how Tr acts on functions, and show that Tr commutes with the Hamiltonian.

(c) Show that

TrTr′ = exp

[
ie

ℏ
(r× r′) ·B

]
Tr′Tr .

The magnetic flux through a cell of the lattice is defined as Φ = B · (r× r′). Under what
condition on Φ do the magnetic translations form an abelian group?

[Hint: you may use, without proof, that eMeN = eM+N+ 1
2
[M,N] if M and N commute

with [M,N].]

Part II, 2025 List of Questions [TURN OVER]
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Paper 1, Section II

28L Applied Probability
Let (Xt, t ⩾ 0) be a Poisson process on R+ with rate λ > 0.

(a) Assuming the infinitesimal definition of a Poisson process, find the distribution
of Xt.

(b) Now condition on the event Xt = n for some t > 0 and n ∈ N. What is the
probability that the last jump before t occurs before 3t/4? What is the distribution of the
number of jumps between t/4 and 3t/4?

(c) Suppose (Xt, t ⩾ 0) describes the arrival of particles into a system. Each particle
then lives for a length of time that is independent of the arrival process and independent
of the lives of other particles. The particle lifespans are exponentially distributed with
mean 1/µ. Find the distribution of the number of particles alive at time t.

[Clearly state all results you use. You may use that if N is a Poisson(λ) random
variable, then E(eθN ) = exp(λ(eθ − 1)).]

Part II, 2025 List of Questions
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Paper 2, Section II

28L Applied Probability
(a) Consider a right-continuous continuous-time Markov chain X on Z starting from

0 such that q0,1 = q0,−1 = 1/2 and

qi,i+1 =
2qi
3
, qi,i−1 =

qi
3
, q−i,−i−1 =

2q−i
3
, q−i,−i+1 =

q−i
3

∀i ⩾ 1;

with qi = 3|i| for i ∈ Z.

Is X recurrent? Is X explosive? Does X have an invariant distribution? Justify
your answers.

(b) Let X ∼ Markov(Q) be an irreducible right-continuous continuous-time Markov
chain on a countable state space with generator Q. Are the following statements true?
Prove or give a counterexample.

(i) If the jump chain Y is positive-recurrent, then X is positive-recurrent.

(ii) If X is positive-recurrent, then the jump chain Y is positive-recurrent.

(c) Consider an M/M/1 queue with arrival and service rates λ > 0 and µ > 0
respectively. After service, each customer returns to the beginning of the queue with
probability p ∈ (0, 1). Let (Lt)t⩾0 denote the queue length.

(i) For which parameters is L transient, and for which is it recurrent?

(ii) When is it positive recurrent?

(iii) Find the invariant distribution when it exists and the expected queue length
at equilibrium.

(iv) What is the distribution of the departure process at equilibrium?

[Clearly state all results you use. You may assume the recurrence and transience
properties of simple random walks on Z. ]

Part II, 2025 List of Questions [TURN OVER]
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Paper 3, Section II

27L Applied Probability
Let (ξi) be a sequence of i.i.d. non-negative random variables with ξ1 having a

probability density function and Eξ1 = 1/λ <∞.

(a) Define the renewal process Nt formed by the sequence (ξi). Assuming the law
of large numbers, show that Nt/t→ λ almost surely as t→ ∞.

Let L(t) denote the length of the renewal interval containing t.

(b) Define what it means for a random variable ξ̂1 to have the size-biased distribution
corresponding to ξ1. If ξ1 has an exponential distribution, show that L(t) converges in
distribution to ξ̂1 as t→ ∞. [Your proof should not use the equilibrium theorem of general
renewal processes.]

(c) For all x, t > 0, prove that P(L(t) ⩾ x) ⩾ P(ξ1 ⩾ x).

Paper 4, Section II

27L Applied Probability
(a) State the mapping theorem for a non-homogeneous spatial Poisson process on

Rd with intensity function λ and a map f : Rd → Rs. You should clearly state all the
necessary conditions.

(b) Assume that the positions (x, y, z) ∈ R3 of stars in space are distributed
according to a homogeneous spatial Poisson process Π with a constant intensity λ > 0.

(i) Let f : R3 → [0,∞) be given by f(x, y, z) = (x2 + y2 + z2)3/2. Show
that f(Π) is again a homogeneous Poisson process on [0,∞). What is its
intensity?

(ii) Let R1, R2, . . . be an increasing sequence of positive random variables such
that Rk denotes the distance of the k-th closest star from the origin. Find
the density function for the distribution of Rk. [Hint: The sum of n
independent Exp(1) random variables has a Gamma(n) distribution with
density function xn−1e−x/(n− 1)! for x > 0.]

Part II, 2025 List of Questions
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Paper 2, Section II

32D Asymptotic Methods
The incomplete gamma function γ(x, y) is defined by

γ(x, y) =

∫ ∞

y
tx−1e−t dt,

for real positive x and y.

(a) Using integration by parts, show that for fixed finite x,

γ(x, y) ∼ yx−1e−y
∞∑

n=0

an(x) y
−n, as y → ∞,

where you should determine the coefficients an(x).

(b) Give the leading-order term in the asymptotic approximation of γ(x, y) for fixed
finite y and as x→ ∞.

(c) Suppose that x → ∞ and y → ∞ with y/x = λ, where λ > 1 is a constant.
Calculate the first two terms of the asymptotic expansion of γ(x, y), in the form

γ(x, y) ∼ yx−1e−y
[
f(λ) + x−1g(λ)

]
,

where f(λ) and g(λ) are functions that you should determine.

[Recall that
∫∞
0 tne−αtdt = α−n−1n!, for n a positive integer and α > 0.]
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Paper 3, Section II

30D Asymptotic Methods
(a) Consider the function

I(x) =

∫

C
f(z)exϕ(z)dz, (†)

where C is a complex contour, x is real and positive, f and ϕ are complex-valued functions,
ϕ possesses a simple saddle point z0, and f(z0) ̸= 0. Suppose C can be deformed so that
it passes through z0 without changing the value of I(x).

Show that the saddle point’s leading order asymptotic contribution to I is

f(z0)

√
2π

x|ϕ′′(z0)|
exϕ(z0)+iα, as x→ ∞,

where α is the angle of the tangent to the steepest descent curve at z = z0.

[You may quote, without proof, results from Laplace’s method for real integrals.]

(b) The Legendre polynomials can be expressed by the Schläfli integral:

Pn(t) =
1

2n+1πi

∮

C

(z2 − 1)n

(z − t)n+1
dz,

where n is a positive integer, t = cos θ, with 0 < θ < π, and C is any closed anti-clockwise
contour encircling t.

(i) Express Pn(t) in the form

Pn(t) =
1

2n+1πi

∮

C
f(z, t)enϕ(z,t)dz,

for some functions f and ϕ, and show that the saddle points of ϕ are located
at z = z± = e±iθ.

(ii) Show that Arg[ϕ′′(z±)] = ∓(θ+π/2). Hence sketch an appropriate contour
C that passes through z+ and z−, calculating its angle α at each saddle
point.

(iii) Find the leading order asymptotic approximation of Pn(t) as n→ ∞, in the
form

Pn(t) ∼ A cos
(
nθ + 1

2θ − 1
4π
)
,

where you should determine A(θ).
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Paper 4, Section II

31D Asymptotic Methods
(a) Consider the function

U(x) =

∫ ∞

0

e−xt

1 + t
dt,

where x is real and positive. Use Watson’s lemma to show U(x) ∼ ∑∞
n=0 anx

−n−1 as
x→ ∞, where you should determine the coefficients an.

(b) Show that U is a solution to the differential equation

xy′′(x) + (1− x)y′(x)− y(x) = 0, (†)

for real positive x.

(c) By a suitable transformation, rewrite equation (†) as

v′′(x)− 1
4

(
1 +Ax−1 +Bx−2

)
v(x) = 0, (⋆)

where A and B are constants you need to find. Determine that positive infinity is an
irregular singular point of this equation.

(d) Consider Liouville-Green solutions to equation (⋆) of the form v(x) = eS(x) with
S′(x) ∼ ∑∞

n=0 bnx
−n as x → ∞. Calculate terms up to, and including, order x−1 in the

expansion of S. Find the associated asymptotic expansion of y, and compare with your
solution from part (a). What is the leading order asymptotic approximation of the other
solution to equation (†) as x→ ∞?
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Paper 1, Section I

4F Automata & Formal Languages
Consider the following table with classes of formal languages in the rows and closure

properties in the columns (where “union”, “intersection”, and “complement” stand for
closed under union, intersection, and complement, respectively). Fill the twelve entries
of the table with “Yes” and “No”, depending on whether the class of formal languages
in the row has the closure property given in the column or not. You do not need to give
arguments for “Yes” answers. For each “No” answer, either provide a counterexample or
an argument why the class is not closed under the operation.

union intersection complement

regular ◦ ◦ ◦
context-free ◦ ◦ ◦
computable ◦ ◦ ◦
computably enumerable ◦ ◦ ◦

[If you give a counterexample from the lectures, you do not have to prove that it is
a counterexample, provided that you state it correctly.]
[Comment. This is a very easy question for a student who has grasped the course as a
whole. Closure properties were a recurring theme. It draws from all parts of the course
(some results from all four chapters) and requires a certain amount of bird’s eye view. A
student who has this type of overview of the entire course deserves a β, even if it is an
easy β.]

Paper 2, Section I

4F Automata & Formal Languages
(a) Say what it means for a language L to satisfy the context-free pumping lemma.

(b) For each of the following languages over the alphabet {0,1}, either give a
context-free grammar that produces the language or prove that the language is not context-
free. We write wR for the reverse word of w, i.e., if w = a0...an−1 then wR = an−1...a0.

(i) The language L := {0n1n0n ; n > 0}.
(ii) The language L := {wwR ; w ∈ B+} of even length palindromes.

(iii) The language L := {wwR ; w ∈ B+ such that the number of 0s in w is equal
to the number of 1s in w}.

(iv) The language L := {0n1m0n+m ; n,m > 0}.

Part II, 2025 List of Questions
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Paper 3, Section I

4F Automata & Formal Languages
(a) The following register machines M and N given explicitly by their programs

compute characteristic functions, i.e., fM,1 = χA and fN,1 = χB. Determine A and B.
Justify your answer.

M N
qS 7→ ?ε(0, q1, q0) qS 7→ ?0(0, q3, q0)
q0 7→ −(0, q2, q0) q0 7→ −(0, q2, q0)
q1 7→ +1(0, qH) q1 7→ +1(0, qH)
q2 7→ +0(0, qH) q2 7→ +0(0, qH)

q3 7→ −(0, q1, q3)
qH 7→ ?ε(0, qH, qH) qH 7→ ?ε(0, qH, qH)

(b) By modifying N or otherwise, give the explicit program of a register machine
that computes the characteristic function of the set {w1 ; w ∈ B}. Justify your answer.

(c) Suppose you are given the program of a register machine that computes the
characteristic function of a set X. Describe how to explicitly modify the given program
in order to obtain the program of a register machine that computes the characteristic
function of the complement B\X. Justify your answer.

Paper 4, Section I

4F Automata & Formal Languages
(a) Say what it means for a grammar to be variable based.

(b) Given two grammars G = (Σ, V, P, S) and G′ = (Σ, V ′, P ′, S′), give the
definitions of the concatenation grammar H and the regular concatenation grammar Hreg,
i.e., grammars H and Hreg such that

(i) if G and G′ are variable based with disjoint sets of variables, then

L(H) = L(G)L(G′) and

(ii) if G and G′ are regular with disjoint sets of variables, then Hreg is regular
and

L(Hreg) = L(G)L(G′).

[You do not need to prove these statements, only to provide the definitions of the
grammars.]

(c) Find examples of regular grammars G and G′ with disjoint sets of variables such
that H is not a regular grammar. Justify your claim.

(d) Find examples of variable based grammars G and G′ with disjoint sets of
variables such that L(Hreg) ̸= L(G)L(G′). Justify your claim.

Part II, 2025 List of Questions [TURN OVER]
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Paper 1, Section II

12F Automata & Formal Languages
(a) Let C,D ⊆ B. Give definitions of the following concepts:

(i) C ⩽m D;

(ii) C ≡m D; and

(iii) C is a nontrivial index set.

(b) The proof of Rice’s theorem shows that nontrivial index sets I are not comput-
able by either proving K ⩽m I or B\K ⩽m I. State when the first or the second option
holds according to the proof of Rice’s theorem.

[Define your notation; you do not need to prove your claim.]

(c) For the nontrivial index sets

Emp := {w ∈ B ; Ww = ∅} and Inf := {w ∈ B ; Ww is infinite},

state in each case whether the first or the second option of (b) holds.

(d) Is the set {w ∈ B ; |w| is even} an index set? Justify your answer.

(e) Consider the nontrivial index set Two := {w ∈ B ; |Ww| ⩾ 2} and show that
K ≡m Two.

(f) Consider the nontrivial index set

Cof := {w ∈ B ; the complement of Ww is finite}

and show that both K ⩽m Cof and B\K ⩽m Cof .

[In the entire question, you may use any results proved in the lectures, provided that
you state them precisely and correctly.]

Part II, 2025 List of Questions
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Paper 3, Section II

12F Automata & Formal Languages
(a) Let D = (Σ, Q, δ, q0, F ) be a deterministic automaton.

(i) Define what it means that a state q ∈ Q is inaccessible.

(ii) Define what it means that two states q, q′ ∈ Q are indistinguishable.

(iii) Define what it means that the automaton D is irreducible.

(iv) State the relationship between irreducibility and the size of the smallest
automaton for a regular language.

(b) Let N = (Σ, Q,∆, q0, F ) be a non-deterministic automaton and w = a0...an−1 ∈
W. We say that a sequence (p0, ..., pn) ∈ Qn+1 is a witnessing sequence for w if for all
i < n, we have pi+1 ∈ ∆(pi, ai). We say that it starts with q if p0 = q and that it ends
with q′ if pn = q′.

(i) Let q ∈ Q and w ∈ W. Define ∆̂(q, w) and what it means that w ∈ L(N).

(ii) Describe the subset construction that takes a non-deterministic automaton
N and constructs a deterministic automaton D such that L(D) = L(N).
[You should provide the construction of D but you do not need to prove
that L(D) = L(N).]

(iii) Prove that for q, q′ ∈ Q and w ∈ W, we have that q′ ∈ ∆̂(q, w) if and only
if there is a witnessing sequence for w that starts with q and ends with q′.

(c) We say that a non-deterministic automaton N = (Σ, Q,∆, q0, F ) is a Brzozowski
automaton if

(Br1) F = {q∗} is a singleton;

(Br2) for every q ∈ Q there is a w ∈ W and a witnessing sequence for w starting
from q and ending in q∗;

(Br3) for every w ∈ W there is a unique q ∈ Q such that there is a witnessing
sequence for w starting from q and ending in q∗.

LetN be a Brzozowski automaton, D be the result of the subset construction applied
to N , and D′ be the automaton D with all inaccessible states removed. Show that D′ is
an irreducible automaton such that L(D′) = L(N).

[In the entire question, you may use any results proved in the lectures, provided that
you state them clearly.]
Comment 1. This question looks long, but the large number of subitems in (a) and (b) will
actually help the students since (a) (i) to (iii) and (b) (i) and (ii) are asking for definitions
that the student will have to write down for the proof of (c) anyway. (b) (iii) is crucial
for (c). One could cut (a) (iv) if the question seems too long.
Comment 2 (irrelevant for the exam; but might be of interest to future supervisors of
revision supervisions). If D is any deterministic automaton, reversing all arrows of the
transition function gives a non-deterministic automaton N such that L(N) is the set
of reversed words in L(D). This automaton is a Brzozowski automaton and thus leads
to a nice construction of the minimal automaton for the reverse language: reverse the
arrows, do the subset construction, remove inaccessible states. This observation is the key
ingredient to Brzozowski’s algorithm for minimising automata: his algorithm is to do the
above construction twice.
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Paper 1, Section I

8B Classical Dynamics
This question concerns a linear, triatomic molecule, consisting of two outer atoms

of mass m on either side of an inner atom of mass M . All three atoms lie on a vertical
line, taken as the y-axis (directed upwards), at heights y1 > y2 > y3. The atoms move
under the influence of a uniform, downward gravitational acceleration of magnitude g, as
well as forces arising from the potential energy

1
2

[
k(y1 − y2)

2 + k(y2 − y3)
2
]
.

The constants m, M , k and g are positive.

(a) Write down the Lagrangian L(y1, ẏ1, y2, ẏ2, y3, ẏ3) for the system. Give an
expression for the centre of mass Y of the molecule, and determine its time evolution
Y (t) assuming Y (0) = A, where A is a constant.

(b) Introduce generalised coordinates

Qs = y1 + y3 and Qa = y1 − y3

and use your answer to part (a) to eliminate y2 and obtain a Lagrangian L̂ in terms of Qs
and Qa. Hence obtain a differential equation for Qa.

Paper 2, Section I

8B Classical Dynamics
(a) Explain very briefly how to introduce action-angle variables ϕ, I for a Hamilto-

nian system determined in the standard way by a Hamiltonian H(q, p) defined for
(q, p) ∈ R2. [You may assume that all orbits are bounded for your discussion.] Fur-
thermore, briefly explain what is meant by the principle of adiabatic invariance of the
action.

(b) Consider the case

H(q, p) =
p2

2m
− 1

|q| ,

where m is a positive constant. Explain why, for solutions with H = E = −|E| < 0, the
magnitude of q must remain bounded. Find the smallest possible qmax = qmax(|E|) such
that the interval [−qmax, qmax] contains all possible values of q(t) for such a solution.

Calculate the action I in terms of |E| and m. Assuming further that the adiabatic
invariance principle holds for this system, if m varies slowly over a long time interval,
doubling in magnitude, how does the energy change?

[Hint: you may make use of the integral
∫ 1
0

√
1− x2dx = 1

4π.]

Part II, 2025 List of Questions
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Paper 3, Section I

8B Classical Dynamics
Let C be a solid cone of height l with circular cross-section of radius R at the base.

(The height is the distance between the base and the vertex along the axis of symmetry.)
Denote the axis of symmetry by e3, which is directed from the vertex of C to its base. The
cone has uniform density ρ, so that the total mass is M = 1

3πR
2lρ.

The principal moments of inertia of C with respect to its centre of mass are

ICM
1 = ICM

2 =
1

80
πR2l(4R2 + l2)ρ and ICM

3 =
1

10
R4lρ .

Using standard Euler angles (ψ, θ, ϕ) to describe the orientation of C, the angular velocity
has components

ω = (ψ̇ + cos θ ϕ̇)e3 + (cosψ sin θ ϕ̇− sinψ θ̇)e2 + (sinψ sin θ ϕ̇+ cosψ θ̇)e1

with respect to the principal axes {e1, e2, e3}.
(a) Compute the centre of mass of C. State the parallel axis theorem. Find the

principal moments of inertia of C about its vertex.

(b) Let the vertex of C be fixed. Using the formulae for the angular velocity with
respect to the principal axes given above, write down the Lagrangian for the dynamics of
C, taking the magnitude of downward gravitational acceleration g to be constant. Identify
any ignorable (that is to say, cyclic) coordinates, and find the corresponding conserved
quantities. Obtain the Hamiltonian for the system.

(c) Find a Hamiltonian system on a two-dimensional phase space by reducing the
number of degrees of freedom by means of the ignorable coordinates you found in part (b).
Show that the configuration in which e3 is oriented vertically upward is an equilibrium
which is stable if the angular momentum about this axis is sufficiently large.
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Paper 4, Section I

8B Classical Dynamics
(a) State the Jacobi identity for the Poisson bracket {F,G} on a phase space. Prove

that if F and G are both conserved quantities for the flow generated by a Hamiltonian H,
then {F,G} is also conserved.

(b) Consider the following mappings (q, p) 7→ (Q(q, p), P (q, p)), which depend on
the parameter λ ∈ R:

(i) (Q,P ) = (λq, λp) ;

(ii) (Q,P ) = (q, λp) ;

(iii) (Q,P ) = (p, λq) .

For which values of λ are these mappings canonical? For each value of λ either
show the mapping is not canonical or, if it is canonical, find a generating function for the
mapping.

[
Hint: the generating function will either be of type S = S(q, P ;λ), such that the

mapping is equivalent to

p =
∂S

∂q
, Q =

∂S

∂P
,

or of type Φ = Φ(q,Q;λ) with the mapping equivalent to

p =
∂Φ

∂q
, P = −∂Φ

∂Q
.

]
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Paper 2, Section II

14B Classical Dynamics
This question concerns a double pendulum, consisting of a simple pendulum of mass

M and length l pivoted at the origin with angle θ1 with respect to the vertical, together
with another simple pendulum of mass m, also of length l and angle θ2 with respect to the
vertical, pivoted at the first mass M . The whole system moves freely in a vertical plane
under the influence of a downward uniform gravitational acceleration of magnitude g. All
the constants m, M , l and g are positive and, in addition, define ω0 =

√
g/l.

(a) Show that the Lagrangian for the system is

L =
1

2
Ml2θ̇21 +

1

2
m
[
l2θ̇21 + l2θ̇22 + 2l2 cos(θ1 − θ2)θ̇1θ̇2

]

+Mgl cos θ1 +mg(l cos θ2 + l cos θ1) .

(b) Write down the equations of motion and expressions for any conserved quantities.
Furthermore, show that θ1 = 0 = θ2 is an equilibrium point, and derive the linearized
equations of motion for small oscillations

(θ1, θ2) = (0, 0) + (z1, z2) , |z1|+ |z2| = o(1) ,

around it.

(c) Find the four normal modes and show that the equilibrium point is stable.
Consider the case when µ = m/M ≪ 1. Show that the characteristic frequencies are ±ω
and ±ω′, for some positive ω and ω′ with ω − ω′ = α

√
µ + O(µ), where α is a constant

you should find.
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Paper 4, Section II

15B Classical Dynamics
Let I1 < I2 < I3 be the three principal moments of inertia of a rigid body that

rotates freely with angular velocity ω according to the Euler equations

I1ω̇1 = (I2 − I3)ω2ω3 ,

I2ω̇2 = (I3 − I1)ω3ω1 ,

I3ω̇3 = (I1 − I2)ω1ω2 ,

where the components ω1, ω2 and ω3 of the angular velocity are taken with respect to the
principal axes of inertia.

(a) Write down expressions for the energy E and the total angular momentum
squared L2, and prove that these are conserved using the Euler equations.

(b) Show that if L2 = 2EI2 there exist solutions in which the angular velocity is
directed along the second principal axis, i.e., ω1 and ω3 are zero. What are the possible
values for ω2? Use linearisation to analyse the stability of these solutions.

(c) Still working under the condition L2 = 2EI2, use your expressions from part
(a) to express ω1 and ω3 in terms of E and L2, and hence obtain a first-order differential
equation for ω2. Integrate this equation and show that ω2(t) = µ tanh(λt) for some
constants µ, λ which you should find. Briefly comment on the relation of this solution to
your answer to part (b).
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Paper 1, Section I

3K Coding & Cryptography
State and prove Kraft’s inequality.

Describe Shannon-Fano Coding. Explain why it works and give an upper bound on
its expected word length.

Paper 2, Section I

3K Coding & Cryptography
Suppose codewords 000 and 111 are sent with probabilities 1/5 and 4/5 respectively

through a Binary Symmetric Channel with error probability p = 1/4. If we receive 001
how should we decode if we use (i) ideal observer, (ii) maximum likelihood, (iii) minimum
distance decoding? Justify your answers.

In light of this give some positives and negatives of the three decoding methods.

Paper 3, Section I

3K Coding & Cryptography
Explain what is meant by a Bose-Ray Chaudhuri-Hocquenghem (BCH) code with

design distance δ. Prove that, for such a code, the minimum distance between codewords
is at least δ. [Results about the Vandermonde determinant may be quoted without proof
provided they are clearly stated.]

How many errors will the code detect? How many errors will it correct? Justify
your answers.

Paper 4, Section I

3K Coding & Cryptography
Define a linear feedback shift register (LFSR) and its associated feedback polyno-

mial.

Suppose an LFSR has a feedback polynomial of degree d. Explain why the period
produced by this LFSR cannot be longer than 2d − 1.

Explain why an LFSR that generates a maximal period must have an odd number
of coefficients equal to 1 in its feedback polynomial. (That is, if the feedback polynomial
is given by xd+ ad−1x

d−1 + · · ·+ a0, then an even number of the ai should be equal to 1.)

The output sequence of an LFSR starts with 100000001. Give a minimal LFSR that
generates this output, i.e. one whose feedback polynomial has least degree. Justify your
answer.
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Paper 1, Section II

11K Coding & Cryptography
Describe the Huffman coding scheme and prove that Huffman codes are optimal.

A Huffman code is used to encode letters a1, . . . , am with respective probabilities
p1 ⩾ p2 ⩾ · · · ⩾ pm. Prove that, if p1 < 1/3, all codewords have length at least 2. Prove
that, if p1 > 2/5, then there is a codeword of length 1.

Find a probability distribution for which both of the following codes are optimal.

(a) 0, 10, 110, 111

(b) 00, 01, 10, 11

Paper 2, Section II

12K Coding & Cryptography
Consider a cryptosystem ⟨M,K,C⟩. Let e, d be the respective encryption and

decryption functions. Model the key and messages as random variables k,m taking values
in K,M , respectively and such that m = d(c, k) ∈M and c = e(m, k) ∈ C.

Define, both in words and formally, the unicity distance, U , of a cryptosystem.

Prove that

U =
log |K|

log |Σ| −H

where Σ is the alphabet of the ciphertext and H = H(m). Make clear any assumptions
you make.

Suppose M = {0, 1, 2} is emitted from a memoryless source with probabilities

P (m = 0) = 1/2, P (m = 1) = p and P (m = 2) = 1/2− p

where 0 ⩽ p ⩽ 1/4. Let the key k = (k0, k1, k2) be chosen uniformly from the set of binary
3-tuples i.e. K = {(k0, k1, k2) : ki ∈ {0, 1}}. A sequence of messages m1,m2, . . . ,mn is
encrypted to a sequence of ciphertexts c1, c2, . . . , cn by

ci = mi + ki mod 3 (mod 3)

for 1 ⩽ i ⩽ n.

Show that, if the unicity distance of the cryptosystem is at least 20, then we must
have H(2p, 1− 2p) ⩾ 0.87 (you may take log2(3) = 1.585).

Given that H(2p, 1 − 2p) = 0.87 is satisfied when p = 0.15, find all values of
p ∈ [0, 1/2] that give a unicity distance of at least 20.

Now suppose p = 0. Propose a new cipher for this source which has infinite unicity
distance.
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Paper 1, Section I

9E Cosmology
Consider the motion of light rays in a homogeneous and isotropic expanding universe

with scale factor a(t). Light emitted by a distant galaxy at wavelength λe is observed on
Earth to have wavelength λ0. The galaxy redshift z is defined by

1 + z =
λ0
λe
.

(a) Assuming that the galaxy remains at a fixed comoving distance, show that the
redshift is related to the scale factor by

1 + z =
a(t0)

a(te)
,

where the light is emitted at time te and observed today at time t0.

(b) Suppose the galaxy is located at comoving position x and let L be the amount
of energy emitted by the galaxy in photons per unit time. Show that the total energy per
unit time crossing a sphere centred on the galaxy and intercepting the Earth is

L

(1 + z)n
,

where n is an integer you should determine. Hence, show that the energy per unit time
per unit area reaching the Earth is

L

4πa2(t0)x2 (1 + z)n
.
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Paper 2, Section I

9E Cosmology
Prior to the synthesis of light elements (kBT ≳ 1 MeV), neutrons and protons are

kept in equilibrium by the weak interactions

n+ νe ↔ p+ e− , p+ ν̄e ↔ n+ e+ .

The ratio of the weak interaction rate ΓW ∝ T 5, which maintains equilibrium, relative to
the Hubble expansion rate H ∝ T 2, is

ΓW
H

≈
(
kBT

κ

)3

where κ = 0.7 MeV . (†)

(a) Assuming that the chemical potentials for all leptons are small, µe− ≪ kBT etc.,
show that, in equilibrium, the neutron-to-proton ratio can be expressed as

nn
np

≈ e−Q/(kBT ) ,

where Q = (mn − mp)c
2 = 1.29 MeV is the mass difference between a neutron and a

proton.

(b) Using equation (†), briefly explain why the neutron-to-proton ratio effectively
‘freezes out’ once kBT < 0.7 MeV. At this time, the ratio is nn/np ≈ 1/6, but it decreases
to a final value nn/np ≈ 1/7 when deuterium forms at kBT ≈ 0.07 MeV. Briefly specify
why.

(c) Briefly explain why eventually almost all neutrons are captured in helium-4,
and estimate the resulting helium mass parameter Yp = ρHe/ρB, where ρHe is the helium-4
density, ρB = mp nB, and nB is the baryon number density.

(d) Consider an otherwise identical universe where the constant κ in equation (†)
is much larger than 0.7MeV. Describe how this would affect the ‘freeze-out’ described by
equation (†) and the helium mass parameter Yp. Briefly discuss potential implications for
stellar lifetimes and the origin of life in this alternative universe.
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Paper 3, Section I

9E Cosmology
The equation governing the evolution of density-perturbation modes δ(k, τ) in

conformal time τ is

δ′′(k, τ) +H(τ) δ′(k, τ)− 3

2
ΩM (τ)H(τ)2δ(k, τ) = 0 , (†)

where a prime denotes ∂
∂τ , H(τ) = a′/a, a is the scale factor, ΩM is the density of non-

relativistic matter relative to the total density, and k is the comoving wavevector.

In the following, we consider a flat, matter-dominated universe after equal matter-
radiation (τ ⩾ τeq), for which you may assume that ΩM ≈ 1 and a(τ) = (τ/τ0)

2, where τ0
is the conformal time today.

(a) By seeking a power-law solution of the form δ = τβ, show that the general
solution of equation (†) for the matter-dominated era (τeq ⩽ τ ⩽ τ0) takes the form

δ(k, τ) = A(k)τ2 +B(k)τ−3 , (∗)

where A(k), B(k) are arbitrary functions.

(b) Show that a mode with physical wavelength λ(τ) = 2πa(τ)/k, corresponding
to the comoving wavenumber k = |k|, crosses inside the cosmological horizon at time
τH = 2π/(k c). Now consider a perturbation mode δ(keq, τ) with wavevector keq that
crosses inside the cosmological horizon at τH = τeq, that is, at time of equal matter-
radiation. Using equation (∗), show that the linear growth of this perturbation mode is
given today by

Deq
..=

δ(keq, τ0)

δ(keq, τeq)
=

a(τ0)

a(τeq)
.

(c) Assume that for each wavevector k, the amplitude of the corresponding mode
at its horizon crossing time τH is given by |δ(k, τH)| = τ2H Â k

1/2 with constant Â. Show
that the power spectrum today takes the form

|δ(k, τ0)|2 =
C

k4eq
k , keq ⩽ k ⩽ k0 ,

where the amplitude C should be specified in terms of Â and Deq. Here, k0 is the
wavenumber of a mode crossing inside the cosmological horizon at τ0.
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Paper 4, Section I

9E Cosmology
An inflationary Friedmann-Lemâıtre-Robertson-Walker universe is governed by the

following slow-roll equations for the scale factor a(t) and the scalar field ϕ(t),

H2 =
1

3M2
Pl

V (ϕ) , 3Hϕ̇ = −V ′(ϕ) ,

where a dot denotes d/dt, H = ȧ/a, V ′(ϕ) = dV/dϕ and MPl is the Planck mass.

(a) Defining the slow-roll parameter

ϵ(ϕ) ..=
M2

Pl

2

[
V ′(ϕ)
V (ϕ)

]2
,

verify that the condition ϵ(ϕ) ≪ 1 is consistent with the slow-roll condition ϕ̇2 ≪ V . Show
that

H

ϕ̇
= − 1

M2
Pl

V

V ′ = − 1√
2MPl

1√
ϵ
.

(b) The amount of inflation is given by the number of e-folds by which the scale
factor grows, N = log[a(tf )/a(ti)], where ti and tf are the start and end times of inflation.
Denoting ϕi = ϕ(ti) and ϕf = ϕ(tf ), show that in the slow-roll regime,

N =

∫ tf

ti

H dt ≈ 1√
2MPl

∫ ϕi

ϕf

dϕ√
ϵ(ϕ)

.

(c) Consider the potential V (ϕ) = V0 [1 + cos(ϕ/f)], where V0 and f are positive
constants. Show that √

ϵ(ϕ) =
MPl√
2f

tan
ϕ

2f
.

Hence, find that the number of e-foldings for this model is given by

N =
2

M2
Pl

f2
[
log

(
sin

ϕi
2f

)
− log

(
sin

ϕf
2f

)]
.
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15E Cosmology
(a) Consider the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric with co-

moving curvature constant k (not normalised to unity),

ds2 = −c2dt2 + a(t)2
[

dr2

1− k r2
+ r2(dθ2 + sin2 θdϕ2)

]
.

(i) Briefly comment on the three geometries described by this metric and, in
each case, calculate the proper distance between the points r = 0 and
r = ∆r along curves with dt = dθ = dϕ = 0.

(ii) For each geometry give new time and radial coordinates τ and χ that
transform the metric to

ds2 = a2(τ)
[
−c2dτ2 + dχ2 + f2(χ)(dθ2 + sin2 θdϕ2)

]
,

where the function f(χ) should be specified. Along which trajectories do
radial light rays (dθ = dϕ = 0) propagate in these coordinates?

(b) For an FLRW universe with vanishing cosmological constant the Friedmann and
continuity equations are

(
ȧ

a

)2

+
kc2

a2
=

8πG

3c2
ρ , ρ̇ = −3

ȧ

a
(ρ+ P ) ,

where ρ is the energy density, P is the pressure and ȧ = da
dt . Consider an open universe

(k < 0) filled with dark energy ‘quintessence’, which has an equation of state P = −2
3ρ.

At t = t0 we take ρ(t0) = ρ0 and a(t0) = 1.

(i) Use the continuity equation to determine the rate at which the energy
density falls as the universe expands and show that

(
ȧ

a

)2

=
γ

a
+
β

a2
,

where γ and β are positive parameters you should determine.

(ii) Solve the Friedmann equation for initial conditions a(0) = 0 to find the
scale factor a(t) = t(

√
β + γt/4).

(iii) Calculate the age of the universe t0 when a(t0) = 1. Compare t0 with the
inverse Hubble parameter H−1

0 at t0 in the limiting cases β ≫ γ and γ ≫ β.

(iv) Our present universe is observed to be accelerating, through measurements
of the deceleration parameter q0 ..= −ä(t0) a(t0)/ȧ(t0)2 ≈ −0.55. Can the
quintessence model outlined in this part of the question have q0 ⩽ −0.5 for
any parameter values?
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14E Cosmology
(a) Consider non-relativistic particles of mass m in equilibrium at temperature T

with chemical potential µ. Assuming kBT ≪ mc2 and µ ≪ mc2, show that both Bose-
Einstein and Fermi-Dirac distributions reduce to the Maxwell-Boltzmann distribution

n =

(
4πgs
h3

)∫ ∞

0
dp p2 e−[E(p)−µ]/(kBT ) .

Using
∫∞
0 dp e−p

2/σ2
= 1

2σ
√
π, show that for E(p) = mc2 + p2/(2m),

n = gs

(
2πmkBT

h2

) 3
2

e(µ−mc
2)/(kBT ) . (†)

(b) The recombination of free electrons in the early universe is significantly affected
by the abundance of helium-4 in the universe, which, in terms of the baryon density nB,
is given by the parameter

Yp =
mHe

mH

nHe

nB
= 4

nHe

nB
≈ 1

4
.

In the following we neglect doubly-ionized helium (nHe++ ≈ 0). Then the recombination
of hydrogen and helium proceeds with ionization energies IH and IHe according to

H+ + e− ↔ H0 + γ , IH = (mH+ +me −mH0) c2 ≈ 13.6 eV ,

He+ + e− ↔ He0 + γ , IHe = (mHe+ +me −mHe0) c
2 ≈ 25.6 eV .

(i) Using these equilibrium processes and equation (†) together with ge = 2,
gH+/gH0 = 1

2 and gHe+/gHe0 =1, show that

ne nH+

nH0

=

(
2πme kBT

h2

)3/2

e−IH/(kBT ) ,

ne nHe+

nHe0
= 2

(
2πme kBT

h2

)3/2

e−IHe/(kBT ) .

(ii) The hydrogen and helium ionization fractions are XH+
..= nH+/nH and

XHe+
..= nHe+/nHe (with nH = nH0 + nH+ , nHe = nHe0 + nHe+). Show that

the free electron density is

F ≡ ne
nB

= αXH+ + β XHe+ ,

where α and β should be specified in terms of Yp.

(iii) Given the relation nB = η nγ = η
[
16πζ(3)/(hc)3

]
(kBT )

3 (with baryon-to-
photon ratio η), use the fractional densities XH+ , XHe+ and F to obtain a
closed set of two equations that describes recombination for both hydrogen
and helium. Verify that taking the Yp → 0 limit yields the usual expression
for Saha’s equation with only hydrogen.
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26I Differential Geometry
(a) Define the terms critical point, critical value and regular value. Let A ∈ Sn(R)

be a symmetric n × n matrix with real entries and f : Rn → R the map f(X) = XTAX
for a column vector X ∈ Rn. Show that f has only one critical value. Can it have more
than one critical point? Justify your answer.

(b) Let M2n(R) be the set of 2n × 2n matrices with real entries, and Spn(R) ⊂
M2n(R) the set of matrices A such that ATJA = J with J := ( 0n Idn

−Idn 0n
). Prove that

Spn(R) is a submanifold of M2n(R) with dimension 2n2 + n.

[You can use the pre-image theorem if properly stated.]

(c) Let Gr1,3(R) be the set of 3× 3 symmetric matrices with real entries P so that
P 2 = P and Trace(P ) = 1.

(i) Prove that Gr1,3(R) is a submanifold of S3(R) with dimension 2.

[Hint: You might want to first prove that given P ∈ Gr1,3(R), there exists
X ∈ R3 such that the solutions to P = Y Y T with |Y |2 = 1 for the Euclidean
norm are exactly Y ∈ {X,−X}. Then use this fact to construct local
parametrisations.]

(ii) Does Gr1,3(R) admit a global parametrisation by an open subset of R2?
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26I Differential Geometry
(a) Define what is a regular curve and its arc-length, and prove that a regular curve

can always be parametrised by arc-length. When so, define its torsion, and prove that the
torsion is zero for planar curves.

(b) Consider a regular simple planar closed curve α : I = [a, b] → R2 enclosing
an open bounded convex set Ω. We consider a line L ⊂ R2 outside Ω. Without loss of
generality we assume L = {y = 0} and Ω ⊂ {y > 0} and denote by x0 and x1 the minimum
and maximum x-coordinate of α(I). You may assume that there are two smooth functions
u± : [x0, x1] → R so that

Ω = {(x, y) : x ∈ (x0, x1) and y ∈ (u−(x), u+(x))}

with u− ⩽ u+ and u− convex and u+ concave. Then we define the following symmetrised
set

SL(Ω) :=

{
(x, y) : x ∈ (x0, x1), and y ∈

(
−u+(x)− u−(x)

2
,
u+(x)− u−(x)

2

)}
.

(i) Prove that the areas enclosed satisfy A(SL(Ω)) = A(Ω).

[Hint: Decompose the area into a trapezoid and two caps and figure out
how they are transformed by the symmetrisation.]

(ii) Prove that the perimeter of SL(Ω) is at most the perimeter of Ω with
equality if and only if Ω has an axis of symmetry parallel to L.

[Hint: Calculate the perimeters following the decomposition of the previous
hint, and reduce the inequality to be proven to a Minkowski inequality.]

(iii) Deduce that any convex perimeter-minimizing domain Ω with fixed area
and whose boundary is a regular curve must admit axes of symmetry in all
directions.
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25I Differential Geometry
(a) Given a surface S (2-manifold) in R3, define the first fundamental form

and express it in a local parametrisation, then define the Gauss map and the second
fundamental form, and express them in a local parametrisation. Define the Gauss
curvature and the mean curvature.

(b) Let s 7→ (Y (s), Z(s)) be a planar curve parametrised by arc-length in the yz-
plane with Y (s) > 0 for all s. The surface S of revolution attained by rotating this curve
about the z-axis is parametrised by ϕ(u, v) = (Y (u) cos v, Y (u) sin v, Z(u)).

(i) Calculate the first fundamental form, the Gauss map and the second
fundamental form in the parametrisation ϕ. Deduce that the Gauss
curvature K is equal to −Y ′′/Y and give an expression for the mean
curvature H in terms of Y and Z.

(ii) Given a curve α : I → S on a surface S parametrised by arc-length, define
what it means for the curve to be a geodesic, the Christoffel symbols, and
the geodesic equations in terms of the Christoffel symbols.

(iii) Given a surface of revolution S with the above parametrisation, α(t) =
ϕ(u(t), v(t)) a curve on S, prove that if α is a geodesic then [Y (u)]2 v̇ is
constant.

Paper 4, Section II

25I Differential Geometry
(a) Given a surface S ⊂ R3, define the exponential map around a point, and state and

prove the Gauss lemma (expressing the first fundamental form in the local parametrisation
ϕ that maps the polar coordinates on the tangent space to the surface by the exponential
map).

(b) Given a surface S and a smooth curve α on S parametrised by arc-length, define
the Gauss map and the geodesic curvature of α in terms of a covariant derivative. What
does it mean for α to have zero geodesic curvature?

(c) Give a statement of the global Gauss-Bonnet theorem with boundary terms.

(d) Let S ⊂ R3 be a compact connected oriented surface diffeomorphic to a sphere
and with positive Gauss curvature everywhere. Prove that any two closed geodesic curves
on S must intersect.
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32A Dynamical Systems
(a) Define a Lyapunov function for the system ẋ = f(x) around a fixed point at the

origin. State both the first and second Lyapunov Theorems and prove the first.

(b) Consider the system

ẋ = −x+ 2x2 + y2 + xy2,

ẏ = −y + 4x2 + 2y2 − 2x2y.

(i) Show that the fixed point at the origin is asymptotically stable.

(ii) Show that the basin of attraction of the origin includes the region

12x2 + 6y2 < 1.

(iii) Can the strict inequality in part (ii) be extended to include equality? Justify
your answer, stating carefully any results you need.

Paper 2, Section II

33A Dynamical Systems
State the Centre Manifold Theorem for the dynamical system ẋ = f(x, µ) in Rn

where µ is a real parameter. What is the key step in generating an extended centre
manifold?

Consider the system

ẋ = x(µ− y2 − 2x2),

ẏ = y(1− x2 − y2),

where x, y ⩾ 0 and µ > 0.

(a) Show that the fixed point (0, 1) has a bifurcation at µ = 1. Find a fixed point
on the x-axis and determine the value of µ = µc > 1 at which it has a bifurcation.

(b) By finding the first approximation to the extended centre manifold, construct
the normal form near the bifurcation point (0, 1) when µ ≈ 1. Hence identify the type of
bifurcation. By appealing to a symmetry of the system, explain why this bifurcation is
expected.

(c) Show that there is another fixed point with x > 0, y > 0 and show how its
structure is consistent with your normal form in part (b).

(d) Draw a sketch of the values of x at the fixed points as functions of µ indicating
the bifurcation points and the regions where each branch is stable. [Detailed calculations
are not required.]
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31A Dynamical Systems
(a) State and prove Dulac’s Theorem. What is the divergence test?

(b) Consider the system

ẋ = µx− y − (x3 + xy2 − λx)(x2 + y2),

ẏ = x+ µy − (y3 + x2y − λy)(x2 + y2),

for a real parameter µ and constant λ > 0.

(i) Show that there is a fixed point at the origin and classify its stability.

(ii) Find how the number of periodic orbits varies with the value of µ and hence
identify two bifurcation points.

[Hint: use polar coordinates (r, θ).]

(iii) Identify the type of bifurcation occurring at the larger value of µ and,
without detailed computation, write down its normal form. Draw the steady
and periodic solutions in a (µ, r) diagram.

(iv) Show that, as µ varies, the locations of the periodic orbits are consistent
with the divergence test.
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32A Dynamical Systems
Define what it means for a map F : I → I ⊂ R to be chaotic according to Devaney.

Show that the sawtooth map,

F (x) = 2x [mod 1],

satisfies this definition for x ∈ [0, 1).

(a) In the following use binary representation to describe the action of F .

(i) Give a value for x that produces a chaotic sequence.

(ii) Show that there is only one fixed point of F .

(iii) Find all 2-cycles and 4-cycles of F and express them as fractions.

(b) Now consider Fn(x), the map F applied n times.

(i) Show that Fn(x) = 2nx [mod 1].

(ii) Use part (b)(i) to determine the number of fixed points of Fn. Explain how
this is consistent with your answers in part (a)(iii).

(iii) Hence show that the number of 2k cycles of F is 22
k − 22

k−1
when k ⩾ 1.

[Cycles starting a different points count as different cycles.]
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37B Electrodynamics
A relativistic particle of mass m and charge q moves with four-velocity uµ in the

presence of a background electromagnetic field with field-strength tensor Fµν according to
the Lorentz force law,

duµ

dτ
=

q

m
Fµνu

ν .

Here τ is the proper time.

Assume that the electric and magnetic fields E and B are constant and homogenous
and that the particle starts from rest at the origin x = 0 at time t = 0 in some inertial
frame. Find the subsequent trajectory of the particle, giving its spacetime position (ct,x)
explicitly as a function of τ , in the following special cases:

(i) E = (E, 0, 0) and B = 0.

In this case consider a light signal directed along the positive x-axis emitted
from the point x = (−h, 0, 0) at time t = 0, where h > 0. Find the time
taken for the light signal to catch up with the particle and show that it never
catches the particle if h exceeds a critical value that you should determine.

(ii) E = (E, 0, 0) and B = (0, 0, E/c).

In this case you should show that the particle trajectory lies on a cubic
curve in the (x, y) plane that you should determine explicitly.
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36B Electrodynamics
Starting from a suitable general solution of Maxwell’s equations, which you may

state without derivation, find the total power P emitted through a large spherical surface
of radius R by a localised source with time-dependent electric dipole moment p(t) in the
dipole approximation,

P ≃ µ0
6πc

|p̈(t−R/c)|2 .

You should state clearly the conditions under which the approximation is valid.

A simple model of a pulsar consists of a solid uniform sphere of mass M and radius
R spinning with angular frequency Ω around an axis ẑ. The body has a time-dependent
magnetic dipole moment p that is inclined at a constant angle α to the z-axis and rotates
according to

p(t) = p0 [sinα cos(Ωt) x̂+ sinα sin(Ωt) ŷ + cosα ẑ] ,

where p0 is a real constant. Calculate the total power P emitted by the pulsar in the
dipole approximation. Assuming that the angular frequency of rotation Ω(t) slowly varies
with time so that energy is conserved, calculate the time taken for this system to lose half
its initial rotational energy E0 due to emission of radiation. [You may assume that the
rotational energy of a solid uniform sphere of radius R and mass M is E = IΩ2/2 with
moment of inertia I = 2MR2/5.]
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36B Electrodynamics
(a) State Maxwell’s equations for the fields E, H, D = ϵE and B = µH in a

linear dielectric medium with electric and magnetic polarisation constants ϵ and µ. You
may assume the absence of free charges and currents. Show explicitly that Maxwell’s
equations admit plane-wave solutions propagating with speed v = 1/

√
ϵµ and determine

the magnetic polarisation vector B0 in terms of the corresponding electric polarisation
vector E0 and the wave vector k.

(b) Consider two such media, having distinct values ϵ+ > ϵ− of the electric
polarisation constant, filling the regions x > 0 and x < 0 respectively. The two media are
assumed to share a common value of µ. Write down, with brief justification, boundary
conditions for the components of the fields tangent and normal to the interface plane
x = 0. You should state clearly which field components are continuous and which are
discontinuous.

(c) Suppose an electromagnetic wave is incident from the region x < 0 resulting
in a transmitted wave in the region x > 0 and also a reflected wave for x < 0. The
angles of incidence, reflection and transmission are denoted θI , θR and θT respectively. By
constructing a corresponding solution of Maxwell’s equations, derive the law of reflection
θI = θR and Snell’s law of refraction, n− sin θI = n+ sin θT , where n± are the indices of
refraction of the two media in question.

(d) The incident, reflected and transmitted waves have polarisation vectors EI ,
ER and ET respectively. In the case that these vectors are all normal to the plane of
incidence (the plane spanned by the incident and reflected wave vectors), determine the
ratio |ER|/|EI | as a function of θI and show that it is always non-zero for 0 ⩽ θI ⩽ π/2.
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39D Fluid Dynamics
(a) State the principle of reversibility for Stokes flow.

(b) Consider a rigid cylinder falling downwards at zero Reynolds number near to a
rigid, vertical wall. The cylinder’s axis is horizontal and parallel to the wall (that is, it
is perpendicular to both the direction in which the cylinder falls and the normal of the
wall). Use part (a) to argue that the cylinder cannot migrate towards or away from the
wall as it falls, but it may rotate around its axis.

(c) Suppose the cylinder in part (b) has radius a, falls with speed V and rotates
with angular speed Ω. Its minimum distance from the wall is h0 ≪ a.

(i) Use geometrical arguments to show that the horizontal gap h(x) between the
wall and the cylinder satisfies h(x) ≈ h0

[
1 + x2/(2ah0)

]
for |x| ≪ a, where x

is the vertical distance above the axis of the cylinder.

(ii) Use lubrication theory to determine the velocity and hence the vertical flux
of fluid between the wall and the cylinder in terms of the vertical pressure
gradient. Given that the pressure is equal to the uniform ambient pressure
ahead of and behind the cylinder, determine the vertical flux in terms of V , Ω,
a and h0.

[Hint: Use a frame of reference in which the cylinder has no vertical motion.]

(iii) Given that the forces on the cylinder are dominated by those in the narrow gap
between it and the wall, and that there is no torque applied to the cylinder,
show that, in fact, the cylinder does not rotate.[
Hint: You may quote the following integrals:

∫ ∞

−∞

dt

1 + t2
= π,

∫ ∞

−∞

dt

(1 + t2)2
=
π

2
,

∫ ∞

−∞

dt

(1 + t2)3
=

3π

8
.

]
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39D Fluid Dynamics
Write down the Stokes equations governing the flow of incompressible viscous fluid

at zero Reynolds number, and show that the pressure and vorticity are harmonic.

A rigid sphere of radius a moves with velocity U through fluid of dynamic viscosity
µ that is stationary far from the sphere. Write down the boundary conditions that should
be applied to the normal and tangential components of the fluid velocity u on the surface
of the sphere, explaining each in physical terms.

The velocity and pressure fields at a point x in the fluid can be written as

u =

(
3

4

a

r
+

1

4

a3

r3

)
U+

(
3

4

a

r3
− 3

4

a3

r5

)
(U · x)x,

p =
3

2
µa

U · x
r3

,

where the origin lies at the centre of the sphere and r = |x|.
Using suffix notation, or otherwise, calculate the velocity gradient (∇u)ij =

∂uj/∂xi. Hence:

(i) determine an expression for the vorticity;

(ii) calculate ∇(1/r) and ∇2(1/r), and use your answers to argue directly that
the pressure and vorticity are harmonic;

(iii) prove that the flow is incompressible;

(iv) determine the stress (σ · n)i = σijnj on the surface of the sphere, where n
is the outward unit normal to the sphere;

(v) determine the force exerted by the fluid on the sphere.

Part II, 2025 List of Questions [TURN OVER]



48

Paper 3, Section II

38D Fluid Dynamics
A steady, two-dimensional, laminar plume (narrow, quasi-vertical flow) rising from

a point source of buoyancy in an otherwise stationary environment can be modelled using
the boundary-layer equations

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ

∂2u

∂y2
+ b(x)δ(y),

∂u

∂x
+
∂v

∂y
= 0,

where u and v are vertical and horizontal velocity components, respectively, with respect to
Cartesian coordinates x vertical and y horizontal, and where δ is the Dirac delta function,
so that b(x) represents a buoyancy force confined to the vertical axis y = 0. The symbols
ρ, µ and p represent the fluid’s density, dynamic viscosity and pressure respectively.

(a) Show that
d

dx

∫ ∞

−∞
ρu2 dy = b(x).

(b) Given that b(x) = Bx−1/5, where B is constant, show that the width of the
plume ∆ and the vertical velocity u scale as

∆ ∼
(
µ2

ρB

)1/3

x2/5, u ∼
(
B2

ρµ

)1/3

x1/5.

(c) Introduce a stream function ψ(x, y) and consider a similarity solution ψ(x, y) =
u∆f(η), where f only depends on the similarity variable η = y/∆. Show that f(η) satisfies
an ordinary differential equation of the form

f ′′′ + c1(f
′)2 + c2ff

′′ = δ(η),

where primes denote differentiation with respect to η, for some constants c1 and c2 that
you should determine.

[Hint: For any constant a, δ(ay) = |a|−1 δ(y).]
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38D Fluid Dynamics
(a) Consider the incompressible flow of a Newtonian fluid with constant dynamic

viscosity µ and density ρ subject to a conservative body force f = −∇ψ. Derive the
equation for the rate of change of kinetic energy of the fluid in a domain D with boundary
∂D in the form

d

dt

∫

D
1
2ρ|u|2 dV +

∫

∂D
1
2ρ|u|2u · n dS =

∫

D
u · f dV +

∫

∂D
u · σ · n dS − 2µ

∫

D
e : e dV,

where n is the unit normal vector directed out of the boundary ∂D, σ is the stress tensor
and e is the rate-of-strain tensor. Give the physical interpretation of each term in this
integral equation.

(b) Small-amplitude, free-surface waves on deep water occupying −∞ < z <
η(x, t) = A exp(ikx− iωt) can be described by a velocity potential

ϕ = B exp(kz) exp(ikx− iωt),

where A, B and k are constants, g is the gravitational acceleration, ω2 = gk and real parts
of complex quantities may be assumed. Determine B in terms of A, ω and k.

Assume now that the amplitude A is slowly varying, so A can be treated as constant
over one period of oscillation. Determine the mean rate of dissipation averaged over a
period of oscillation. Given that the total mean energy is 1

2ρg|A|2, determine the slow
rate of decay of the wave amplitude.

[Hint: The mean over a period of the product of the real part of periodic complex
functions F and G is the real part of 1

2FG
∗.]

Paper 1, Section I

7E Further Complex Methods
Consider the improper integral

∫ ∞

−∞

1

x6 − 1
dx .

Explain what is meant by the Cauchy principal value of this integral, and evaluate it.
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7E Further Complex Methods
(a) The function F (z) is defined for all z ∈ C \ {±i} by

F (z) =

∫ z

0

1

1 + t2
dt , (†)

where the path taken for the integral is unrestricted except that it does not pass through
either of the points ±i. Show that the function F (z) is multivalued. What are the possible
values of F (1)?

(b) A curve B joins the points ±i along the imaginary axis, slightly displaced to
the left of 0. Consider the function FB(z) defined for z ∈ C \ B by the integral (†), but
with the restriction that the path of integration does not cross B. Show that FB(z) is a
single-valued function.

(c) Show that, for large |z|, FB(z) = 1
2π +O(|z|−1). Hence, calculate the integral

lim
R→∞

∮

γR

FB(t)
t

dt ,

where the contour γR is an anti-clockwise circle of radius R.

Paper 3, Section I

7E Further Complex Methods
The beta function is defined by

B(p, q) =

∫ 1

0
(1− t)p−1 tq−1 dt,

for Re (p) > 0 and Re (q) > 0.

(a) By writing Γ(z)2 as a double integral, show that for Re (z) > 0,

Γ(z)2 = B(z, z)Γ(2z) ,

where Γ(z) denotes the gamma function. [Hint: You may find the transformation
(s, t) → (r, u), given by t = ru, s = r(1− u), helpful.]

(b) Deduce that B(z, z) ∼ 2/z as z → 0 with Re (z) > 0.
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7E Further Complex Methods
The modified Bessel function I0(z), for z ∈ C, is the unique solution of the

differential equation

z
d2y

dz2
+
dy

dz
− zy = 0, (†)

satisfying y(0) = 1.

Explain Laplace’s method of seeking a solution y(z) to equation (†) of the form

y(z) =

∫

C
eztf(t) dt ,

where the function f(t) and the contour C are suitably chosen. Apply the method to show
that

I0(z) =
1

π

∫ 1

−1

ezs

(1− s2)1/2
ds.
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Paper 1, Section II

14E Further Complex Methods
The Dirichlet beta function is defined as

β(s) =

∞∑

n=0

(−1)n

(2n+ 1)s
(†)

for Re (s) > 0 and by analytic continuation to C. The integral representation of equation
(†) for Re (s) > 0 is given by

β(s) =
1

Γ(s)

∫ ∞

0

ts−1

et + e−t
dt ,

where Γ is the gamma function.

(a) The Hankel representation is defined as

β(s) =
Γ(1− s)

2πi

∫ (0+)

−∞

ts−1

et + e−t
dt. (‡)

Draw a diagram to show the integration contour implied by the limits of the integral
in equation (‡). Show that this representation gives an analytic continuation of β(s) as
defined by equation (†) to all s ∈ C.

[You may assume that Γ(s)Γ(1− s) = πcosec (πs).]

(b) Use equation (‡) to evaluate β(0) and β(−2). Show that if n is a non-negative
integer then β(−2n− 1) = 0.

(c) Consider the poles of the integrand of equation (‡) on the imaginary axis, except
for the pole at t = 0, if it exists. For what conditions on s does the sum of the residues
at these poles converge? Assume that under these conditions it may be shown that the
integral in equation (‡) is equal to the sum of the residues multiplied by −2πi. Deduce
the reflection formula

β(1− s) = Γ(s)
(π
2

)−s
sin
(sπ
2

)
β(s),

explaining carefully why this formula is valid for all s ∈ C.
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Paper 2, Section II

13E Further Complex Methods
(a) Show that under the change of variable z = cosx the equation

d2w

dx2
+ n2w = 0

becomes

(1− z2)
d2w

dz2
− z

dw

dz
+ n2w = 0. (†)

(b) Show that equation (†) is a Papperitz equation corresponding to the Papperitz-
symbol or P -symbol

P




1 −1 ∞
0 0 −n z
1
2

1
2 n



 ,

explaining carefully the meaning of the symbol and the different elements appearing in it.

(c) Recall that the notation F
(
A,B;C; ζ

)
is used to denote the solution of the

equation corresponding to the P -symbol

P





0 1 ∞
0 0 A ζ

1− C C −A−B B



 ,

for which F
(
A,B;C; 0

)
= 1.

Show that two linearly independent solutions of equation (†) are

w1(z) = F
(
n,−n; 12 ; 12(1− z)

)

and
w2(z) = (1− z)1/2F

(
−n+ 1

2 , n+ 1
2 ;

3
2 ;

1
2(1− z)

)
,

explaining clearly any results on transforming Papperitz equations and P -symbols that
you use.

(d) Deduce that F
(
−1

2 ,
3
2 ;

3
2 ;u
)
= (1− u)1/2, clearly justifying your reasoning.
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Paper 1, Section II

18J Galois Theory
Let K be a field containing a primitive cube root of unity ω. Consider the cubic

polynomial f(X) = X3 + aX + b ∈ K[X] with roots α1, α2, α3 in a splitting field. Let
g(X) = (X − u3)(X − v3) where u = α1 + ωα2 + ω2α3 and v = α1 + ω2α2 + ωα3.

(a) Define the discriminant of a monic polynomial, and show that

Disc(g) = −27Disc(f).

Write uv and u3 + v3 as polynomials in a and b. Hence, or otherwise, compute a formula
for Disc(f) in terms of a and b.

(b) Show that there is a formula in terms of radicals for the roots of a cubic
polynomial.

(c) Compute the Galois groups of the following polynomials, stating carefully any
results from the course that you use:

X3 − 21X − 22, X3 − 21X − 28, X3 − 21X − 34.

Paper 2, Section II

18J Galois Theory
Let L/K be a finite extension of fields. Define what it means for L/K to be normal,

separable, or Galois. Let K be an algebraic closure of K.

(a) Write L = K(α1, . . . , αn) for some α1, . . . , αn ∈ L. Show by induction on n
that 1 ⩽ #HomK(L,K) ⩽ [L : K] and that the upper bound is an equality if L/K is
separable.

(b) Show that #Aut(L/K) ⩽ #HomK(L,K) with equality if L/K is normal.

(c) Deduce that if L/K is normal and separable then L/K is Galois.

(d) Find a prime number p such that the extension Fp(X)/Fp(X5) is Galois. [You
may assume that all splitting fields are normal.]
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Paper 3, Section II

18J Galois Theory
(a) List the transitive subgroups of S4.

(b) Let L/K be an extension of fields of characteristic not equal to 2. Suppose that
L = K(

√
a,
√
b) for some a, b ∈ K∗ with a, b, ab ̸∈ (K∗)2. Show that L/K is Galois of

degree 4, compute its Galois group, and draw the lattice of intermediate fields.

(c) Compute the minimal polynomials of α =
√
3 +

√
3, β =

√
3−

√
3, γ =√

3 +
√
6, and δ =

√
3−

√
6 over Q. Show that the hypotheses of part (b) are satisfied

by Q(α, β)/Q(
√
3) and Q(γ, δ)/Q(

√
6).

(d) Deduce that Gal(Q(α, β)/Q) ∼= D8. Draw the lattice of subgroups of D8, and
the lattice of subfields of Q(α, β), writing each field in the form Q(x1, . . . , xm).

[Hint: You may use that α+ β =
√
2γ and α− β =

√
2δ.]

Paper 4, Section II

18J Galois Theory
(a) Define the nth cyclotomic polynomial Φn(X). Show that it has coefficients in Z.

Show further that if K is a subfield of C and ζn ∈ C is a root of Φn(X) then the extension
K(ζn)/K is Galois with abelian Galois group.

(b) What does it mean to say that a subfield K ⊂ R is constructible? Show that
Q(cos(2π/17)) is constructible.

(c) Let K be a field with algebraic closure K. For each n ⩾ 1 let ζn ∈ K be a root
of Φn(X). Let Kcyc =

⋃
n⩾1K(ζn). Decide whether Kcyc = K in each of the cases K = R,

K = Q, and K = Fp. Justify your answers.
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Paper 1, Section II

38E General Relativity

The metric for a spherically symmetric static spacetime has line element

ds2 = −
(
1 +

r2

a2

)
dt2 +

(
1 +

r2

a2

)−1

dr2 + r2
(
dθ2 + sin2 θ dϕ2

)
,

where −∞ ⩽ t ⩽ ∞, r ⩾ 0, 0 ⩽ θ ⩽ π, 0 ⩽ ϕ ⩽ 2π, a is a positive constant, and units are
chosen with c = 1.

(a) Consider a time-like geodesic parametrised by proper time τ , with dots denoting
differentiation with respect to τ . Find the Euler-Lagrange equation corresponding to the
θ coordinate and explain why the geodesic may be assumed to lie in the equatorial plane
θ = π/2, without loss of generality. For such a geodesic, show that

1

2
ṙ2 + V (r) =

1

2

(
E2 − 1− h2

a2

)
,

where E =
(
1 + r2/a2

)
ṫ and h = r2ϕ̇ are constants of the motion and V (r) is a function

you should determine.

(b) Show that a massive particle fired from the origin, r = 0, attains a maximum
value of the radial coordinate, r = rmax, before returning to r = 0, and find the proper
time this journey (from r = 0 to rmax and back) takes.

(c) Show that circular orbits with r = r0 are possible for any r0 > 0 and determine
whether such orbits are stable. Show further that, on such an orbit, a clock measures
coordinate time.

Part II, 2025 List of Questions



57

Paper 2, Section II

38E General Relativity

(a) Consider a spacetime with metric gµν . Write down the covariant derivative
∇αgµν in terms of the connection Γ γ

α β, which is assumed to satisfy Γ γ
α β = Γ γ

β α. Determine
the unique choice for the connection that ensures ∇αgµν = 0. In the remainder of this
question we use this connection.

(b) If Rµναβ is the Riemann curvature tensor, then

∇α∇βUµ − ∇β∇αUµ = −RνµαβUν (∗)

for any covariant vector field Uµ. By setting Uµ = ∂µϕ in equation (∗), where ϕ is a scalar
field, show that

Rµαβγ +Rµβγα +Rµγαβ = 0 .

State clearly any property of a vector field of the form ∂µϕ that your argument depends
on.

(c) From equation (∗), derive an analogous expression for ∇α∇βWµν −∇β∇αWµν ,
where Wµν is a general covariant tensor field of rank 2, stating clearly any assumptions
you make. By making a suitable choice for Wµν , deduce that

Rµαβγ = −Rαµβγ .

(d) Define the Ricci tensor Rαβ and show that it is symmetric. For certain
spacetimes,

Rµαβγ = K( gµβgαγ − gµγgαβ ) ,

where K is a scalar. Compute the Ricci tensor and Ricci scalar and deduce that K
is constant, assuming that the dimension n of the spacetime is four. How would this
conclusion change for other values n > 1? [Identities involving covariant derivatives of the
Ricci tensor may be used without proof but should be clearly stated.]
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Paper 3, Section II

37E General Relativity

The Schwarzschild metric, in units with G = c = 1, is given by

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2( dθ2 + sin2 θ dϕ2 ) . (∗)

(a) Show that for a light ray that is radial (dθ= dϕ=0) and ingoing (dr/dt < 0),
for r > 2M the quantity

v = t + r + 2M log
∣∣∣ r

2M
− 1

∣∣∣

is constant.

(b) Express the Schwarzschild metric (∗) in terms of coordinates r, v, θ, ϕ, with v
defined as above for r > 0. What can be deduced about the nature of the metric at
r = 2M?

(c) Determine all possible radial trajectories for light rays for r > 0. For these
solutions, find dt∗/dr as a function of r, where t∗ = v − r, and hence sketch the solutions
in the r-t∗ plane.

(d) Comment on the contrasting behaviour of light rays in the regions r > 2M and
r < 2M and, by considering light cones at representative points, discuss the implications
for the motion of massive particles.

(e) An astronaut Alice (A) sends radial light signals at proper time intervals ∆τA
to an observer Bob (B) who receives them at proper time intervals ∆τB. Alice and Bob
are at rest in the coordinate system t, r, θ, ϕ with rA = 2M + ε, where 0 < ε ≪ M , and
rB ≫M . Find an approximate expression for ∆τB/∆τA and comment on the significance
of your result.
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Paper 4, Section II

37E General Relativity

The metric gαβ for a four-dimensional spacetime satisfies the Einstein equations

Rµν −
1

2
gµνR = κTµν ,

where Rµν and R are the Ricci tensor and Ricci scalar, Tµν is the energy-momentum
tensor, and κ is a constant. We use units where c = 1 and assume throughout that
gαβ = ηαβ + hαβ where ηαβ = diag(−1, 1, 1, 1) is the Minkowski metric in Cartesian
coordinates and hαβ and its derivatives are small. Then the Riemann tensor is given by

Rµναβ =
1

2
(hµβ, να − hνβ, µα − hµα, νβ + hνα, µβ ) ,

to first order in small quantities.

(a) Let x0 = t and xi (i = 1, 2, 3) denote the Cartesian coordinates. Assume both
that (i) T00 = ρ is the mass density, where κρ is small, and all other components of the
energy-momentum tensor are negligible, and (ii) the metric is almost static, meaning that
derivatives of hαβ with respect to t are negligible. Find R00, working to first order in all
small quantities, and hence show that

−∇2h00 = κρ where ∇2 = δij∂i∂j . (†)

(b) A massive particle moves non-relativistically in the spacetime of part (a), with
vi = dxi/dt small. Starting from the geodesic equations, show that

dvi

dt
=

1

2
δij∂jh00 , (⋆)

working to first order in both vi and hαβ. [You may quote the formula for the Levi-Civita
connection Γ µ

αβ.]

By comparing equations (†) and (⋆) with the corresponding Newtonian equations,
express h00 and κ in terms of the Newtonian gravitational potential Φ and Newton’s
constant G, where ∇2Φ = 4πGρ.

(c) Consider a point massM at the origin r = 0, where r2 = δijx
ixj , in an otherwise

vacuum spacetime. Write down the Newtonian potential Φ for this point mass. Suppose
that

hij = f(r)xixj ,

for some function f(r), where indices i, j = 1, 2, 3 are raised and lowered using δij . By
considering the Ricci scalar, or otherwise, find a differential equation for f(r) and obtain
the general solution for r > 0.

[You may use, without proof, the identities

∂i∂i[ r
2f(r) ] = r2f ′′ + 6rf ′ + 6f and ∂i∂j [xixjf(r) ] = r2f ′′ + 8rf ′ + 12f ,

where the summation convention applies to repeated indices of type i, j = 1, 2, 3 .]
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Paper 1, Section II

17F Graph Theory
(a) State Menger’s theorem for a graph G. Define the connectivity κ(G) of G. State

and deduce the vertex form of Menger’s theorem from Menger’s theorem.

Let k ⩾ 2. Show that every k-connected graph of order at least 2k contains a cycle
of length at least 2k.

(b) Suppose G is a graph with |G| > 1. Define the edge connectivity λ(G) of G.
Let δ(G) be the minimum degree of G. Prove that

δ(G) ⩾ λ(G) ⩾ κ(G).

Let d, ℓ and k be any three positive integers with d ⩾ ℓ ⩾ k. Show that there exists
a graph G with δ(G) = d, λ(G) = ℓ and κ(G) = k.

Paper 2, Section II

17F Graph Theory
In this question, no form of Menger’s theorem or of the max-flow min-cut theorem

may be assumed without proof.

(a) Let G be a bipartite graph with vertex classes X and Y . What is a matching
from X to Y ? State and prove Hall’s marriage theorem, giving a necessary and sufficient
condition for G to contain a matching from X to Y .

We define the matching number of a graph G to be the maximum size of a set of
independent edges in G.

(i) If G is a k-regular bipartite graph with |G| = n (for some k > 0), show
that G has matching number n/2.

(ii) If G is an arbitrary k-regular graph with |G| = n (for some k > 0), show
that G has a matching number at least ( k

4k−2)n.

(iii) For k = 2, write down an infinite family of graphs G for which equality
holds in (ii).

(b) Define the eigenvalues of a graph G. Let G be bipartite with vertex classes X
and Y . If 0 is not an eigenvalue of G show that G contains a matching from X to Y .
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Paper 3, Section II

17F Graph Theory
(a) What does it mean for a graph G to be Eulerian? If |G| ⩾ 3, state and prove a

necessary and sufficient condition for G to be Eulerian.

Define the line graph L(G) of G. Show that L(G) is Eulerian if G is regular and
connected.

(b) Let G be a connected planar graph with n vertices, e edges and f faces. Prove
that n− e+ f = 2.

The size of a face is the number of edges that form its boundary. Deduce that
e ⩽ g(n− 2)/(g − 2), where g is the smallest size of a face.

(c) Let G be a (not necessarily planar) graph with n vertices and e edges. Suppose
that G is drawn in the plane, but with edges allowed to cross. (The edge xy cannot contain
any vertex except x or y.) Let t(G) be the number of pairs of edges which cross.

(i) Show that t(G) ⩾ e− 3n+ 6.

(ii) Suppose now that e ⩾ 4n. Show that t(G) ⩾ e3/64n2. [Hint: you may
wish to consider a random subset of V (G) containing each vertex of G
independently with probability 4n/e.]

Paper 4, Section II

17F Graph Theory
(a) For t ∈ N define the Ramsey number R(t). If t ⩾ 2, show that R(t) exists and

that R(t) ⩽ 22t.

(b) For any graph G, define R(G) to be the least positive integer n such that in any
red–blue colouring of the edges of the complete graph Kn, there must be a monochromatic
copy of G. Explain briefly why R(G) exists.

(i) Let t ∈ N. Show that, whenever the edges of K2t are red–blue coloured,
there must be a monochromatic copy of the complete bipartite graph K1,t.

(ii) Suppose that t is odd. Show that R(K1,t) = 2t. If t is even, what is
R(K1,t)? Justify your answer.

(iii) Let H be the graph on four vertices, obtained by adding an edge to a
triangle. Compute R(H), justifying your answer.
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Paper 1, Section II

33D Integrable Systems
(a) Let U, V and Φ be n× n matrices that depend on x and y and satisfy

∂xΦ+ UΦ = 0, ∂yΦ+ V Φ = 0.

Find a compatibility condition for this system of linear partial differential equations that
involves only U and V .

(b) Let n = 3 and take

U =



∂xu 0 λ
1 −∂xu 0
0 1 0


 , V =




0 e−2u 0
0 0 eu

λ−1eu 0 0


 ,

where λ is a constant parameter and u = u(x, y). Show that in this case the compatibility
conditions hold if u satisfies a partial differential equation of the form

∂x∂yu = F (u), (†)

for some function F (u) which should be determined.

(c) Find a one-parameter group of transformations Gα generated by the vector field
x∂x−αy∂y, where α is a constant, and determine the value of α for which Gα is a symmetry
group of the partial differential equation (†).

(d) For this value of α, find an ordinary differential equation characterising solutions
to equation (†) that are invariant under Gα.

Paper 2, Section II

34D Integrable Systems
(a) Define a completely integrable system on a 2n-dimensional phase space M , and

state the Arnold–Liouville theorem.

(b) Consider M = R2n with coordinates (pi, qi), i = 1, . . . , n, and the standard
Poisson structure. Let

H =
1

2

(
p1

2 + · · ·+ pn
2 +W1

2q1
2 + · · ·+Wn

2qn
2 + a1q1 + · · ·+ anqn

)
,

where W1, . . . ,Wn, a1, . . . , an are constants with Wk ̸= 0 for all k.

(i) Find n independent functions F1, F2, . . . , Fn in involution with
∑n

i=1 Fi =
H, and demonstrate that Hamilton’s equations with Hamiltonian H are
completely integrable.

(ii) Find the action variables.
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Paper 3, Section II

32D Integrable Systems
(a) Use the Gelfand–Levitan–Marchenko equation

K(x, y) + F (x+ y) +

∫ ∞

x
K(x, z)F (z + y)dz = 0,

with F (x) = β0 exp (8χ
3t− χx) to find the one-soliton solution

u(x, t) = − 2χ2

cosh2 [χ(x− 4χ2t− ϕ)]

to the KdV equation
ut − 6uux + uxxx = 0,

where u = u(x, t). Here β0 and χ are constants, and ϕ is another constant that you should
determine.

[You may use any facts about the inverse scattering transform without proof.]

(b) By considering the operators A†A and AA† where A = ∂x + χ tanh (χx), show
that the Schrödinger operator −∂2x + U with a potential

U(x) = u(x, t = 0, ϕ = 0)

admits only one bound state. Find the corresponding energy level.
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Paper 1, Section II

22I Linear Analysis
(a) Let X be a Banach space.

(i) Define the dual space X∗ of X, and show that it is a Banach space.

(ii) Find, with proof, the dual of lp for each 1 < p <∞.

(iii) Describe, without proof, the duals of l1 and c0.

(b) Let c denote the space of convergent real sequences, with the supremum norm.
Is c isomorphic to c0? Justify your answer.

Paper 2, Section II

22I Linear Analysis
(a) State the inversion theorem. State and prove the closed graph theorem.

(b) Now let X and Y be Banach spaces and let S ∈ L(X,Y ) be injective. We write
S−1 for the inverse map to S, so that S−1 is a linear map from the image of S to X.

(i) Give an example to show that S−1 need not be continuous.

(ii) If T ∈ L(X,Y ) has the property that the image of T is contained in the
image of S, show that S−1 ◦ T is continuous.

(iii) Give a counterexample to show that (ii) need not remain true if we drop
the assumption that X is complete.

Paper 3, Section II

21I Linear Analysis
(a) State and prove the Ascoli-Arzelà theorem.

(b) Consider a sequence of differentiable functions fn : R → R with

sup
n⩾0

sup
x∈R

(|fn(x)|+ |f ′n(x)|) < +∞.

Show that there exist a subsequence fϕ(n) (where ϕ : N → N is strictly increasing) and a
continuous and bounded function f : R → R such that

∀R > 0, lim
n→∞

sup
|x|⩽R

|fϕ(n)(x)− f(x)| = 0.

Can we conclude that limn→∞ supx∈R |fϕ(n)(x)− f(x)| = 0? Justify your answer.
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Paper 4, Section II

22I Linear Analysis
(a) State the Riesz representation theorem. For a Hilbert space H and an operator

T ∈ L(H), define the adjoint T ∗ of T , proving that it exists and that T ∗ ∈ L(H). If H
has an orthonormal basis, describe (without proof) the relation between the matrices of
T and T ∗ with respect to this basis.

(b) State the spectral theorem for compact Hermitian operators on l2. Explain why
it follows from this that every compact Hermitian operator on l2 is a limit of finite rank
Hermitian operators.

(c) Prove that every compact operator on l2 is a limit of finite rank operators.
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Paper 1, Section II

16H Logic and Set Theory
In this question, an ordinal is a transitive set well-ordered by ∈.
(a) Explain briefly why for every well-ordered set (a, r) there is a unique ordinal

isomorphic to (a, r), the order-type of (a, r).

(b) Let α < β be ordinals, and let γ be the order-type of the interval

β\α = {δ ∈ ON : α ⩽ δ < β}.

Explain briefly why α+ γ = β.

(c) What is the order-type of the interval ω1\ω? Justify your answer.

(d) Let α be a non-zero ordinal. Show that α = ωδ · n + η for ordinals δ, n and η
such that 1 ⩽ n < ω and η < ωδ.

(e) Let δ be an ordinal, and assume that ωδ = X ∪ Y . Show that at least one of X
and Y has order-type ωδ.

(f) Let α = X ∪ Y be a non-zero ordinal with both X and Y having order-type β.
Using (d) and (e) or otherwise, show that α < β+β+β. Is it always true that α < β+β?
Give a proof or counterexample.
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Paper 2, Section II

16H Logic and Set Theory
Let L be a first-order language.

If M is an L-structure, we say that ϑ : M → M is an automorphism of M if it is a
bijection, and for all m1, . . . ,mn ∈M and all operation symbols ω of L (with arity n)

ϑ(ωM (m1, . . . ,mn)) = ωM (ϑ(m1), . . . , ϑ(mn)),

and for every predicate symbol φ of L (with arity n)

{
(ϑ(m1), . . . , ϑ(mn)) : (m1, . . . ,mn) ∈ φM

}
= φM .

We write Aut(M) for the set of automorphism of M . The set Aut(M) forms a group
under composition. [You do not need to prove this.]

(a) Define the following notions:

(i) φ is a sentence in L;

(ii) T is a theory in L;

(iii) M is a model of T ;

(iv) T is consistent.

(b) By appealing to a suitable theorem from the lectures, show that T is consistent
if and only if it has a model.

(c) State the compactness theorem of first-order predicate logic and prove it using
part (b) or otherwise.

For the remainder of this question, fix a consistent theory T in L. Expand L to a
new language Lf obtained from L by adding a unary operation symbol f . Note that any
Lf -structure can be thought of as a pair (M, θ), where M is an L-structure and θ is the
interpretation in M of the additional operation symbol f .

(d) Specify a consistent theory Tf in Lf such that Tf ⊃ T and an Lf -structure
(M,ϑ) is a model of Tf if and only if M is a model of T and ϑ ∈ Aut(M). Justify your
claim.

Let X be any set and let LX be the expansion of L with the additional operation
symbols {fx : x ∈ X}. Fix any group G and consider the expansion LG of L and form
the following theory in LG: use the theories Tfg from (d) and let

TG :=
⋃

g∈G
Tfg ∪

{
(∃x)¬(fgx = fhx) : g, h ∈ G, g ̸= h

}

∪
{
(∀x)(fgfhx = fkx) : g, h, k ∈ G, gh = k

}
.

We call a group G T -good if there is a model M of T such that Aut(M) contains an
isomorphic copy of G and T -bad if it is not T -good.

[QUESTION CONTINUES ON THE NEXT PAGE]
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(e) Let G be a group. Show that the following are equivalent:

(i) G is T -bad;

(ii) TG is inconsistent;

(iii) there is a finite X ⊆ G such that TG ∩ LX is inconsistent.

(f) Show that there is a theory T ∗ in the language of groups such that for any group
G, G is a model of T ∗ if and only if G is T -good.

Paper 3, Section II

16H Logic and Set Theory
Let x be a set. A choice function for subsets of x is a function f : Px\{∅} → x such

that f(y) ∈ y for all non-empty subsets y of x.

(a) Let x be a set and f be a choice function for subsets of x. Use f and recursion
to show that there is an ordinal α and a bijection between α and x. Use this to show that
the axiom of choice implies the well-ordering principle.

(b) Show that the statement “for any two sets x and y, either there is an injection
from x to y or an injection from y to x” implies the axiom of choice.

[You may use Hartogs’s lemma without proof.]

(c) Define the notion of initial ordinal and define ℵα. Show that an ordinal is an
infinite initial ordinal if and only if it has cardinality ℵα for some ordinal α.

Working in ZFC, we write card(x) for the least ordinal α that is in bijection with
x. Let I be a set and {κi : i ∈ I} be initial ordinals. We define

∑

i∈I
κi := card

(⊔

i∈I
κi

)
and

∏

i∈I
κi := card

(∏

i∈I
κi

)
.

(d) Assume that {κi : i ∈ I} and {λi : i ∈ I} are initial ordinals such that for
every i ∈ I, we have κi < λi. Show that

∑
i∈I κi <

∏
i∈I λi.

[Hint: Construct an injection from the disjoint union to the product, and show that
there is no such surjection.]

(e) Using part (d) or otherwise, show that ℵω < ℵℵ0
ω . Deduce that 2ℵ0 ̸= ℵω.

[You may use standard properties of cardinal arithmetic without proof.]
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Paper 4, Section II

16H Logic and Set Theory
In this question, let V be a model of ZF set theory. Set-theoretic notation such as

∅, {x, y}, ⋃x, and “x is finite” refers to the operations and properties in V . Let φ be a
formula with one free variable. The φ-instance of the axiom-scheme of separation is the
formula

(∀x)(∃s)(∀z)(z ∈ s⇔ (z ∈ x ∧ φ(z))).
For a set x, the set {z ∈ x : φ} exists by the validity of the φ-instance of the axiom-scheme
of separation in V .

(a) Define what it means to be a class and a proper class in V .

A class M is called transitive if whenever x ∈ y and y is in M , then x is in M . A
class M is called φ-closed if for all x in M , the set {z ∈ x : φ} is also in M .

(b) Show that the collection of all finite sets in V is a proper class. Is it transitive?
Is it φ-closed? Justify your claims.

(c) A set is called hereditarily finite if it is contained in a transitive and finite set.
Is the collection of all hereditarity finite sets in V a proper class? Is it transitive? Is it
φ-closed? Justify your claims.

[You are allowed to use properties of the von Neumann hierarchy and its rank
function as proved in the lectures, provided that you state them correctly and precisely.]

(d) Let M be a transitive class in V such that for all x, y in M , we have that ∅,
{x, y}, and ⋃x are in M . Show that the axioms of extensionality, empty set, pair-set and
union are satisfied in M .

(e) Let M be a transitive class. Explain briefly why being φ-closed is not sufficient
to prove the φ-instance of the axiom-scheme of separation in M .

[You do not have to provide an example of a class M where this fails.]

(f) Provide a map (without proof) φ 7→ φ∗, where φ∗ is also a formula, such that
every transitive class M that is φ∗-closed satisfies the φ-instance of the axiom-scheme of
separation. Note that this map can depend on M .
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Paper 1, Section I

6A Mathematical Biology
A large group of people, of fixed number, are debating a proposition. The group

consists of those in favour of the proposition, Y (t), those opposed, N(t), and those who
are undecided, U(t). Debates can change people’s minds. The outcome of a continuous
debate taking place over time is modelled by the equations

dY

dt
= −βY N ,

dN

dt
= (β − α)Y N + ζU ,

dU

dt
= αY N − ζU .

The constants α, β and ζ are positive.

(a) Briefly give an interpretation of α, β, and ζ.

(b) Show that those in favour of the proposition and those opposed cannot exist in
equilibrium. Determine the stability of any equilibria.

(c) Using part (b), determine if there are values of α, β and ζ for which everyone
eventually favours the proposition, irrespective of the initial conditions.

Paper 2, Section I

6A Mathematical Biology
A population of healthy foxes, S(x, t), is territorial and tends not to move. In

contrast, rabid infected foxes, with population I(x, t), change their behaviour and migrate.
The dynamics of foxes is captured by the following, non-dimensionalised, equations:

dS

dt
= −IS ,

dI

dt
= ∇2I + IS − µI ,

dR

dt
= µI ,

where µ is a constant.

(a) Give a biological explanation for each term on the right-hand side of these
equations. What is the meaning of the population R(x, t)?

(b) Consider the spatially homogeneous case. Define the reproductive ratio for this
system. Explain the reasoning behind the statement that rabies spreads among foxes only
if the reproductive ratio is greater than 1.

(c) Suppose foxes move only in one spatial dimension. By writing S(x, t) = S(ξ)
and I(x, t) = I(ξ), where ξ = x − ct and c > 0, write down the equations for S(ξ) and
I(ξ) that govern a travelling wave in this system.

(d) Consider the situation in which S(ξ) → 1 and I(ξ) → 0 as ξ → ∞. By linearising
about the leading edge of a wavefront, determine the minimum velocity at which a wave
of infection spreads.
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Paper 3, Section I

6A Mathematical Biology
A population n(t) is modelled by the Malthusian delay differential equation

dn

dt
(t) = r n(t− τ) ,

where r and τ > 0 are constants.

(a) Give a biological interpretation of the delay time τ .

(b) Suppose that n(t) = 1 for t ∈ [−τ, 0]. Show that n(t) = rt + 1 for t ∈ [0, τ ].
Determine n(t) for t ∈ [τ, 2τ ].

(c) Show that the delay differential equation admits a periodic solution when
rτ = −π/2. Why is this solution not appropriate for describing a population?

Paper 4, Section I

6A Mathematical Biology
Let xn be the number of plants in season n. Each year, a proportion r < 1 of plants

survives to season n+1. In addition, the number of seeds produced per plant that become
plants the following year is ke−λxn with constants k > 0 and λ > 0.

(a) What values of k permit a non-vanishing equilibrium population?

(b) What additional requirement on k is needed for this equilibrium to be stable?

Paper 3, Section II

13A Mathematical Biology
A discrete population n = 0, 1, 2, . . . undergoes a stochastic birth-death process,

with birth rate α + βn and death rate γn(n − 1), where α, β, and γ are all positive
constants. Let Pn(t) be the probability that the population is n at time t.

(a) Write down the master equation for Pn(t).

(b) Determine a differential equation for the expectation value ⟨n(t)⟩.
(c) Assume that the probability distribution can be approximated by the Poisson

distribution Pn(t) = e−λ(t)λ(t)n/n! for some λ(t). Compute ⟨n⟩ and ⟨n(n − 1)⟩ in terms
of λ(t). Write down a differential equation for λ(t) and determine the value of ⟨n(t)⟩ as
t→ ∞.

(d) Treating n(t) as continuous, and renaming it x(t), the Fokker-Planck equation
for the probability P (x, t) takes the form

∂P

∂t
= −∂(uP )

∂x
+
∂2(DP )

∂x2
.

What are the functions u(x) and D(x) for the birth-death process above? Show that
d⟨x(t)⟩/dt is determined by the expectation value of u(x) and that the resulting differential
equation coincides with the equation for ⟨n(t)⟩ computed in part (b) above.
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Paper 4, Section II

14A Mathematical Biology
Consider the reaction-diffusion system in one dimension with x ∈ R,

∂u

∂t
= D

∂2u

∂x2
+ α− (β + 1)u+ u2v,

∂v

∂t
=
∂2v

∂x2
+ βu− u2v,

where the constants D, α, and β obey D > 0, β > 1, and α2 > β − 1. The variables u
and v are both positive.

(a) First consider spatially homogeneous solutions. Determine the fixed point and
sketch the nearby trajectories in the system’s phase space.

(b) Now consider inhomogeneous solutions. Without calculation, explain why the
system is stable for D = 1. Find the condition relating D, α, and β for the system to be
unstable.

(c) Suppose we vary the diffusivity from D = 1 to the value at which the system
first becomes unstable. What is the critical wavenumber k⋆ at which the instability first
occurs?
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Paper 1, Section II

31L Mathematics of Machine Learning
Consider i.i.d. random variables (X1, Y1), . . . , (Xn, Yn) taking values in X ×{−1, 1}

and a convex surrogate loss (x, y) 7→ ϕ(yh(x)).

(a) Define the empirical Rademacher complexity, R̂(H(x1:n)), and the Rademacher
complexity, Rn(H), for a class of functions H mapping X to R. State the contraction
lemma for the Rademacher complexity.

(b) Fix s > 0. Let S ⊆ Rd×d be the set of symmetric, positive semidefinite matrices
with eigenvalues λ1 ⩾ λ2 ⩾ . . . ⩾ λd satisfying

∑d
i=1 λi ⩽ s. Show that S is a convex set.

(c) Suppose that X = {x ∈ Rd : ∥x∥2 ⩽ C}, and let H = {x 7→ xTMx : M ∈ S}.
Prove that

Rn(H) ⩽ C2s√
n
.

[Hint: If A ∈ Rd×d is a symmetric matrix with eigenvalues α = (α1, . . . , αd), then
Tr(ATA) = ∥α∥22.]

(d) Let ĥ minimise the empirical risk R̂ϕ(h) over h ∈ H, where ϕ is the hinge loss.
Let h∗ be the minimiser of the risk Rϕ(h) over h ∈ H. Quoting any necessary result from
the course, deduce that

ERϕ(ĥ)−Rϕ(h
∗) ⩽ K√

n
,

for a constant K which you must specify.
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Paper 2, Section II

31L Mathematics of Machine Learning
(a) Define the shattering coefficient s(H, n) and the VC dimension V C(H) for a

hypothesis class H. State the Sauer-Shelah lemma.

(b) In each of the following cases, find V C(Hi),

(i) H1 = {1[a,b] : a, b ∈ R}.
(ii) H2 = {δ(21[a,b] − 1) : a, b ∈ R, δ ∈ {−1, 1}}.

(c) Let H3 = {x 7→ sgn(xTMx) :M ∈ Rd×d}. Show that

V C(H3) ⩽
(
d+ 1

2

)
.

[You may use any theorems from lectures if they are precisely stated.]

(d) Consider

F = {
J∑

j=1

βjhj(x) : J <∞, hj ∈ H3, βj > 0 for j = 1, . . . , J, ∥β∥1 ⩽ 1}.

Prove that

R̂(F(x1:n)) ⩽
√

(d2 + d) log(n+ 1)

n
.

[You may use any theorems from lectures about convex analysis and sub-Gaussian random
variables if they are precisely stated.]
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Paper 4, Section II

30L Mathematics of Machine Learning
Fix s > 0. Let S ⊆ Rd×d be the convex set of symmetric, positive semidefinite

matrices with eigenvalues λ1 ⩾ λ2 ⩾ . . . ⩾ λd ⩾ 0 satisfying
∑d

i=1 λi ⩽ s. For any
symmetric matrixM ∈ Rd×d, the projection π(M) ofM onto S is defined as the minimiser
of Tr((M − Z)T (M − Z)) over Z ∈ S.

(a) Let M ∈ Rd×d be symmetric. Show that if Π ∈ Rd×d satisfies

Tr((M −Π)T (Z −Π)) ⩽ 0 for all Z ∈ S,

then Π is the projection π(M) of M onto S. [Hint: The function (A,B) 7→ Tr(ATB) =∑
i,j AijBij is an inner-product.]

(b) Now suppose that M /∈ S is positive semidefinite, with eigenvalues and
eigenvectors (µi, vi) for i = 1, . . . , d. Using part (a), or otherwise, show that

π(M) =

d∑

i=1

max(0, µi − ρ)viv
T
i ,

where ρ > 0 is such that
∑d

i=1max(0, µi − ρ) = s. [Hint: By von Neumann’s trace
inequality, if A,B ∈ Rd×d are symmetric with eigenvalues α1 ⩾ α2 ⩾ . . . ⩾ αd ⩾ 0 and
β1 ⩾ β2 ⩾ . . . ,⩾ βd ⩾ 0, respectively, then |Tr(AB)| ⩽∑d

i=1 αiβi.]

(c) Consider i.i.d. random variables (X1, Y1), . . . , (Xn, Yn) taking values in {x ∈ Rd :
∥x∥2 ⩽ C} × {−1, 1}. Let M (1) = 0 ∈ Rd×d, and iteratively define, for a step size η > 0
and iteration i = 1, . . . , k − 1,

gi = − 1

n

n∑

j=1

YjXjX
T
j

exp(−YjXT
j M

(i)Xj)

1 + exp(−YjXT
j M

(i)Xj)
,

M (i+1) = π(M (i) − ηgi).

Let M̄ = 1
k

∑k
i=1M

(i). The function h̄ : x 7→ xT M̄x approximates an empirical risk

minimiser ĥ over a certain hypothesis class H with a certain loss function ϕ. Give explicit
forms for H and ϕ.

Carefully quoting any necessary result from the course, show that, for a choice of
step size η which you must specify,

R̂ϕ(h̄)− R̂ϕ(ĥ) ⩽
2sC2

√
k
.
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Paper 1, Section II

20G Number Fields
(a) Let f(X) be a monic polynomial with algebraic integer coefficients. Prove that

the roots of f are algebraic integers. [You may use without proof the characterization
of algebraic integers in terms of finitely generated modules, provided you state the result
precisely.]

(b) Determine the ring of integers OK in the fieldK = Q(
√
17). Justify your answer.

(c) Let α =
√

4 +
√
17. By computing NK|Q(α2), or otherwise, show that α /∈ K.

(d) With α as in part (c), let L = Q(α). Show for β ∈ L that β ∈ OL if and only if
NL|K(β) ∈ OK and TrL|K(β) ∈ OK .

(e) Show that, if a+ bα ∈ OL for some a, b ∈ K, then 2a ∈ OK and 2b ∈ OK .

Paper 2, Section II

20G Number Fields
(a) Define the class group of a number field. [You do not need to prove that it is a

group.]

(b) Prove that the class group of a number field is finite. [You may use without
proof the fact that, for every number field K, there is a constant C such that every ideal
I ⊂ OK contains a non-zero element α with |N(α)| ⩽ CN(I).]

(c) Let K be a number field and I ⊂ OK an ideal. Prove that there is a positive
integer n such that In is a principal ideal.

(d) A proper ideal I ⊂ OK is called a primary ideal, if for all α, β ∈ OK such that
αβ ∈ I but α /∈ I, there is a positive integer k such that βk ∈ I. Prove that an ideal in
OK is primary if and only if it is a power of a prime ideal.

Part II, 2025 List of Questions



77

Paper 4, Section II

20G Number Fields
(a) State Dirichlet’s unit theorem.

(b) Define the logarithmic embedding (Log) and prove that its kernel contains only
roots of unity.

(c) What can you say about the image of a fundamental system of units u1, . . . , um
under the logarithmic embedding? Here m is the rank of the unit group. [You do not
need to prove your answer.]

(d) LetK be a number field with r real embeddings and s pairs of complex conjugate
embeddings. Let I = ⟨β⟩ ⊂ OK be a principal ideal. Show that

Log(β) = t(1, . . . , 1, 2, . . . , 2) +

m∑

i=1

λiLog(ui)

where t, λ1, . . . , λm ∈ R and the vector (1, . . . , 1, 2, . . . , 2) has r 1’s and s 2’s. Compute t
in terms of N(I) and [K : Q]. [Hint: Relate the sum of the coordinates of Log(β) to N(β).]
[Standard facts about norms may be quoted without proof.]

(e) Prove that, for every number field K, there is a constant C < ∞ such that,
for every principal ideal I ⊂ OK , there is an element α ∈ I such that I = ⟨α⟩ and
|σ(α)| < CN(I)1/[K:Q] for all embeddings σ : K → C.
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Paper 1, Section I

1G Number Theory
(a) Using Fermat factorisation, find a non-trivial factorisation of N = 14351.

(b) Let N ⩾ 1 be an odd, composite integer that is not a square, and let k ⩾ 1. We
say that Fermat factorisation for N succeeds after k steps if the first value r ⩾

√
N such

that r2 −N is a square is r = ⌊
√
N⌋+ k.

Suppose that N = 3p, where p > 3 is a prime number. Find the value of k such
that Fermat factorisation for N succeeds after k steps.

Paper 2, Section I

1G Number Theory
Let N = 136, and let G = (Z/NZ)× denote the multiplicative group of units

modulo N .

(a) Compute the order of G.

(b) Compute the least integer m ⩾ 1 such that for any g ∈ G, gm ≡ 1 mod N .

(c) Write down an element g ∈ G of order m.

Paper 3, Section I

1G Number Theory
(a) Let f(x, y), g(x, y) be binary quadratic forms. Define what it means for f and

g to be equivalent.

(b) A binary quadratic form f(x, y) = ax2 + bxy + cy2 is said to be primitive if
gcd(a, b, c) = 1 (i.e. there is no prime number p dividing each of a, b, and c). Show that
if f and g are equivalent, then f is primitive if and only if g is primitive.

(c) Compute the number of equivalence classes of primitive, positive definite binary
quadratic forms of discriminant −80.
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Paper 4, Section I

1G Number Theory
Let p be an odd prime.

(a) Define the Legendre symbol
(
a
p

)
, and state the law of quadratic reciprocity that

it satisfies.

(b) Give necessary and sufficient conditions on p mod 3 for the equation

X2 + 11X + 31 = 0

to have a solution in Z/pZ.

(c) Give necessary and sufficient conditions on p mod 3 for the equation

X3 = −1

to have (i) a solution in Z/pZ; and (ii) a unique solution in Z/pZ.

Paper 3, Section II

11G Number Theory
(a) Let θ ∈ R be an irrational number with continued fraction expansion θ =

[a0, a1, a2, . . . ]. Define the convergents pn, qn of θ. Show that if γ > 0, then there is a
formula for each n ⩾ 1:

[a0, a1, a2, . . . , an, γ] =
pnγ + pn−1

qnγ + qn−1
.

(b) Compute the continued fraction expansion of θ =
√
11.

(c) Let pn, qn be the convergents of θ =
√
11. Show that if n ⩾ 2 is even, then

p2n − 11q2n = −2.

Paper 4, Section II

11G Number Theory
(a) Let p be a prime number, and let N ∈ N. Define the p-adic valuation vp(N)

of N .

(b) Show that if k ∈ N, and p is a prime number such that k+2 ⩽ p ⩽ 2k+1, then
vp(
(
2k+1
k+1

)
) = 1.

(c) If X ⩾ 1 is a real number, define P (X) =
∏
p⩽X p, where the product is over

prime numbers p less than or equal to X. Show that P (X) ⩽ 4X for all X ⩾ 1.

(d) If X ⩾ 1 is a real number, let π(X) denote the number of prime numbers less
than or equal to X. By considering π(X) − π(

√
X), or otherwise, show that there is a

constant c > 0 such that π(X) ⩽ cX/ logX for all X ⩾ 2.
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Paper 1, Section II

41D Numerical Analysis
(a) Show that if A ∈ Rn×n is symmetric, there exists a symmetric and tridiagonal

matrix H ∈ Rn×n that has the same eigenvalues as A, and that can be computed in finitely
many arithmetic operations from the matrix elements of A.

(b) The standard QR algorithm (without shifts) is applied to a symmetric and
tridiagonal matrix H. For k = 0, 1, 2, ..., let Hk be the kth iteration of the QR algorithm

and recall that Hk+1 = Q
T
kHQk, where Qk is orthogonal and QkRk is the QR factorization

of Hk+1 (that is, the (k + 1)th power of H).

Suppose that the eigenvalues λi (i = 1, ..., n) of H satisfy |λ1| < |λ2| < · · · <
|λn−1| = |λn|, and let the corresponding normalised eigenvectors of H be w1,w2, . . . ,wn.
Suppose also that the first two canonical basis vectors, e1 and e2, can be written as
e1 =

∑n
i=1 biwi and e2 =

∑n
i=1 ciwi where bi and ci (i = 1, . . . , n) are non-zero constants.

(i) Show that if (H/λn)
ke1 → v1 and (H/λn)

ke2 → v2 as k → ∞, then v1 and
v2 are linear combinations of wn−1 and wn.

(ii) Let h
(k)
3,2 be the matrix element of Hk at the 3rd row and 2nd column. Show

that h
(k)
3,2 → 0 as k → ∞.
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Paper 2, Section II

41D Numerical Analysis
Let N be an integer power of 2. The discrete Fourier transform (DFT) F2N : C2N →

C2N is defined by

Y = F2Ny, where Yk =

2N−1∑

n=0

yn exp

(
−πi
N
nk

)
, 0 ⩽ k ⩽ 2N − 1, (�)

while the discrete cosine transform (DCT) CN : RN → RN and the discrete sine transform
(DST) SN : RN → RN are defined by

Z = CNx, where Zk =
N−1∑

n=0

xn cos

[
π

N

(
n+

1

2

)
k

]
, 0 ⩽ k ⩽ N − 1,

Z̃ = SNx, where Z̃k =
N−1∑

n=0

xn sin

[
π

N

(
n+

1

2

)
(k + 1)

]
, 0 ⩽ k ⩽ N − 1,

for N even.

(a) Show that there exists an algorithm that computes the DFT of a vector of length
2N for which the number of multiplications required is O(N logN).

(b) Let x ∈ RN and y ∈ R2N be related by yn = xn for 0 ⩽ n ⩽ N − 1 and
yn = x2N−n−1 for N ⩽ n ⩽ 2N − 1. With Y defined as in equation (†), show that

1

2
exp

(
− πi

2N
k

)
Yk =

N−1∑

n=0

xn cos

[
π

N

(
n+

1

2

)
k

]
, 0 ⩽ k ⩽ 2N − 1.

(c) Use parts (a) and (b) to show that there exists an algorithm to compute the
DCT of a vector of length N using O(N logN) multiplications.

(d) Let x ∈ RN and ξ ∈ RN be related by ξn = (−1)nxn for 0 ⩽ n ⩽ N − 1. By
considering the DCT of ξ, or otherwise, show that there exists an algorithm to compute
the DST of a vector of length N using O(N logN) multiplications.
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Paper 3, Section II

40D Numerical Analysis
Consider the following two Cauchy problems: the diffusion equation

∂u

∂t
=
∂2u

∂x2
, 0 ⩽ t ⩽ 1, x ∈ R, (†)

with initial condition u(x, 0) = u0(x); and the wave equation

∂2v

∂t2
=
∂2v

∂x2
, 0 ⩽ t ⩽ 1, x ∈ R,

with initial conditions v(x, 0) = v0(x) and ∂v
∂t (x, 0) = v1(x). Further consider the

discretisation of the diffusion equation,

un+1
m − 1

2
µ
(
un+1
m+1 − 2un+1

m + un+1
m−1

)
= unm +

1

2
µ
(
unm+1 − 2unm + unm−1

)
, (⋆)

and the discretisation of the wave equation,

vn+1
m − 2ρvnm + vn−1

m = µ
(
vnm+1 − 2vnm + vnm−1

)
, (⋆⋆)

where m ∈ Z, n = 1, . . . , N , µ > 0 is the Courant number, and ρ ∈ [1, 2] is a constant
parameter. The notation fnm here denotes the function f evaluated at the nth time step
and located at a spatial grid point labelled by index m. In all parts of the question below
regarding stability, consider the 2-norm ∥ · ∥2.

(a) Derive an expression for the amplification factor in a Fourier analysis of stability
applied to a finite-difference discretisation of a linear partial differential equation.

(b) Determine the values of µ that make the method in equation (⋆) stable for the
diffusion equation as described above.

(c) Determine the values of µ, as a function of ρ, that make the method in equation
(⋆⋆) stable for the wave equation as described above.

(d) Suppose we replace the Cauchy problem (x ∈ R) in equation (†) with the finite
domain 0 ⩽ x ⩽ 1, on which we apply Dirichlet boundary conditions u(0, t) = u(1, t) = 0.
Determine the values of µ that make the method in equation (⋆) stable for this problem.

[You may use basic spectral properties of Toeplitz symmetric tridiagonal (TST)
matrices without proof.]
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40D Numerical Analysis
(a) State and prove the Householder-John theorem.

(b) Define the Jacobi method for solving a system Ax = b, with A ∈ Rn×n and
b ∈ Rn. Show that if A is a symmetric, positive-definite, tridiagonal matrix,

A =




a1 b1 0 · · · 0

b1 a2 b2
. . .

...

0 b2 a3
. . . 0

...
. . .

. . .
. . . bn−1

0 · · · 0 bn−1 an



,

then the Jacobi method converges.

[You may use without proof general convergence results of iterative methods for linear
systems based on the spectral radius, provided they are clearly stated.]
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34C Principles of Quantum Mechanics
(a) A Fermi oscillator has Hilbert space H = C2 and Hamiltonian H = B†B, where

B2 = 0 and B†B +BB† = 1.

(i) Find the eigenvalues of H.

(ii) If |1⟩ is a state obeying H|1⟩ = |1⟩ and ⟨1|1⟩ = 1, find B|1⟩ and B†|1⟩.

(iii) Obtain a matrix representation of the operators B, B† and H.

(b) Now consider a composite system comprised of two decoupled Fermi oscillators,

with Ha = B†
aBa for a = 1, 2. The Hamiltonian of the composite system is Htot =

E1B
†
1B1 + E2B

†
2B2 where E1,2 are non-negative real numbers.

(i) Determine the exact eigenvectors and eigenvalues of Htot.

(ii) Write Htot, B1,2 and B†
1,2 as matrices in the basis of energy eigenvectors.

(iii) Assuming E1 ≪ E2 and treating E1B
†
1B1 as a small perturbation to the

unperturbed Hamiltonian H
(0)
tot = E2B

†
2B2, determine the eigenvectors and

eigenvalues of Htot to first order in perturbation theory. Discuss how your
derivation relates to degenerate perturbation theory.

(c) Finally assume E1 = 0 and E2 > 0, and consider the new Hamiltonian

H̃tot = E2B
†
2B2 + g(B1 +B†

1)

where g is a real constant.

(i) Determine the exact eigenvectors and eigenvalues of H̃tot.

(ii) Treating g(B1+B
†
1) as a small perturbation to the unperturbed Hamiltonian

H̃
(0)
tot = E2B

†
2B2, determine the eigenvectors and eigenvalues of H̃tot to

first order in perturbation theory. Discuss how your derivation relates to
degenerate perturbation theory.
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35C Principles of Quantum Mechanics
(a) State the commutation relations for the spin operator S and describe the

associated irreducible representations {|s, σ⟩}, where s and σ are quantum numbers you
should specify. Determine the Hermitian conjugate and the trace of S.

(b) Henceforth consider only the Hilbert space of a particle of spin 3/2 and use the
basis {|σ⟩} of eigenvectors of Sz. Using the relation

S±|σ⟩ =
√
s(s+ 1)− σ(σ ± 1)ℏ|σ ± 1⟩ , (1)

write down Sx and Sy as matrices.

(c) Let n = (cosφ, sinφ, 0) be a vector in R3, using the standard basis. Derive the
states |n, 3/2⟩ for which the spin along the direction n is always measured to be 3

2ℏ.

(d) Let H = −γB · S be the Hamiltonian of the system, where γ is a constant and
B = Bẑ is an external magnetic field. Compute the state of the system at time t assuming
that it started at time t = 0 from (i) |ẑ, 3/2⟩, and (ii) |x̂, 3/2⟩. Briefly interpret the results.

Paper 3, Section II

33C Principles of Quantum Mechanics
(a) Write down the Hamiltonian for a two-dimensional quantum harmonic oscillator

with unit mass and frequency. Determine the energy eigenvectors |E⟩ and eigenvalues E
and discuss their degeneracy.

(b) Define the angular momentum operator L and explicitly compute its commut-
ation relations with H. Hence constrain the form of ⟨E|L|E′⟩.

(c) Consider the operators Tij = a†iaj where i, j ∈ {x, y}, and ax and ay are the
annihilation operators in the x and y directions respectively. Compute the commutator
[Tij , Tkl] and hence [Tij , H].

(d) Now consider T a = 1
2σ

a
ijTij for a = 1, 2, 3 where σa are the Pauli matrices

satisfying [σa, σb] = 2iϵabcσ
c. Compute the commutators [T a, T b]. Relate L to the T a.

Using these results and what you know about the representations of the group SU(2),
determine the possible angular momentum eigenvalues L|E, ℓ⟩ = ℓ|E, ℓ⟩ that an energy
eigenvector |E⟩ can have. Compare your result to the degeneracy discussed in part (a).

[
Hint: the Pauli matrices are σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

]
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33C Principles of Quantum Mechanics
(a) Consider the commutators [Li, Xj ] and [Li, Pj ] between orbital angular mo-

mentum and the position and momentum operators. Write L in terms of X and P and
use the canonical commutation relations between position and momentum to determine
these commutators.

(b) Express L ·L in the form c1X ·P+ c2(X ·X)(P ·P)+ c3(X ·P)(X ·P) where c1,
c2, and c3 are constants you should determine. Hence, by expressing X and P as operators
acting on wavefunctions, determine the relation between L ·L and the spherical Laplacian
∇2
S2 . [Hint: recall that ∇2 = ∂2r + (2/r)∂r + r−2∇2

S2 .]

(c) Consider the hydrogen atom and neglect the spin of the electron. Give a basis
that spans the degenerate energy subspace corresponding to the first excited state (n = 2
in the usual labelling). Focussing exclusively on this subspace, consider the following two
scenarios.

(i) The Hamiltonian is perturbed by ∆H = gL · L where g is a constant.
Compute the new energy eigenstates and eigenvalues exactly.

(ii) The Hamiltonian is perturbed by ∆H = E(t)X3+B(t)P3, where E(t) and
B(t) are time-dependent functions. Determine which matrix elements of
∆H must vanish using the result for the commutators [L3, X3] and [L3, P3]
and the transformation of X3 and P3 under parity. Now define

z(t) := E(t)⟨2, 0, 0|X3|2, 1, 0⟩+B(t)⟨2, 0, 0|P3|2, 1, 0⟩ ∈ C

and assume z(t) = c eiωt/ℏ for some real constants c and ω. Find an
exact solution of the Schrödinger equation given an initial state of the
form A0|2, 0, 0⟩+A1|2, 1, 0⟩ where A0, A1 ∈ C.
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29L Principles of Statistics

(a) Suppose real-valued random variables ψ̂1, ψ̂2, . . . satisfy
√
n(ψ̂n − ψ)

d→ N(0, v)
as n → ∞ for v > 0 and deterministic ψ ∈ R. Suppose ϕ : R → R is continuously
differentiable at ψ. Write down the asymptotic distribution of

√
n(ϕ(ψ̂n) − ϕ(ψ)). [No

proof is necessary.]

(b) Suppose we have data X1, . . . , Xn
i.i.d.∼ Exp(θ) with rate θ > 0.

(i) Find the maximum likelihood estimator (MLE) θ̂n for the rate θ.

(ii) Without appealing to the general theory for MLEs, obtain, with justifica-
tion, an asymptotic confidence interval Ĉn for θ centred on θ̂n that satisfies
Pθ(θ ∈ Ĉn) → 1− α as n→ ∞ for a given α ∈ (0, 1).

(c) Now suppose that rather than observing the random variables Xi as in part (b),
we instead only observe data Y1, . . . , Yn where Yi = ⌊Xi⌋ is the greatest integer less than
or equal to Xi.

(i) Show that the MLE θ̃n for θ based on the data Y1, . . . , Yn is given by

θ̃n = log

(
1 + Ȳ

Ȳ

)
.

(ii) Without appealing to the general theory for MLEs, obtain, with justifica-
tion, the asymptotic distribution of

√
n(θ̃n − θ).

[Hint: Recall that if random variable Z follows a geometric distribution
supported on {0, 1, 2, . . .} with success probability p, then EZ = (1 − p)/p
and Var(Z) = (1− p)/p2.]
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Paper 2, Section II

29L Principles of Statistics

(a) Consider a statistical model X1, . . . , Xn
i.i.d.∼ f(·, θ), θ ∈ Θ ⊆ Rp, that satisfies

the usual regularity conditions.

(i) Define the score function Sn(θ) and Fisher information matrix In(θ).

(ii) Show that Eθ(S1(θ)) = 0. [You may interchange integration and differenti-
ation without justification.]

(iii) Recall that the score test statistic Tn for the null hypothesis H0 : θ ∈ Θ0 is
given by

Tn :=
1

n
Sn(θ̃)

⊤I1(θ̃)−1Sn(θ̃),

where θ̃ maximises the log-likelihood over θ ∈ Θ0. Show that in the case of

a simple null H0 : θ = θ0, we have Tn
d→ χ2

p as n→ ∞.

(b) Now consider the model X1, . . . , Xn
i.i.d.∼ N(µ, σ2) where µ ∈ R and σ2 > 0.

(i) Consider the composite null H0 : µ ∈ R, σ2 = 1. Show that the score test
statistic Tn for H0 is given by

Tn =

(
1√
2n

n∑

i=1

{(Xi − X̄)2 − 1}
)2

,

where X̄ is the sample mean.

(ii) Determine, with proof, the asymptotic distribution of Tn as n → ∞ under
the null hypothesis H0. [Hint: If Z ∼ χ2

1 then Var(Z) = 2.]
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28L Principles of Statistics
(a) Consider a Bayesian model X | θ ∼ Pois(θ) where the parameter θ ∈ (0,∞)

has prior distribution π given by θ ∼ Gamma(α, λ) where α, λ > 0. Show that the
posterior distribution θ |X has a Gamma(α+X,λ+1) distribution. [Hint: A Gamma(α, λ)
distribution has density function f(y) = λαyα−1e−λy/Γ(α) for y > 0.]

(b) Consider now a decision problem involving a statistical model {Pθ : θ ∈ Θ} and
loss function L : Θ×Θ → [0,∞).

(i) What is meant by the risk of a decision rule δ : X → Θ? Given a prior
distribution π on Θ, what does it mean for δ to be a π-Bayes estimator?
What does it mean for δ to be minimax?

(ii) Suppose a decision rule δ has constant risk r, and there is a sequence
π1, π2, . . . of priors on θ where, writing rj < ∞ for the πj-Bayes risk of the
πj-Bayes estimator, we have that r = limj→∞ rj . Show that δ is minimax.

(iii) Suppose now that X = R and Θ = (0,∞). Consider the weighted quadratic
loss L(δ(x), θ) = θ−1(θ − δ(x))2 and a prior π for θ. Show that a π-Bayes

rule δπ is given by δπ(x) =
(
E(θ−1 |X = x)

)−1
.

(c) Finally show that in the model X ∼ Pois(θ) where θ ∈ Θ = (0,∞), the decision
rule δ(X) = X is minimax under the loss given in part (b) (iii). [Hint: If Y ∼ Gamma(α, λ)
for α > 1 and λ > 0, then E(Y −1) = λ/(α − 1).] [You may interchange expectations
and limits, that is apply the dominated convergence theorem, in your answer without
justification.]
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28L Principles of Statistics
(a) Given a distribution function F : R → [0, 1], let F−1 : [0, 1] → R be the quantile

function given by
F−1(p) := inf{t : F (t) ⩾ p}.

Show that if U ∼ U [0, 1] then F−1(U) ∼ F . [Hint: F is always right continuous, that is,
F (t+ an) ↓ F (t) for all an ↓ 0.]

(b) Describe the steps taken by the Gibbs sampler to generate approximate samples
from a bivariate density fXY : R2 → [0,∞). Writing (Y1, X1), (Y2, X2), . . . for the Markov
chain generated by the algorithm, show that fXY is stationary for its transition kernel.

(c) Let n be an even number. Consider a Bayesian model

Z1, . . . , Zn |µ, ω i.i.d.∼ N(µ, ω−1),

with improper prior density π(µ, ω) = λe−λω, ω > 0, i.e. an Exp(λ) density for ω and a
flat prior on µ. Explain how you can generate approximate samples from the posterior
distribution Π(µ, ω |Z1, . . . , Zn) if you have ways of generating independent samples from
U [0, 1] and N(0, 1). [You may assume Π(µ, ω |Z1, . . . , Zn) has a well-defined density.]

[Hint: Recall that a Gamma(m,λ) distribution has density f(y) ∝ ym−1e−λy.

Moreover if m ∈ N and Z1, . . . , Zm
i.i.d.∼ Exp(λ), then

∑m
i=1 Zi ∼ Gamma(m,λ).]
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27H Probability and Measure
Let (Xj)j⩾1 be a sequence of independent real random variables with uniform density

pXj =
1
2j1[−j,j]. Let Sn = X1 + · · ·+Xn.

(a) State Lévy’s theorem from the lectures.

(b) Show that the characteristic function of n−3/2Sn satisfies

Φn−3/2Sn
(ξ) =

n
3n
2

ξnn!

n∏

j=1

sin

(
jξ

n3/2

)
.

(c) Show that n−3/2Sn converges in law to a limit to be determined.

[Hint: You can use the formula
∑n

j=1 j
2 = n(n+ 1)(2n+ 1)/6.]

(d) Let σ2j be the variance of Xj . Show that
(∑n

j=1 σ
2
j

)−1/2
Sn converges in law to

a limit to be determined.

Paper 2, Section II

27H Probability and Measure
Given a function f : R → R, its Fourier transform is f̂(ξ) =

∫
R e

−ixξf(x) dx for
ξ ∈ R.

(a) State and prove the monotone convergence theorem.

(b) Let θn(x) =
(
1− |x|

n

)
+
where x+ = max{x, 0}. Compute θ̂n.

(c) Prove that there exists a universal constant α > 0 such that: for any f ∈ L1∩L∞

whose Fourier transform satisfies f̂(ξ) ⩾ 0 for all ξ ∈ R, one has

∥f̂∥L1 ⩽ α∥f∥L∞ .
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26H Probability and Measure
Let (Ω,A,P) be a probability space. We consider in this question real valued random

variables. We recall a ∧ b = min{a, b}.

(a) Show that Xn
(P )−−−→
n→∞

X ⇐⇒ limn→∞ E(|Xn−X|∧1) = 0 and that convergence

in probability implies almost sure convergence along a subsequence.

(b) Show that Xn
(P )−−−→
n→∞

X does not imply almost sure convergence Xn
a.s.−−−→
n→∞

X by

considering a sequence (Xn)n⩾1 of independent real random variables with P(Xn = 0) =
1− 1

n and P(Xn = 1) = 1
n .

(c) Let Xn
(P )−−−→
n→∞

X and suppose that for some 1 < r < +∞, (Xn)n⩾1 is bounded

in Lr. Show that ∀1 ⩽ p < r, Xn
Lp

−−−→
n→∞

X.

Paper 4, Section II

26H Probability and Measure
We consider a rope broken into two strands of lengths Y and Z. We let X = Y +Z

be the random length of the rope. We assume E[X2] < +∞ and Y = XU where U is a
random variable independent of X with uniform law on [0, 1] (explicitly pU (u) = 1[0,1](u)).

(a) Compute E[Y ] and Var[Y ] in terms of E[X] and Var[X].

(b) From now on, we assume that X has a continuous density g ⩾ 0, and that

h(x) =
∫ +∞
x

g(t)
t dt is well defined and C1 on R+. Compute the densities of (X,Y ), (Y,Z),

Y and Z.

(c) Give a necessary and sufficient condition on h for Y and Z to be independent,
and compute the law of Y and Z in this case.
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10C Quantum Information and Computation
(a) Consider the following quantum circuit acting on a state |0⟩ |ψ⟩

|0⟩ H S† H

|ψ⟩ U

where H =
1√
2

[
1 1
1 −1

]
and S =

[
1 0
0 i

]
. Show that on measuring the first qubit in the

computational basis, the probability of outcome 1 is

p(1) =
1

2
(1− Im ⟨ψ|U |ψ⟩) .

(b) Verify the following identity, where A and B are unitary matrices:

A⊗B
= A

B

(c) Consider a 2-qubit initial state |ψ⟩ and a matrix descriptionW = Z⊗Z+X⊗I.
By modifying any of the above circuits, draw new circuits to obtain ⟨ψ|W |ψ⟩ in terms
of outcome probabilities of 1-qubit measurements. [Hint: note that W is not a unitary
matrix but is a linear combination of orthogonal matrices.]
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10C Quantum Information and Computation
Let |ψ⟩ denote a 2-qubit state. Let A = {|a0⟩ , |a1⟩}, B = {|b0⟩ , |b1⟩} and

C = {|c0⟩ , |c1⟩} be three orthonormal bases of C2, where,

|a0⟩ = |0⟩ , |b0⟩ =
1

2
|0⟩+

√
3

2
|1⟩ , |c0⟩ =

1

2
|0⟩ −

√
3

2
|1⟩ ,

|a1⟩ = |1⟩ , |b1⟩ =
√
3

2
|0⟩ − 1

2
|1⟩ , |c1⟩ =

√
3

2
|0⟩+ 1

2
|1⟩ .

Suppose the first qubit of the state |ψ⟩ is measured in the basis A and the second qubit is
measured in the basis B. Let Pψ(A,B) denote the probability that these two measurements
either yield the outcome (a0, b0) or the outcome (a1, b1). Probabilities Pψ(B, C) and
Pψ(C,A) are defined analogously.

(a) Give expressions for Pψ(A,B), Pψ(B, C) and Pψ(C,A).

(b) What transformations relate (i) the basis A to the basis B, and (ii) the basis A
to the basis C? Show that

|a0a0⟩+ |a1a1⟩√
2

=
|b0b0⟩+ |b1b1⟩√

2
=

|c0c0⟩+ |c1c1⟩√
2

. (∗)

(c) For |ψ⟩ = |0⟩ ⊗ |0⟩, show that

Pψ(A,B) + Pψ(B, C) + Pψ(C,A) ⩾ 1 .

(d) Denote the state in equation (∗) by |ϕ+⟩. For |ψ⟩ = |ϕ+⟩, determine Pψ(A,B)+
Pψ(B, C) + Pψ(C,A).

Part II, 2025 List of Questions



95

Paper 3, Section I

10C Quantum Information and Computation
Suppose you have a search space of dimension 4, with its elements encoded in binary

{00, 01, 10, 11}. You are searching for the element x0 = 11.

(a) Construct the circuit implementing the quantum oracle Uf : |x⟩ |y⟩ →
|x⟩ |y ⊕ f(x)⟩, for the function f , where f(x) = 1 if x = x0, otherwise f(x) = 0.

(b) Consider the following quantum circuit:

|0⟩

|0⟩

|1⟩ |−⟩

H

Uf

H X X H
|ψ⟩

H H X X H

H

A

(i) Prove that the boxed part, A, of the circuit implements the operator
I0 = I − 2|00⟩⟨00|, by showing that A |x1x2⟩ |−⟩ = I0 |x1x2⟩ |−⟩ for
x1, x2 ∈ {0, 1}. Hence, justify that the entire circuit implements the
initial Hadamard transformations and a single Grover iteration −Q =
H⊗2I0H

⊗2Ix0 , where Ix0 = I − 2 |x0⟩ ⟨x0| .

(ii) Compute the output state |ψ⟩.

(iii) What happens when we measure |ψ⟩ in the computational basis?

(iv) How many times do we have to repeat −Q to obtain x0 in this example?
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10C Quantum Information and Computation
(a) A GHZ state between three parties (Alice, Bob, and Charlie) is defined as

|ψ⟩ABC :=
1√
2
(|000⟩ABC + |111⟩ABC) .

Write down a quantum circuit that generates this state from the initial state |000⟩ABC ,
justifying your answer.

(b) The aim below is to design a multi-party super-dense coding protocol between
Alice, Bob, and Charlie, who are spatially separated and share the GHZ state |ψ⟩ABC
before communication begins.

Suppose that Alice wants to send two (classical) bits to Charlie and Bob wants to
send one (classical) bit to Charlie. What operations should Alice and Bob perform on
their respective qubits of |ψ⟩ABC before sending their qubits to Charlie (over ideal qubit
channels), and how does Charlie infer the classical bits sent by Alice and Bob? Be sure to
consider all cases.

[The following orthonormal basis of 3 qubits will be useful,

∣∣χ±
1

〉
:=

1√
2
(|000⟩ABC ± |111⟩ABC)

∣∣χ±
2

〉
:=

1√
2
(|010⟩ABC ± |101⟩ABC)

∣∣χ±
3

〉
:=

1√
2
(|001⟩ABC ± |110⟩ABC)

∣∣χ±
4

〉
:=

1√
2
(|011⟩ABC ± |100⟩ABC) .]
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15C Quantum Information and Computation
Let N be an odd integer that is not equal to the power of a prime number. Let a

be an integer coprime to N with 1 < a < N .

(a) Define the order of amodN .

(b) Let f : Z → ZN be the modular exponentiation function that has period r equal
to the order of amodN . Write down an explicit form for f and show that it is one-to-one
within each period.

(c) Suppose r from part (b) is even and (ar/2 + 1) is not divisible by N . How can
one use Euclid’s algorithm to obtain a factor of N? Justify your answer.

(d) Continuing from part (c), let m be the smallest integer for which 2m > N2, and
let B and b be integers such that 2m = Br + b with B = ⌊2mr ⌋. Consider the state

|φ1⟩ =
1√
A

A−1∑

j=0

|x0 + jr⟩ ,

where x0 ∈ {0, 1, . . . , 2m − 1} and A =

{
B + 1 if x0 ⩽ b
B if x0 > b

.

(i) For a positive integerM , let QFTM denote the quantum Fourier transform
modulo M . Give the action of QFTM on the state |x⟩, where x ∈ ZM .

(ii) Show that

|φ2⟩ := QFT2m |φ1⟩ =
2m−1∑

u=0

g(u) |u⟩ ,

and give a closed-form expression for g(u).

(iii) Suppose |φ2⟩ is measured in the basis {|u⟩}2m−1
u=0 to obtain a value of c

satisfying

∣∣∣∣c− k
2m

r

∣∣∣∣ <
1

2
,

for some k ∈ {0, 1, 2, . . . , r− 1} that is coprime to r. Prove that there is at
most one fraction k/r with a denominator r < N satisfying

∣∣∣∣
c

2m
− k

r

∣∣∣∣ <
1

2N2
. (∗)

(iv) Suppose N = 21, a = 10, and you get the measured outcome c = 427.
Using equation (∗) and a suitable continued fraction expansion, find r.
[
Hint:

∣∣427
512 − 5

6

∣∣ < 1
2(21)2

]
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15C Quantum Information and Computation
(a) Given two equally likely states |α0⟩ and |α1⟩, show that the probability Ps of

correctly distinguishing between the states using a quantum measurement is bounded as
follows,

Ps ⩽
1

2

(
1 +

√
1− |⟨α0|α1⟩|2

)
,

and that the bound is tight. Consequently, show that |α0⟩ and |α1⟩ can be perfectly
distinguished, that is, Ps = 1, if and only if they are orthogonal.

(b) Consider the task of distinguishing between two equally likely unitary gates U1

and U2. This is accomplished by choosing some state |ψ⟩ and then distinguishing between
the outputs U1 |ψ⟩ and U2 |ψ⟩ as in part (a). Let us define the numerical range of a unitary
U as the following subset of the complex plane

N(U) := {⟨ψ|U |ψ⟩ : ||ψ|| = 1} ⊆ C .

Show that U1 and U2 can be perfectly distinguished if and only if 0 ∈ N(U †
2U1).

(c) Denote the spectrum (the set of all eigenvalues) of a unitary U by specU . Show
that the spectrum of any unitary matrix U is contained in the unit circle in the complex
plane: specU ⊆ {λ ∈ C : |λ| = 1}.

(d) The numerical range of a unitary U is equal to the convex hull of its eigenvalues;
that is, if specU = {λ1, λ2, . . . , λn}, we have

N(U) = conv(specU) =

{
n∑

i=1

piλi : pi ⩾ 0,
∑

i

pi = 1

}
.

Use this to draw a sketch of the numerical range of the unitary matrix

U =



1 0 0

0 eiπ/4 0

0 0 ei3π/4


 .

(e) The spectral arc length θ(U) ∈ [0, 2π) of a unitary U is the length of the smallest
arc (in radians) that contains all the eigenvalues of U on the unit circle. Show by means
of two figures that for the unitary phase gate

Uγ =

[
1 0
0 eiγ

]
,

where γ ∈ [0, 2π), the spectral arc length is given by

θ(Uγ) =

{
γ, if γ < π

2π − γ, if γ ⩾ π .

(f) Using parts (b)–(e), justify that two equally likely unitary gates U1 and U2 can

be perfectly distinguished if and only if θ(U †
2U1) ⩾ π.
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Paper 1, Section II

19J Representation Theory
Let G be the (infinite) group generated by two elements r and t such that

trt−1 = r−1, t2 = 1 and with all other relations a consequence of these.

(a) Let V be a finite dimensional complex representation of G. Show that if V is
irreducible, then dimV ⩽ 2.

(b) Find all one dimensional complex representations of G, and find all irreducible
two dimensional complex representations of G up to isomorphism.

(c) For every positive integer n ⩾ 3, there is a surjective homomorphism G → D2n

to the dihedral group of order 2n. Using this, we can regard a representation of D2n as a
representation of G. Which of the irreducible finite dimensional representations of G do
not arise in this way?

(d) Show that the following 2×2 matrices can be used to construct a two dimensional
representation ofG containing a one dimensional subrepresentation that has noG-invariant
complement:

A =

(
1 0
0 −1

)
, B =

(
1 1
0 1

)
.
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Paper 2, Section II

19J Representation Theory
(a) Let ρ : G → GLn(C) be a representation of a finite group G. Prove that ρ is

isomorphic to a representation ρ′ : G→ GLn(C) with

ρ′(G) ⩽ Un = {A ∈ Matn(C) | AAT = I}.

(b) Let V be a finite dimensional complex representation of a group G. A bilinear
form

(−,−) : V × V → C

on V is G-invariant if (v, w) = (gv, gw) for all v, w ∈ V and g ∈ G.

Suppose now that V is an irreducible representation of G.

(i) Show that any G-invariant bilinear form on V is either non-degenerate or
zero, and that any two G-invariant bilinear forms are proportional.

(ii) Show that any non-zero G-invariant bilinear form satisfies (w, v) = λ(v, w)
for all v, w ∈ V , where λ ∈ {±1} does not depend on v and w.

(c) Let H ⩽ G be a subgroup of a finite group G, and V a finite dimensional
complex representation of H. Define the induced representation IndGH(V ), and compute
its character in terms of the character of V .

Show that if W is a finite dimensional complex representation of G, then the
representations IndGH(W ⊗ V ) and W ⊗ IndGH(V ) are isomorphic.
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Paper 3, Section II

19J Representation Theory
Let Vn be the vector space of homogeneous polynomials in x, y of degree n over the

complex numbers.

(a) Define the standard action of G = SU2 on Vn.

Write down the matrix by which an element of G acts on V3, with respect to the
standard basis {xiyj : i ⩾ 0, j ⩾ 0, i+ j = 3} of V3.

Define the character of a finite dimensional complex representation V of G and
write down the character of Vn.

(b) Show every finite dimensional complex representation V of G is isomorphic to
V ∗.

(c) Show that for every irreducible finite dimensional complex representation V of G
the action of G on V ⊗V factors through G/{±I}. Is this true for complex representations
which are not irreducible?

(d) Decompose Vn ⊗ Vn into irreducibles.

(e) For any finite dimensional complex representation V of G, compute the character
of
∧2 V in terms of the character of V .

(f) Decompose
∧2 Vn into irreducibles.

[You must justify or prove your answers. You may use any results from lectures, but
you must quote them carefully. In part (d) you may not just quote the Clebsch–Gordon
formula.]
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Paper 4, Section II

19J Representation Theory
Let p be an odd prime, G = SL2(Fp) be the special linear group over the field with

p elements,

B =

{(
a b
0 a−1

) ∣∣∣∣ a, b ∈ Fp, a ̸= 0

}
< G

be the subgroup of upper triangular matrices and

U =

{(
1 b
0 1

) ∣∣∣∣ b ∈ Fp
}
< B

be the subgroup of uni-triangular matrices.

(a) Suppose that θ, φ : B → C∗ are 1-dimensional complex representations of B.

(i) State Mackey’s restriction formula and explain carefully what it says for
ResGBInd

G
Bθ.

(ii) Determine ⟨IndGBθ, IndGBφ⟩G for all possible choices of θ and φ.

(b) Let χ : U → C∗ be a non-trivial one dimensional representation of U .

(i) If v ∈ Fp show that

χ(v·) :
(
1 x
0 1

)
7→ χ

((
1 vx
0 1

))

is also a one dimensional representation of U .

(ii) Now consider any representation V of B. Show that if ⟨ResBUV, χ⟩U ̸= 0,
then ⟨ResBUV, χ(v·)⟩U ̸= 0 for at least p−1

2 elements v in F∗
p.

(iii) Let T be the subgroup of B consisting of diagonal matrices and let θ be a
one dimensional representation of T . Show that IndBT θ is a sum of three
pairwise non-isomorphic irreducible representations of B of dimensions 1,
p−1
2 and p−1

2 .
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Paper 1, Section II

24G Riemann Surfaces
Give the definition of a Riemann surface.

If R is a Riemann surface, show that any open connected subset of R is also a
Riemann surface. Show also that if z1, . . . , zp ∈ R then R \ {z1, . . . , zp} is a Riemann
surface. Can it happen that a Riemann surface R with a countably infinite set of points
removed is still a Riemann surface?

Which of the following topological spaces can be given the structure of a Riemann
surface? Justify your answers.

(i) The unit sphere S2 = {(x, y, z) |x2 + y2 + z2 = 1} in R3.

(ii) The set X of points {(x, y, x/
√
x2 + y2, y/

√
x2 + y2)} in R4 where x and

y are not both zero.

(iii) The set Y of points {(z, w) ∈ C× C | zw − 2iw − iz − 2 = 0}.

Paper 2, Section II

24G Riemann Surfaces
State and prove the identity theorem for Riemann surfaces.

Define what it means for h : U → R to be a harmonic function, where U is a
non-empty open connected subset of R2. Show that h ∈ C∞(U).

Define also a harmonic function H : R → R, where R is a Riemann surface. Show
that this is independent of the atlas chosen for R.

Suppose we have two functions f, g : C → C such that the product f · g, defined
pointwise by (f ·g)(z) = f(z)g(z), is identically zero on C. Must one of f or g be identically
zero on C if:

(i) Both f and g are continuous on C?

(ii) Both f and g are continuous on C and never simultaneously zero?

Now suppose we have two functions f, g : R2 → R such that f · g is identically zero
on R2. Must one of f or g be identically zero on R2 if:

(iii) Both f and g are in C∞(R2)?

(iv) Both f and g are harmonic?
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Paper 3, Section II

23G Riemann Surfaces
Given a Riemann surface R and a covering map π : S → R, where S is a connected

Hausdorff topological space, explain how S can be given the structure of a Riemann surface
such that π is an analytic map.

What does it mean to say that S is simply connected? State the uniformisation
theorem and write down the group of analytic automorphisms Aut(R) for each simply
connected Riemann surface R.

If X is a topological space and G is a group of homeomorphisms of X, define what
it means to say that this action of G on X is a covering space action.

If R is the Riemann surface C∞ and H is a subgroup of Aut(R) whose action on R
is a covering space action, show that the quotient R/H is a Hausdorff space.

Give an example of a Riemann surface R and a group G of homeomorphisms of
R whose action is a covering space action but such that the quotient space R/G is not
Hausdorff. Must R/G be Hausdorff if R is simply connected?
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Paper 1, Section I

5K Statistical Modelling
A random variable Y > 0 is said to follow the Weibull distribution with parameters

λ > 0 and k > 0 if X = (Y/λ)k follows the exponential distribution with rate parameter 1
(so the probability density function of X is e−x, x > 0). Let Y1, . . . , Yn be an independent
and identically distributed sample from this Weibull distribution.

Show that the probability density function of Y is given by

fλ(y) =
k

λ

(y
λ

)k−1
e−(y/λ)k , y > 0.

For the rest of this question, suppose k is fixed. Show that {fλ ; λ > 0} is a
one-parameter exponential family, and write down its natural parameter and sufficient
statistic.

Show that E(Y k) = λk, then find the maximum likelihood estimator of λ from
Y1, . . . , Yn.
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Paper 2, Section I

5K Statistical Modelling
The potato dataset contains the crop yields of 60 equally divided plots in a farm,

each randomly planted with one of three genotypes of potato. There are two possible
alleles (A, a) and three possible genotypes (aa, Aa, AA). The count column counts the
number of A alleles in genotype. Consider the following R code with truncated output.

> potato[c(1, 20, 21, 40, 41, 60), ]

genotype count yield

1 aa 0 9.038067

20 aa 0 10.199812

21 Aa 1 10.421516

40 Aa 1 11.793761

41 AA 2 12.786507

60 AA 2 11.214858

> summary(model1 <- lm(yield ~ genotype - 1, potato))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

genotypeaa 9.8328 0.2062 47.68 <2e-16 ***

genotypeAa 11.0535 0.2062 53.60 <2e-16 ***

genotypeAA 11.8059 0.2062 57.24 <2e-16 ***

> summary(model2 <- lm(yield ~ I(count >= 1), potato))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.8328 0.2161 45.511 < 2e-16 ***

I(count >= 1)TRUE 1.5969 0.2646 6.035 1.19e-07 ***

> anova(model2, model1)

Analysis of Variance Table

Model 1: yield ~ I(count >= 1)

Model 2: yield ~ genotype - 1

Res.Df RSS Df Sum of Sq F Pr(>F)

1 58 54.148

2 57 48.487 1 5.6612 6.6551 0.01249 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

After introducing necessary mathematical notation, write down the statistical
models fitted above with all assumptions that are used to calculate the p-values. Which
hypothesis below is tested in the analysis of variance, and what can you conclude about
it? Write down the R code to test the other hypothesis using analysis of variance.

1. Full dominance: the effect of genotype on crop yield only depends on whether the
genotype contains A allele or not.

2. No dominance: the effect of genotype on crop yield only is linear in the number of
A alleles.
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Paper 3, Section I

5K Statistical Modelling
Define the generalized linear model in its most general form as introduced in the

lectures, which should include a link function, a dispersion parameter, and known weights
on the data points. Your answer should clearly describe the mathematical assumptions on
different components of the model. Write down the log-likelihood function of this model
(up to an additive constant).

What is the canonical link function for Poisson generalized linear models? Justify
your answer.

Paper 4, Section I

5K Statistical Modelling
Define Akaike’s Information Criterion (AIC) for a general statistical model.

Consider the normal linear model Y ∼ N(Xβ, σ2In) where β ∈ Rp is unknown,
σ2 > 0 is known, and X ∈ Rn×p is non-random with full column rank. Show that the AIC
in this model is equal to Mallows’ Cp (up to constants)

Cp = ∥Y − µ̂∥2 + 2pσ2,

where µ̂ is the fitted value of Y using ordinary least squares.

The mean squared prediction error (MSPE) of µ̂ is defined as

MSPE = E(∥Y ∗ − µ̂∥2),

where Y ∗ is an independent and identically distributed copy of Y . Show that Cp is an
unbiased estimator of the MSPE.
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Paper 1, Section II

13K Statistical Modelling
Suppose (X1, Y1), . . . , (Xn, Yn) ∈ Rp×R are independent and identically distributed

and the conditional distribution of Yi given Xi is given by

Yi | Xi ∼ N(XT
i β, σ

2v(Xi)),

where v(x) > 0 is a known function. We would like to use a sample of (X1, Y1), . . . , (Xn, Yn)
to estimate the unknown parameters β ∈ Rp and σ2 > 0. Let X ∈ Rn×p denote the matrix
with the ith row being Xi and let Y = (Y1, . . . , Yn)

T ∈ Rn.

(a) Show that the maximum likelihood estimator of β is given by

β̂(Σ) = (XTΣ−1X)−1XTΣ−1Y,

where Σ ∈ Rn×n is a diagonal matrix with the ith diagonal entry given by v(Xi).

(b) Explain why the R code below returns the estimator in (a), where X, Y, and
Sigma in the R environment store the value of X, Y , and Σ in the above model.

Y.tilde <- Y / sqrt(diag(Sigma))

X.tilde <- X / sqrt(diag(Sigma))

fit1 <- lm(Y.tilde ~ X.tilde - 1)

fit1$coefficients

Write down R code that returns the estimator β̂(In), where In ∈ Rn×n denote the
identity matrix.

(c) Sketch an argument that shows both β̂(Σ) and β̂(In) are consistent for estimating
β and are asymptotically normal when n → ∞. You may assume that the law of large
numbers and the central limit theorem can be used for this model.

(d) Suppose p = 1. Find an expression for

ρ = lim
n→∞

Var(β̂(Σ))

Var(β̂(In))
.

Your answer should depend on the distribution of X1.

(e) Do you expect ρ to be ⩾ 1 or ⩽ 1? Explain why. Prove it using your expression
of ρ in (d).
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Paper 4, Section II

13K Statistical Modelling
A three-year study was conducted at three sites on the survival status of patients

suffering from cancer. The dataset also records whether or not the initial tumour was
malignant. The data are tabulated in R as follows:

> cancer

site malignant survive die total

1 A no 40 7 47

2 A yes 36 17 53

3 B no 24 3 27

4 B yes 35 6 41

5 C no 15 4 19

6 C yes 5 5 10

(a) Write down the mathematical model that is being fitted by the following R

commands.

> fit1 <- glm(survive/total ~ site + malignant, family = binomial,

+ data = cancer, weights = total)

(b) In words or using mathematical equations, explain the (slightly abbreviated)
output from the code below and describe how the numbers in the Coefficients table are
computed. What are your conclusions based on the hypothesis tests in this table?

> summary(fit1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.6855 0.3431 4.913 8.98e-07 ***

siteB 0.8096 0.4344 1.864 0.0624 .

siteC -0.5423 0.4825 -1.124 0.2610

malignantyes -0.9048 0.3809 -2.375 0.0175 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null deviance: 11.69300 on 5 degrees of freedom

Residual deviance: 0.85048 on 2 degrees of freedom

AIC: 29.003

[QUESTION CONTINUES ON THE NEXT PAGE]
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(c) Consider a slightly different model fitted by the next R commands and the
corresponding (abbreviated) summary output below. Explain why some of the p-values
(under the column Pr(>|z|)) are the same in these two tables and others are different.
Are you surprised that the p-value for siteC is significant in summary(fit1) (at level
0.05) but not significant in summary(fit2)? Explain your answer.

> cancer$site <- factor(cancer$site, levels = c("B", "A", "C"))

> fit2 <- glm(survive/total ~ site + malignant, family = binomial,

+ data = cancer, weights = total)

> summary(fit2)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.4951 0.4610 5.413 6.21e-08 ***

siteA -0.8096 0.4344 -1.864 0.0624 .

siteC -1.3520 0.5613 -2.409 0.0160 *

malignantyes -0.9048 0.3809 -2.375 0.0175 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(d) Describe the hypothesis test performed in the R code below and your conclusion
based on the results.

> fit3 <- glm(survive/total ~ malignant, family = binomial,

data = cancer, weights = total)

> anova(fit3, fit1)

Analysis of Deviance Table

Model 1: survive/total ~ malignant

Model 2: survive/total ~ site + malignant

Resid. Df Resid. Dev Df Deviance

1 4 7.4923

2 2 0.8505 2 6.6418

> qchisq(c(0.01, 0.05, 0.1, 0.9, 0.95, 0.99), 4)

[1] 0.2971095 0.7107230 1.0636232 7.7794403 9.4877290 13.2767041

> qchisq(c(0.01, 0.05, 0.1, 0.9, 0.95, 0.99), 2)

[1] 0.02010067 0.10258659 0.21072103 4.60517019 5.99146455 9.21034037
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Paper 1, Section II

36C Statistical Physics
(a) What is the definition of a partition function? Explain why this quantity is

useful to calculate.

(b) A spherical, hard planet with surface area A has an ideal-gas atmosphere
consisting of N atoms, each with mass m and no internal degrees of freedom. The
Hamiltonian for each atom is

H =
p2

2m
+mgz,

where z > 0 is the height above the surface. Assume that the gravitational acceleration
g is a constant and that the density of the gas becomes negligible at a height which is
still small compared to the radius of the planet. The gas is in thermal equilibrium at
temperature T . Calculate the following quantities for the atmosphere:

(i) The expected total energy ⟨E⟩ and the fractional fluctuations ∆E/⟨E⟩.

(ii) The average height ⟨z⟩ of an atom and the atmospheric pressure p(z)
considered as a function of height.

(iii) The entropy S, using the approximate form of Stirling’s formula,

lnN ! ≈ N lnN −N.

Express your final answer in terms of the thermal wavelength λ =

√
2πℏ2
mkBT

,

as well as the variables A, N , and ⟨z⟩. Comment on its relation to the
Sackur-Tetrode equation for a gas in a box of volume V ,

S = Nk

(
ln

V

λ3N
+

5

2

)
.
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Paper 2, Section II

37C Statistical Physics
(a) Starting with the first law of thermodynamics for the energy E, derive a formula

for the variation of the enthalpy H. Define the temperature T and volume V as derivatives
of H. From this, deduce the Maxwell relation

∂T

∂p

∣∣∣∣
S

=
∂V

∂S

∣∣∣∣
p

,

where p is the pressure and S is the entropy.

(b) Determine the enthalpy H of a diatomic ideal gas in terms of N and T , where
the temperature T lies in a range for which vibrations of the molecule freeze out but
rotations do not.

(c) A freely moving piston is inserted in a cylindrical container. The chamber below
the piston contains the diatomic gas from part (b), which is at an initial temperature T0
and thermally insulated from the outside environment. This piston is initially at a pressure
p0 due to the outside atmosphere. Consider the following two processes and calculate the
change of temperature, ∆T , in each case. [See figures depicting the two processes below.]

(i) A weight is placed onto the piston, thereby increasing the pressure to p1
on the piston. [You may assume this process is adiabatic.]

(ii) The pressure is held fixed while the base of the cylinder is heated such that
an amount of heat Q is gradually added to the gas in the cylinder. As
a result, the gas does some amount of work W on the piston, pushing it
upward. [Hint: use enthalpy.]

diatomic 
gas

piston

weight

diatomic 
gas

piston

(i) (ii)

heat source
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Paper 3, Section II

35C Statistical Physics
This question concerns a Fermi gas of non-relativistic, non-interacting electrons

confined to a two-dimensional planar sheet with total area A, at chemical potential µ > 0.
Note that the electron has gs = 2 spin states.

(a) Calculate the density of states g(E) of the 1-particle system (including the
numerical coefficient). Write down the Fermi–Dirac distribution.

(b) Suppose the system is at absolute zero (T = 0). Show that the total energy
of the system is Etot = 1

2NEF , where EF is the Fermi energy and N is the number of
electrons. Calculate the degeneracy pressure p.

(c) Show that at finite temperature T > 0, the change in the number of electrons
N relative to the T = 0 state is given by

∆N = X

∫ ∞

−EF

dE′ [sgn(βE′/2)− tanh(βE′/2)
]
,

where E′ = E − EF , sgn(x) = x/|x| is the sign function, and X is a coefficient which
you should determine. Explain why, at low temperatures, ∆N ≈ 0 to a very good
approximation. Work out the corresponding formula for the change of the total energy
∆Etot, and use its scaling with respect to β to show that

∆Etot ∝ T 2.

[You need not work out the constant of proportionality.]
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Paper 4, Section II

35C Statistical Physics
(a) Define the latent heat L between the gas and liquid phases of a substance.

Starting with the Gibbs free energy, derive the Clausius–Clapeyron relation for the first-
order phase transition in the (T, p) plane

dp

dT
=

L

T (Vgas − Vliq)
.

What happens to L at the critical point?

(b) Consider a chain of N spin-1 atoms in an external magnetic field B, each with
Hamiltonian

H = −µBsz ,
where µ is a constant, and sz ∈ {−1, 0, 1}. Suppose that the spin chain is in a canonical
ensemble with inverse temperature β. Calculate the free energy F and the heat capacity
C. What is the high-temperature limit of −βF and C?

(c) Consider the same system as in part (b), but now suppose that the sign of the
external magnetic field B is instantly reversed by an experimenter. What happens to each
of β, F , and C?

Explain why the resulting system cannot be in thermal equilibrium with any gas.
If the system is coupled to a gas, in which direction will heat flow? Your answers should
make reference to the appropriate law(s) of thermodynamics.
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Paper 1, Section II

30K Stochastic Financial Models
Let Z be a square-integrable random vector in Rn with E(Z) = b and Cov(Z) = V .

Assume that the n× n matrix V is positive definite.

(a) Find the vector θ ∈ Rn to maximise E(X)− 1
2Var(X) subject to X = θ⊤Z.

(b) Let θM be the maximiser from part (a). Consider the problem of maximising
F (E(X),Var(X)) subject to X = θ⊤Z, where F (·, σ2) is strictly increasing for all σ2 and
F (m, ·) is strictly decreasing for all m. Assuming that a maximiser θ∗ exists, show that it
is of the form θ∗ = λ θM where λ is a non-negative real number.

(c) Set XM = θ⊤MZ. For real constants α and β and for vectors φ ∈ Rn, consider
the expression

E[(α+ βXM − Y )2]

where Y = φ⊤Z. For any fixed φ, find the values α and β that minimise this expression,
and show that the minimum equals φ⊤Qφ for a symmetric matrix Q that you should
identify.

Paper 2, Section II

30K Stochastic Financial Models
Let (Zn)0⩽n⩽N be a real-valued process adapted to the filtration (Fn)0⩽n⩽N where

F0 is trivial and N < ∞ is not random. Suppose E(|Zn|) < ∞ for all 0 ⩽ n ⩽ N . Let
(Vn)0⩽n⩽N be a supermartingale such that Vn ⩾ Zn almost surely for all 0 ⩽ n ⩽ N .

(a) Show that E(Zτ ) ⩽ V0 for any stopping time τ . [You may use any result from
the course if carefully stated.]

(b) Let

An =

n−1∑

k=0

[
Vk − E(Vk+1|Fk)

]

for 1 ⩽ n ⩽ N . Show that (An)1⩽n⩽N is previsible and non-decreasing.

(c) Set A0 = 0 and let Mn = Vn + An for 0 ⩽ n ⩽ N . Show that (Mn)0⩽n⩽N is a
martingale.

(d) Now assume VN = ZN and

Vn = max{Zn,E(Vn+1|Fn)},

and set AN+1 = ∞. Show that min{Vn − Zn, An+1 −An} = 0 for all 0 ⩽ n ⩽ N .

(e) Let τ∗ = min{0 ⩽ n ⩽ N : An+1 > 0}. Show that τ∗ is a stopping time such
that E(Zτ∗) = V0.
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Paper 3, Section II

29K Stochastic Financial Models
Consider the a discrete-time market model with interest rate r and one stock with

time-n price Sn. Suppose S0 > 0 is given and that Sn = Sn−1ξn for all n ⩾ 1, where
the stochastic process (ξn)n⩾1 generates the filtration. Suppose that there are constants
−1 < a < r < b such that the random variable ξn takes values in {1 + a, 1 + b} and that
0 < P(ξn = 1 + b) < 1 for every n ⩾ 1.

(a) Introduce a European call of maturity N and strike K. Use the fundamental
theorem of asset pricing to show that the call has a unique time-0 no-arbitrage price
EC(N,K) of the form

EC(N,K) =
N∑

n=0

w(n,N)

(
S0(1 + a)n(1 + b)N−n −K

)+

where the positive numbers w(n,N) are to be determined in terms of the given constants.

(b) Let EP(N,K) be the unique time-0 no-arbitrage price of a European put of
maturity N and strike K. Show that

EP(N,K) = (1 + r)−NK − S0 + EC(N,K).

(c) Find positive numbers u and v such that

EC(N + 1,K) = u EC

(
N,

K

1 + a

)
+ v EC

(
N,

K

1 + b

)

for all N and K.

(d) A forward start call option is the right, but not the obligation, to buy one share
of the stock at time N for the price λSM , where 0 ⩽ M ⩽ N and λ are given constants.
Let FSC(M,N, λ) be its unique time-0 no-arbitrage price. Determine a strike K such that
the following holds:

FSC(M,N, λ) = EC(N −M,K).
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29K Stochastic Financial Models
Let f be a smooth function that grows slowly enough so that all the integrands in

this question are integrable.

(a) Let Z ∼ N(0, 1). Show that

1

2

∫ t

0
E[f ′′(

√
sZ)]ds = E[f(

√
tZ)]− f(0)

for all t ⩾ 0.

(b) What does it mean to say a stochastic process is a Brownian motion?

(c) Let (Wt)t⩾0 be a Brownian motion and f be a function satisfying the assumptions
of part (a). Define a process (Mt)t⩾0 by

Mt = f(Wt)−
1

2

∫ t

0
f ′′(Ws)ds.

Show that (Mt)t⩾0 is a martingale with respect to the filtration generated by (Wt)t⩾0.

(d) Let (Wt)t⩾0 be a continuous process with W0 = 0 such that for every c ∈ R the
process (Mt)⩾0 is a martingale with respect to the filtration generated by (Wt)t⩾0, where

Mt = ecWt − c2

2

∫ t

0
ecWsds.

Show that (Wt)t⩾0 is a Brownian motion. [Hint: You may wish to compute the conditional
moment generating function of the increment Wt −Ws.]
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2I Topics in Analysis
State Liouville’s theorem on approximation of algebraic numbers by rationals.

Prove that the number

∞∑

n=0

1

10nn is transcendental.

Deduce that there are uncountably many transcendental numbers.

Paper 2, Section I

2I Topics in Analysis
State Chebyshev’s equal ripple criterion.

Let Tn be the Chebyshev polynomial of degree n satisfying Tn(cos θ) = cos(nθ) for
all θ ∈ R. Determine in terms of Tn a minimizer for sup−1⩽t⩽1 |tn − q(t)| among all the
polynomials q of degree less than n.
[You may assume without proof that the coefficient of Tn(t) at t

n is 2n−1.]

Let f be a polynomial of degree at most n and such that |f(t)| < 1 for −1 ⩽ t ⩽ 1.
By considering the roots of Tn − f , or otherwise, show that

|f(t)| < max{1, |Tn(t)|}, for all t ∈ R.

Paper 3, Section I

2I Topics in Analysis
State Runge’s theorem about the uniform approximation of holomorphic functions

by polynomials.

Explain how to explicitly construct a sequence of polynomials converging uniformly
to 1/z on the semicircle {z : |z| = 1, Re z ⩽ 0}.

Show that there exists a sequence of polynomials Pn(z) such that

Pn(z) →





1 if |z| < 1 and Re z > 0,

0 if |z| < 1 and Re z = 0,

−1 if |z| < 1 and Re z < 0

pointwise as n→ ∞.

Paper 4, Section I

2I Topics in Analysis
Explain how to obtain a continued fraction expansion of a real number x > 0. Prove

that the continued fraction for x terminates if and only if x is rational.

Determine the continued fraction of
√
3.
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11I Topics in Analysis
(a) Let T ⊂ R2 be a triangle with I, J, K the three sides of T and ∂T = I ∪J ∪K.

Prove that the following two statements are equivalent:

(i) If A, B, C are closed subsets of R2 such that I ⊂ A, J ⊂ B, K ⊂ C and
T ⊂ A ∪B ∪ C, then A ∩B ∩ C ̸= ∅.

(ii) There does not exist a continuous map f : T → ∂T such that f(I) ⊂ I,
f(J) ⊂ J and f(K) ⊂ K.

(b) State Brouwer’s fixed point theorem in the plane. Prove, using Brouwer’s
fixed point theorem, that there exists a complex number z with |z| ⩽ 1 such that
z6 − 2z5 + 4z2 + 9z + 2 = 0.

(c) Let I = [−1, 1] and let β, γ : I → I × I be continuous paths such that
β(−1) = (a,−1), β(1) = (b, 1) and γ(−1) = (−1, c), γ(1) = (1, d) with a, b, c, d ∈ I.
By considering a suitable continuous map I × I → I × I prove that the paths β and γ
intersect.

[ If you use the Jordan curve theorem, you must prove it.]

Paper 4, Section II

12I Topics in Analysis
What is a nowhere dense set in a metric space? State and prove a version of the

Baire category theorem. Deduce the following:

(i) There exists a continuous function f : [0, 1] → R that is not monotone on any
interval of positive length. [You may assume that the space of continuous real
valued functions on [0, 1] with the uniform norm is complete.]

(ii) If F : R → R is an infinitely differentiable function such that for each x there is an
n (depending on x) such that F (n)(x) = 0, then F is a polynomial.
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40A Waves
Consider small and smooth perturbations of a compressible and homentropic fluid

with reference density ρ0, pressure p0, and sound speed c0.

(a) Using the linearized mass and momentum conservation equations, show that the
velocity potential ϕ satisfies the wave equation.

(b) Hence derive the energy equation

∂E

∂t
+∇ · I = 0,

and give expressions for the acoustic energy density E and the acoustic energy flux I.

(c) The fluid occupies the half space z > 0, and is bounded by a flexible membrane
of negligible thickness and mass at an undisturbed position z = 0. Small, smooth
acoustic perturbations in the fluid with velocity potential ϕ(x, z, t) deflect the membrane
to z = η(z, t). The membrane is supported by springs that, in the deflected state, exert a
restoring force µη per unit area on the membrane, where µ is a constant.

(i) Show that waves proportional to exp[ik(x−ct)] and propagating freely along
the membrane possess the dispersion relation

A2

(
c

c0

)4

+

(
c

c0

)2

− 1 = 0,

where A is a dimensionless parameter that you must determine.

(ii) Show that the wave’s time-averaged acoustic energy flux perpendicular to
the membrane ⟨Iz⟩ is zero, where you must carefully define the average ⟨·⟩.

(iii) Derive approximate expressions for the phase speed c in the two limits
A≪ 1 and A≫ 1, and briefly interpret the two limits.
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40A Waves
Consider the linearized Cauchy momentum equation, which governs small and

smooth displacements u(x, t) in a uniform, linear, isotropic and elastic solid of density
ρ,

ρ
∂2u

∂t2
= (λ+ µ)∇(∇ · u) + µ∇2u, (†)

where λ and µ are the Lamé moduli.

(a) Show that this equation supports two distinct classes of wave motion: P-waves
for the dilatation θ = ∇·u with phase speed cP ; and S-waves for the rotation ω = ∇×u
with phase speed cS . You should express cP and cS explicitly in terms of the Lamé moduli.

(b) Consider plane-wave solutions to equation (†) of the form u = f(k̂ · x − ct),
where k̂ is a unit vector. By direct substitution into equation (†), determine the form that
f must take for P-waves and for S-waves, and express the dilatation and rotation in terms
of these forms for each class of waves.

[Hint: You may find the vector identity ∇2q = ∇(∇ · q)−∇× (∇× q) useful. ]

(c) A planar interface at z = 0 separates two elastic solids of different densities and
elastic moduli. A harmonic P-wave with wavevector k lying in the (x, z) plane is incident
from z < 0 at an oblique angle. Show in a diagram the directions of all the reflected and
transmitted waves, labelled with their polarisations, assuming that none of these waves
are evanescent. State the boundary conditions on the components of the displacement and
the stress that would, in principle, determine the amplitudes.

(d) Now consider a harmonic P-wave of unit amplitude with k = k(sinϕ, 0, cosϕ)
incident on the planar interface z = 0 between two elastic and inviscid liquids with wave
speed cP and modulus λ in z < 0 and wave speed ĉP = 2cP and modulus λ̂ in z > 0.
Obtain solutions for the reflected and transmitted waves. Show that the magnitudes of
these two waves are equal if

sin2 ϕ =
3Z2 − 4ZẐ + Ẑ2

Ẑ(Ẑ − 4Z)
,

where Z = λ/cP and Ẑ = λ̂/ĉP .
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39A Waves
Let ϕ(x, t) be a real-valued function that satisfies the equation

∂2ϕ

∂t2
− c2

∂2ϕ

∂x2
+A2c2ϕ = 0,

where both A and c are positive constants.

(a) Consider wave solutions of frequency ω and wavenumber k.

(i) Find the dispersion relation for such waves.

(ii) Sketch both the phase velocity cp and the group velocity cg as functions of
k.

(iii) Do wave crests move faster or slower than a wave packet?

(b) Suppose that ϕ(x, 0) is real and that

ϕ(x, 0) =

∫ ∞

−∞
a(k)eikxdk,

∂

∂t
ϕ(x, 0) = 0,

where a(k) is a given function.

(i) Use the method of stationary phase to obtain an approximation for ϕ(V t, t)
for fixed 0 ⩽ V < c and large t.

[Hint: You will need the result
∫∞
−∞ e−au

2
du =

√
π/a for Re(a) ⩾ 0, a ̸= 0.]

(ii) Now suppose the initial condition is even, so that ϕ(x, 0) = ϕ(−x, 0).
Consider the limit of large t and deduce an approximation for the sequence
of times at which F (t) = ϕ(V t, t) satisfies both F (t) = 0 and F ′(t) > 0.
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39A Waves
A perfect (but unusual) gas occupies a tube that lies parallel to the x-axis. The

gas is initially at rest, with density ρ0, pressure p0, and specific heat ratio γ = 3, and
occupies the region x > 0. At times t > 0, a piston, initially at x = 0, is pushed into the
gas at a constant speed u1. A shock wave then propagates at a constant speed V into the
undisturbed gas ahead of the piston. Downstream of the shock, i.e. in the region between
the piston and the shock, the density is ρ1 > ρ0 and the pressure is p1 > p0.

(a) Transform into a frame where the shock is at rest and write down the appropriate
expressions for conservation of mass, momentum and energy across the shock.

(b) Determine the ratio ρ1/ρ0 when the shock moves three times as fast as the
piston, i.e. when u1 = V/3.

(c) Determine the corresponding ratio p1/p0 when u1 = V/3.

(d) Express V in terms of p0 and ρ0 when u1 = V/3.

[You may assume that the internal energy per unit mass of perfect gas is p/[ρ(γ −
1)].]
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END OF PAPER
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