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Paper 2, Section I

2G Analysis and Topology
For each of the following sequences of functions fn : R → R, determine whether

(fn)
∞
n=1 converges uniformly, justifying your answer:

i) fn(x) = tanh(nx),

ii) fn(x) = sin
(
x+ 1

n

)
,

iii) fn(x) =
exp

(
x+ 1

n

)

cosh(ax)
(your answer may depend on the value of a ∈ R),

iv) fn(x) = 2n

[
h

(
x+

1

n

)
− h

(
x− 1

n

)]
,

where h : R → R is differentiable with h′ uniformly continuous.

Paper 4, Section I

2G Analysis and Topology
Let X be a complete, non-empty, metric space and T : X → X. What does it mean

to say that T is a contraction? State and prove the contraction mapping theorem.

Suppose that the nth iterate of T (i.e. T applied repeatedly n times), Tn, is a
contraction for some n > 0. Must T have a fixed point? If so, must it be unique?

Paper 1, Section II

10G Analysis and Topology
Given a metric space (X, d) state what it means for a function f : X → R to

be uniformly continuous. Let Cb,u(X) be the space of bounded, uniformly continuous,
functions f : X → R equipped with the metric

d′(f, g) = sup
x∈X

|f(x)− g(x)|.

Show that (Cb,u(X), d′) is complete.

Assume Rn carries the Euclidean metric and let C0(Rn) be the space of continuous
functions f : Rn → R satisfying f(x) → 0 as |x| → ∞. Show that C0(Rn) is a subset of
Cb,u(Rn). Is C0(Rn) a closed subset of Cb,u(Rn)? Is it compact? Justify your answer in
each case.

Part IB, 2025 List of Questions
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Paper 2, Section II

10G Analysis and Topology
Let X, Y be topological spaces. Briefly describe the product topology on the space

X × Y and show that the maps

ΠX : X × Y → X
(x, y) 7→ x

, and
ΠY : X × Y → Y

(x, y) 7→ y

are continuous.

Let ∆ = {(y1, y2) ∈ Y × Y : y1 = y2} be the diagonal in Y × Y . Show that ∆ is
closed if and only if Y is Hausdorff.

Suppose that f : X → Y is continuous and Y is Hausdorff. Show that the graph
of f

Γf = {(x, y) ∈ X × Y : y = f(x)}
is closed.

Let f : X → Y where X and Y are both compact Hausdorff spaces and suppose
that Γf is closed. By considering ΠX(Γf ∩ (X ×C)) for C a closed set in Y , or otherwise,
show that f is continuous.

Give an example of a discontinuous function f : R → R whose graph is closed to
show that the previous result need not hold if X and Y are only assumed to be Hausdorff.

[You may use results from lectures provided they are clearly stated.]

Paper 3, Section II

11G Analysis and Topology
Let X,Y be topological spaces.

Define what it means for X to be connected. Show that if X is connected and
f : X → Y is continuous then f(X) is connected, where f(X) inherits the subspace
topology from Y .

Show that X is connected if and only if every continuous map g : X → {0, 1} is
constant, where {0, 1} carries the discrete topology.

Show that R with the topology induced by the Euclidean metric is connected. You
may assume the intermediate value theorem.

Let ∼ be the equivalence relation on R given by x ∼ y if x − y ∈ Q. Is R/ ∼
connected in the quotient topology? Justify your answer.

For A ⊂ X define
Cl(A) =

⋂

E closed;A⊂E

E.

Suppose A is connected and A ⊂ B ⊂ Cl(A). Show that B is connected.

Part IB, 2025 List of Questions [TURN OVER]



4

Paper 4, Section II

10G Analysis and Topology
State what it means for a function f : Rn → Rm to be differentiable at x ∈ Rn, and

define the differential Df |x. You need not establish the uniqueness of the differential.

State the inverse function theorem.

LetM = Mat(n×n) be the space of real square matrices with n rows and n columns,
which can be identified with Rn2

. Consider the function F : M → M given by

F (A) = ATA.

Briefly explain why F is differentiable at A for all A ∈ M and determine DF |A. What is
KerDF |I?

Let O = {R ∈ M : RTR = I} and T = {B ∈ M : BT + B = 0}, each inheriting
their topology as a subspace of M.

By considering the map A 7→ F (A)+A−AT −I, or otherwise, show that there exist
open sets U, V ⊂ M with I ∈ U and 0 ∈ V , together with a continuously differentiable
bijection Φ : U → V , with continuously differentiable inverse, satisfying Φ(U∩O) = V ∩T .

Deduce that every point in O has an open neighbourhood which is homeomorphic
to an open set in T .

Part IB, 2025 List of Questions
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Paper 4, Section I

3E Complex Analysis
State and prove the local maximum modulus principle. You may assume the mean

value property for holomorphic functions provided it is clearly stated.

Let D = {z ∈ C : |z| < 1}, and suppose f : D → D is a holomorphic function
satisfying f(0) = 0. Show that if Re f(z) ⩽ Im f(z) for all z ∈ D then f must be
constant. [You may find it helpful to consider eaf(z), where a is a constant to be chosen.]

Paper 3, Section II

13E Complex Analysis
State and prove Liouville’s theorem. You may assume Cauchy’s integral formula

provided it is clearly stated.

For R > 0 let A = {z ∈ C : |z| > R}. Suppose f : A → C is holomorphic and
satisfies f(z) → a as |z| → ∞ for some a ∈ C. Show that z2f ′(z) → b as |z| → ∞ for some
b ∈ C.

Let g be holomorphic on C except at z ∈ {p1, . . . , pn} where g has a simple pole.
Assume that g has simple zeros at z ∈ {q1, . . . , qm} and no other zeros, and that g(z) → 1
as z → ∞. Show that m = n and hence determine g.

Part IB, 2025 List of Questions [TURN OVER]
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Paper 1, Section I

3 Complex Analysis OR Complex Methods

This is the joint question for Complex Analysis/Complex Methods. Attempt only
ONE of the sub-questions. On your answer sheet, specify the question number as either
“3.1G” or “3.2A”.

(3.1G) Complex Analysis

State and prove Jordan’s Lemma.

Find ∫ ∞

−∞

x sinx

1 + x2
dx.

(3.2A) Complex Methods

(a) State the Residue Theorem.

(b) Evaluate the integral ∫ ∞

−∞

cos(nx)

x4 + 1
dx, n ∈ N.

Part IB, 2025 List of Questions
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Paper 1, Section II

12 Complex Analysis OR Complex Methods

This is the joint question for Complex Analysis/Complex Methods. Attempt only
ONE of the sub-questions. On your answer sheet, specify the question number as either
“12.1G” or “12.2A”.

(12.1G) Complex Analysis

Let A = {z ∈ C : r < |z| < R} and suppose f : A→ C is holomorphic. Show that

f(z) =

∞∑

n=−∞
anz

n,

with the sum converging locally uniformly, where you should give an expression for the
coefficients an ∈ C in terms of a contour integral involving f .

Let D∗(R) = {z ∈ C : 0 < |z| < R} and suppose f : D∗(R) → C is holomorphic.
What does it mean in terms of the an for f to have a (i) removable singularity ; (ii) pole
of order k ⩾ 1; (iii) essential singularity at z = 0.

For each of the following holomorphic functions fi : D
∗(1) → C, determine the type

of the singularity at z = 0 :

(i) f1(z) =
1

z2
− 1

sin2 z
;

(ii) f2(z) =

∫ 1

−1
e−t2/z2dt.

(12.2A) Complex Methods

(a) Let f be an analytic function on an open disc D whose centre is the point z0 ∈ C.
Assume that |f ′(z)− f ′(z0)| < |f ′(z0)| on D. Prove that f is one-to-one on D.

(b) What does it mean for a function g : R2 → R to be harmonic?

(i) Suppose that ũ is a positive (ũ ⩾ 0) harmonic function on R2. Show that ũ
is constant.

(ii) Let u be a real valued harmonic function in the complex plane (we identify
C with R2) such that

u(z) ⩽ a
∣∣log(|z|)

∣∣+ b

for all z ∈ C, where a and b are positive constants. Prove that u is constant.

Part IB, 2025 List of Questions [TURN OVER]
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Paper 2, Section II

12 Complex Analysis OR Complex Methods

This is the joint question for Complex Analysis/Complex Methods. Attempt only
ONE of the sub-questions. On your answer sheet, specify the question number as either
“12.1G” or “12.2A”.

(12.1G) Complex Analysis

Use the residue theorem to give a proof of Cauchy’s derivative formula: if f is
holomorphic on D(a,R) = {z ∈ C : |z − a| < R} and |w − a| < r < R then

f (n)(w) =
n!

2πi

∫

|z−a|=r

f(z)

(z − w)n+1
dz.

Let (gk) be a sequence of holomorphic functions gk : D(a,R) → C which converges
locally uniformly to a holomorphic function g.

Show that
(
g
(n)
k

)
converges locally uniformly to g(n) for all n = 0, 1, . . ..

Suppose further that g has a zero of order m ⩾ 1 at a and vanishes nowhere else in
D(a,R). Show that for any 0 < ϵ < R there exists K ∈ N such that for all k ⩾ K, gk has
exactly m zeros in D(a, ϵ), counting with multiplicity.

(12.2A) Complex Methods

(a) Let f be a holomorphic function in the complex plane, except for potentially
n ∈ N points that are poles. Suppose also that

∫
γ p(z)

2f(z) dz = 0 for all complex
polynomials p and every closed contour γ avoiding the potential poles of f . Show
that f is entire.

(b) Suppose that h is entire, of the form h(z) = h(x + iy) = u(x, y) + iv(x, y), is real
on the real axis, and has positive imaginary part in the upper half-plane (that is
v(x, y) > 0 when y > 0).

(i) Show that h′(x) ⩾ 0 when x is real.

(ii) Show that if h(0) = 0, then h′(0) ̸= 0.

Part IB, 2025 List of Questions
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Paper 3, Section I

3A Complex Methods

(a) Consider the complex function f analytic in the open disc D centred at zero, except
with a singularity at z = 0, and its Laurent series around zero,

f(z) =
∞∑

n=−∞
an z

n = · · ·+ a−2

z2
+
a−1

z
+ a0 + a1z + a2z

2 + · · · .

Show that if f is even, that is f(z) = f(−z) for z ∈ D \ 0, then an = 0 when n is
odd.

(b) Evaluate the integrals

In =

∮

Cn

1

z3 sin(z)
dz, n = 0, 1, 2, . . . ,

where Cn is the circle {z ∈ C : |z| = (n + 1/2)π}, with the counterclockwise
orientation.

Part IB, 2025 List of Questions [TURN OVER]
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Paper 4, Section II

12A Complex Methods
Recall the Heaviside function

H(t) :=

{
1, t ⩾ 0

0, t < 0
, t ∈ R,

and recall that a function h : R+ = [0,∞) → R is said to be T > 0 periodic if
h(t+ T ) = h(t) for all t ∈ R+.

(a) Let f : R+ → R be a bounded continuous function. Show that for any real number
α ⩾ 0,

L{f(t− α)H(t− α)}(s) = e−αsF (s), s > 0,

where L{f(t)}(s) = F (s) and L is the Laplace transform.

(b) Let g : R+ → R be continuous and T > 0 periodic, and define

gT (t) =

{
g(t), 0 ⩽ t ⩽ T

0, t > T
.

Show that

L{g(t)}(s) = L{gT (t)}(s)
1− e−sT

, s > 0.

(c) Find the Laplace transform of the periodic function h : R+ → R defined by

h(t) =

{
sin(t), 0 ⩽ t < π

0, π ⩽ t ⩽ 2π
, h(t+ 2π) = h(t), t ⩾ 0.

Part IB, 2025 List of Questions
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Paper 2, Section I

4B Electromagnetism
State Maxwell’s equations in the presence of charge density ρ and current density J.

Derive the continuity equation that ensures the conservation of charge,

∂ρ

∂t
+∇ · J = 0 .

Suppose that all non-zero ρ and J are confined to a finite time-independent volume D
(vanishing on the boundary ∂D). Show that the total charge Q in the region D remains
constant. In addition, prove the following relation:

d

dt

∫

D
x ρ d3x =

∫

D
J d3x .

Paper 4, Section I

5B Electromagnetism
Beginning with the Maxwell equations in vacuum, derive a wave equation for the

electric field E and show the plane wave of the following form is a solution:

E(x, t) = Re
(
E0 e

i(k·x−ωt)
)
, with k ·E0 = 0 ,

where k and E0 are constant vectors. Give an expression relating ω and k. Find the
corresponding plane wave solution for the magnetic field B.

Consider the specific solution

E = E0

(
0,

1√
2
,

1√
2

)
cos(kx− ωt) ,

for which you should state the wavevector direction and the polarisation vector. Calculate
the corresponding Poynting vector S = (1/µ0)E×B and its time-average. Briefly explain
its meaning.

Part IB, 2025 List of Questions [TURN OVER]
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Paper 1, Section II

15B Electromagnetism
In a volume V , an electrostatic charge density ρ(x) induces an electric fieldE(x) with

electrostatic potential ϕ(x) which vanishes on the boundary. Use Maxwell’s equations, to
show that the electrostatic energy ,

U =
1

2

∫

V
d3x ρ(x)ϕ(x) ,

can be expressed in terms of the electric field E(x).

Consider three concentric spherical shells with uniformly distributed surface charges
Q1 = q, Q2 = −2q, Q3 = q, placed around the origin at radii r1 = R, r2 = 2R, r3 = 3R,
respectively. Use Gauss’s Law to find the electric field E(x) at all points in space. Likewise
determine the potential ϕ(x) everywhere. Calculate the total electrostatic energy U , both
by using the displayed equation above and using the electric-field formulation, and verify
that they agree.

Paper 2, Section II

16B Electromagnetism
Consider two different vector potential fields A1(x, y, z) = b1 (−y, x, 0) and

A2(x, y, z) = b2 (−y z, x z, 0), where b1, b2 are constants and the vertical direction is
aligned with the z-axis. Calculate the associated static magnetic fields B1(x, y, z) and
B2(x, y, z) and show they satisfy the vacuum Maxwell equations.

Consider a circular conducting loop of radius r and resistance R that is constrained
to lie horizontally and centred along the z-axis. For the two magnetic fields B1 and B2,
determine the respective magnetic fluxes through the loop at a vertical position z. Suppose
a current I flows around the loop in a clockwise direction and calculate the force F from
the magnetic field acting on the loop in each case.

Suppose the loop has a mass m and is allowed to fall from rest at position z0 under
the influence of gravity (with no initial current). What is the induced current that results
from its motion ż for the two different magnetic fields B1 and B2? Hence calculate any
resistive forces that emerge. Write down an equation of motion for the vertical position
in each case and identify the asymptotic behaviour of the trajectories. In one case, the
trajectory approaches a terminal velocity at which you should compare the power loss from
the current with the change in the gravitational potential energy. Briefly comment on the
behaviour of a superconducting loop with R = 0 if it is dropped in the same manner.

Part IB, 2025 List of Questions



13

Paper 3, Section II

15B Electromagnetism
Give the electromagnetic tensor Fµν explicitly in terms of the components of the

electric field E and magnetic field B. Show that the dual electromagnetic tensor defined
as F̃µν = 1

2ϵ
µνλσFλσ, is given by

F̃µν =




0 −Bx −By −Bz

Bx 0 Ez/c −Ey/c
By −Ez/c 0 Ex/c
Bz Ey/c −Ex/c 0


 .

Calculate the Lorentz scalar FµνFµν and express in terms of the fields E and B. State
what the remaining Lorentz scalars FµνF̃µν and F̃µνF̃µν are in terms of E and B.

In a particular reference frame S, the components of uniform electric and magnetic
fields are restricted to the y-z plane, taking the form E = (0, Ey, Ez) and B = (0, By, Bz).
Consider another inertial frame S′ related by the Lorentz transformation,

Λµ
ν =




γ −γv/c 0 0
−γv/c γ 0 0

0 0 1 0
0 0 0 1


 ,

where v is the velocity of S′ in S along the x-axis with γ = (1 − v2/c2)−1/2. Determine
the components of the fields E′ and B′ in the new frame S′.

Now suppose that E = E0(0, 1, 0) lies parallel to the y-axis, while B has magnitude
B0 = E0/c and lies in the y-z plane at an angle θ to the y-axis with 0 ⩽ θ ⩽ π/2.
Determine the velocity of a reference frame S′ in which the two fields align to become
parallel. Briefly discuss the two limits when θ ≪ 1 and when θ → π/2.

Part IB, 2025 List of Questions [TURN OVER]
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Paper 2, Section I

5D Fluid Dynamics
Write down the Euler equations governing the inviscid flow u of an incompressible

fluid with no body force. Derive the corresponding vorticity equation.

At some initial time, the velocity

u = (A sin z,B sinx+A cos z,B cosx)

in Cartesian coordinates (x, y, z), where A and B are constants. Show that the vorticity
is parallel to u. Hence show that the vorticity is constant, independent of time.

Use the Euler equation to show that H ≡ 1
2ρ|u|2 + p is uniform in space, where p is

the fluid pressure and ρ is its density.

[Hint: You may use the vector identities u × (∇ × u) = ∇(12 |u|2) − u · ∇u and
∇× (a× b) = (∇ · b)a+ (b · ∇)a− (∇ · a)b− (a · ∇)b.]

Paper 3, Section I

7D Fluid Dynamics
A layer of viscous fluid of density ρ, dynamic viscosity µ, and uniform thickness h

flows down a rigid, vertical wall, adjacent to stationary, inviscid, ambient fluid of density
ρa. The ambient fluid exerts no shear stress on the viscous fluid layer.

What is the hydrostatic pressure in the ambient fluid? Write down the dynamic
boundary conditions at the interface between the two fluids and the boundary condition
to be applied at the vertical wall.

Write down the equations governing steady, parallel flow of the viscous fluid, and
solve them to determine its pressure and velocity fields.

Part IB, 2025 List of Questions
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Paper 1, Section II

16D Fluid Dynamics
State Bernoulli’s equation for steady flow.

Starting from Euler’s equations governing steady, inviscid, flow u of an incompress-
ible fluid of density ρ subject to a conservative body force f = −∇χ, derive the integral
momentum equation ∫

∂V
(ρu · nu+ pn+ χn) dS = 0,

where p is the fluid pressure and n is the unit normal to the surface ∂V of a closed
domain V .

A large circular blood vessel of cross-sectional area A bifurcates symmetrically with
respect to its axis into two smaller circular blood vessels, each of cross-sectional area a
and each inclined at angle α to the axis of the larger blood vessel. The constant volume
flux through the system is q.

(i) Determine the pressure drop between a location in the larger vessel upstream of
the junction and a location in one of the smaller blood vessels downstream of the junction.

(ii) Given that the pressure inside the smaller vessels far downstream of the junction
is equal to the uniform pressure of the body tissue surrounding the vessels, determine the
force on the junction in terms of the parameters given above.

Paper 3, Section II

16D Fluid Dynamics
Incompressible fluid is contained between rigid plates at θ = ±α hinged together at

r = 0 in plane polar coordinates (r, θ). The fluid was initially at rest but is set into motion
by rotating the plates towards each other, each with angular speed Ω. The subsequent
instantaneous fluid flow u(r, θ) can be treated as being inviscid.

Explain why the flow can be written in terms of a velocity potential ϕ that satisfies
Laplace’s equation ∇2ϕ = 0. What boundary conditions are satisfied by ϕ?

Find the velocity potential in the form ϕ = r2f(θ), determining the function f(θ)
explicitly.

Determine the velocity field and thence determine a streamfunction for the flow.
Describe and sketch the streamlines.

Calculate the flux of fluid across the radial arc r = R, −α < θ < α.

Part IB, 2025 List of Questions [TURN OVER]
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Paper 4, Section II

16D Fluid Dynamics
An infinite range of hills has elevation y = η(x) ≡ h cos kx in Cartesian coordinates

(x, y), where h and k are constants. High above the hills, the wind has uniform velocity
U = (U, 0). Assume that the air flow above the hills is a laminar, potential flow
u = U+∇ϕ.

Without approximation, write down the equation and boundary conditions satisfied
by ϕ. [Note that the vector n = (−ηx, 1) is normal to the surface.]

Now assume that both hk ≪ 1 and |∇ϕ| ≪ U . Describe these approximations in
physical terms.

Derive the linearised equation and boundary conditions satisfied by ϕ given these
approximations, taking care to explain all the approximations that you make.

Solve the linearised equations for ϕ, and use your solution to determine the difference
in pressure between the crests and troughs of the hills, assuming that the air has uniform
density ρ. What is the dominant physical reason for the pressure difference in the limits
(i) kU2/g ≪ 1 and (ii) kU2/g ≫ 1?

Paper 1, Section I

2F Geometry
Let σ : U → Σ ⊂ R3 be a smooth parametrization of an embedded surface in R3

and let γ : [a, b] → Σ be a smooth curve on Σ. Define the energy of γ. Deduce from
the Euler–Lagrange equations of a stationary curve for the energy function the ordinary
differential equations on U defining the geodesics on σ(U) ⊂ Σ.

Suppose that a plane P ⊂ R3 contains the unit normal vector for Σ at each point of
the intersection Σ ∩ P . If a curve η is parametrized with constant speed and is contained
in Σ ∩ P , show that η is a geodesic on Σ.

Paper 3, Section I

2E Geometry
Define what it means for an element g ∈ SL2(R), g ̸= ±I to be elliptic, parabolic or

hyperbolic in terms of the action of g on the hyperbolic plane h and its boundary.

Give an example of each.

Prove that every element g ̸= ±I in SL2(R) is precisely one of the three.

Let g ∈ SL2(R) be an element with gn = I, g ̸= ±I, n > 1. Determine when g is
elliptic, parabolic, or hyperbolic.

Part IB, 2025 List of Questions
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Paper 1, Section II

11F Geometry
Define an (allowable) parametrization of an embedded smooth surface S ⊂ R3.

Suppose that S is a surface of revolution, meaning for each real θ the rotation

Rθ =



cos θ − sin θ 0
sin θ cos θ 0
0 0 1




defines a diffeomorphism of S onto itself. Stating any result(s) that you use, show that S
admits, around each point which is not on the z-axis, a local parametrization of the form

σ(u, v) = (f(u) cos v, f(u) sin v, g(u)) with (f ′(u), g′(u)) ̸= (0, 0),

where |v| < π, |u| < ε for some ε > 0.

We say that an embedded smooth Σ ⊂ R3 is a ruled surface if Σ admits a
parametrization of the form

ψ(s, t) = a(s) + tb(s), (s, t) ∈ I × R,

where I ⊂ R is an interval, a, b : I → R3 are embedded smooth curves and b(s) is a unit
vector for all s ∈ I. Explain why we must have a′(s)× b(s) + tb′(s)× b(s) ̸= 0 for all s, t.

Suppose that a path-connected, ruled surface Σ is also a surface of revolution.
Suppose also that for some s0 the affine line a(s0) + tb(s0), t ∈ R, in R3 neither meets
the z-axis, nor is parallel to the z-axis. Prove that then Σ is diffeomorphic to a one-sheet
hyperboloid x2 + y2 = 1 + z2.

[You may assume if you wish that a hyperboloid x2 + y2 = 1 + z2 is a complete
surface, not contained as a proper subset in any embedded smooth connected surface.]

Part IB, 2025 List of Questions [TURN OVER]
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Paper 2, Section II

11F Geometry
(a) What is a topological surface?

Show that a regular hexagon Σ with opposite sides identified as shown is a compact
topological surface.

a

b

c

a

b

c

Explain briefly why Σ is homeomorphic to a torus.

Show that a cone C = {(x, y, z) : x2+y2−z2 = 0} in R3 is not a topological surface
but a half-cone C+ = {(x, y, z) ∈ R3 : x2 + y2 − z2 = 0, z > 0} is.

(b) By considering parametrizations, construct a map π : R2 \ {(0, 0)} → C+ which
is a local isometry. Show that if f is an isometry of C+ onto itself and f(p) = p for some
point p ∈ C+, then f is either a restriction to C+ of a reflection in a plane in R3 or the
identity map.

[The expression for the first fundamental form on R2 in polar coordinates can
be assumed without proof. You may assume that local isometries map geodesics to
geodesics.]

Part IB, 2025 List of Questions
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Paper 3, Section II

12F Geometry
What is the Euler characteristic of a closed topological surface? State the Gauss–

Bonnet theorem for geodesic polygons and for closed smooth surfaces.

Let f(x, y) : R2 → R be a smooth function such that f(x, y) = 0 when
x2 + y2 > 1 and let S ⊂ R3 be a non-compact embedded surface parametrized by
φ(x, y) = (x, y, f(x, y)) for (x, y) ∈ R2. Prove that if the Gaussian curvature K of S
is everywhere non-negative, then K is everywhere zero.

Let T ⊂ R3 be the torus given by

σ(u, v) =
(
(2 + cosu) cos v, (2 + cosu) sin v, sinu

)
, 0 ⩽ u, v < 2π.

Determine the regions T+ and T− of T where the Gaussian curvature is positive and
negative, respectively. Show, by considering an appropriate closed surface but without
explicitly integrating K, that

∫

T+

KdA = −
∫

T−
KdA = 4π.

[You may assume that the Gauss–Bonnet theorem holds when a closed topological
surface in R3 is a union of finitely many smooth surfaces joined at their boundaries.]

Paper 4, Section II

11E Geometry
(a) Define the disc model (D, gdisc) and the upper half-plane model (h, gh) for the

hyperbolic plane, and show that they are isometric.

If g =

(
a b
c d

)
∈ SL2(R), then g induces an isometry of h. What is the matrix of

the corresponding isometry of D?

(b) Define what is meant by a hyperbolic triangle in the hyperbolic plane, its vertices,
and ideal vertices.

Let ∆ be a hyperbolic triangle with only ideal vertices. What are its internal angles?
Compute the area of ∆.

Compute the area of a hyperbolic triangle with internal angles α, β, γ.

For fixed α, β, γ < π, show that SL2(R) acts transitively on the set of triangles
with these internal angles.
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Paper 2, Section I

1E Groups, Rings and Modules
(a) Let R be a ring. Define what it means for R to be i) an integral domain,

ii) Noetherian, and iii) a Principal Ideal Domain (PID).

(b) Let R = {(f(x), g(y)) ∈ C[x]×C[y] | f(0) = g(0)}. Verify that this is a subring
of C[x]× C[y].

Let p : R→ C[x], (f, g) 7→ f . Determine the kernel of p.

Is R an integral domain? A PID?

Paper 3, Section I

1E Groups, Rings and Modules
Let G be a finite group. Show that there exists subgroups

G = H1 ▷ H2 ▷ · · · ▷ Hn = {1}

such that Hi+1 is a normal subgroup of Hi, and the quotient Hi/Hi+1 is simple.

Write such a series for G = S4, the symmetric group on 4 letters, and determine
whether each Hi in your series is normal in G.

Paper 1, Section II

9E Groups, Rings and Modules
(a) Let H be a proper subgroup of a finite, non-abelian group G. Prove that if G is

simple, |G/H| ⩾ 5.

(b) Let S be a Sylow p-subgroup of a finite group G. Suppose that gSg−1∩S = {1}
for all g ∈ G \NG(S).

Show that the number of Sylow p-subgroups is congruent to 1 mod |S|.
(c) Let G be a simple group of order 168.

(i) Compute the number of Sylow 7-subgroups of G. Compute the number of
elements of G of order exactly 7.

(ii) Let S be a Sylow 2-subgroup of G. Show that there exists a Sylow
2-subgroup S′ of G, S ̸= S′, with S ∩ S′ ̸= {1}. Show S ∩ S′ contains
an element of order 2.
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Paper 2, Section II

9E Groups, Rings and Modules
Define what it means for a ring to be a Euclidean domain.

Let R be a Euclidean domain.

(a) Prove that R is a principal ideal domain (PID).

(b) Let p be a prime in R. Fix e ⩾ 1, and let φ : R/(pe) → R/(p) be the natural
ring homomorphism. Let a ∈ R/(pe).

Describe in terms of φ(a) (i) when a is a unit, and (ii) when a is nilpotent. You
must justify your answer.

(c) Let I = (pe11 p
e2
2 . . . penn ) be an ideal inR, where p1, . . . , pn are irreducible elements,

pairwise non-associated, and e1, . . . , en ⩾ 1 are integers. Describe the units in R/I.

(d) Let d = p1p2 · · · pn, where p1, . . . , pn are as defined in (c). Prove that the
homomorphism R/I → R/(d) induces a surjective map on units, (R/I)∗ → (R/(d))∗.
Here we write S∗ for the set of invertible elements in a ring S.

Paper 3, Section II

10E Groups, Rings and Modules
(a) Let R be a unique factorisation domain, and

f(x) = a0 + a1x+ · · ·+ anx
n ∈ R[x].

Define the content c(f) of f , and what it means for f to be primitive.

(i) Prove that if f, g ∈ R[x] are primitive, then so is fg. Deduce that
c(fg) = c(f)c(g)u, for some unit u ∈ R∗.

(ii) Let f(x) = xn + an−1x
n−1 + · · · + a0 ∈ Z[x] be a monic polynomial with

integer coefficients. Suppose f(λ) = 0 for some λ ∈ Q. Deduce from (i)
that λ ∈ Z.

(b) Show x3y3 + x3y + x2y2 + 1− x− y − y2 is irreducible in C[x, y].

Part IB, 2025 List of Questions [TURN OVER]



22

Paper 4, Section II

9E Groups, Rings and Modules
(a) A module M for a ring R is called irreducible if the only submodules N ⊆ M

are 0 and M .

(i) Show that a module M is irreducible if and only if for all m ∈ M , m ̸= 0,
the map R→M , r 7→ rm is surjective.

(ii) Let I = {r ∈ R | rm = 0 for all m ∈ M}. Show that if M is irreducible,
R/I is a field.

(b) Let V be a finite dimensional vector space over a field k, and φ : V → V a
k-linear map.

A subspace W ⩽ V is indecomposable if φ(W ) ⊆ W , and W can not be written as
a direct sum W ′ ⊕W ′′, with W ′ ̸= 0,W ′′ ̸= 0, φ(W ′) ⊆W ′, φ(W ′′) ⊆W ′′

(i) State the primary decomposition theorem for modules over a Euclidean
domain, and explain how it gives a decomposition

V = ⊕Vα,

where each summand is indecomposable.

Describe the minimal polynomial and the characteristic polynomial of φ in
terms of this decomposition.

(ii) Now suppose k = R. List the prime ideals in R[x].
For each prime ideal I in R[x] and n > 0 write an explicit matrix A that
represents the action of x on R[x]/In.

(iii) Let B =




0 1 0 0 0 0
−1 0 1 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 −2
0 0 0 0 1/2 0



.

Give the explicit normal form for B : R6 → R6 that you have described in
part (ii).
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Paper 1, Section I

1F Linear Algebra
Define the determinant of an n × n matrix A. Define the adjugate matrix adj(A).

Express detA in terms of adj(A) and A.

For each n ⩾ 2 let An be the n× n matrix defined by

(An)ij =





2 i = j,

−1 |i− j| = 1,

0 otherwise.

What is detAn? Justify your answer.

Paper 4, Section I

1F Linear Algebra
Let V be a vector space and α : V → V a linear map. What is the dual space V ∗?

If B is a finite basis of V , define what is meant by the dual basis B∗ of V ∗ and prove that
B∗ is indeed a basis.

[No result about dimensions of dual spaces may be assumed.]

Let V = P2 be the space of real polynomials of degree at most 2 and consider the
linear maps from P2 to R

f0(p) = p(0), f1(p) =

∫ 1

0
p(t)dt, f2(p) =

∫ 0

−1
p(t)dt.

Show that f0, f1, f2 form a basis of P ∗
2 by exhibiting the basis of P2 to which it is dual.

[You may assume that {1, t, t2} is a basis of P2.]
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Paper 1, Section II

8F Linear Algebra
State the rank-nullity theorem, explaining all the quantities that appear in it.

Let U, V,W be vector spaces where U and V are finite-dimensional. If α : V →W ,
β : U → V are linear maps, prove that

rk(α ◦ β) ⩾ rk(α) + rk(β)− dimV.

If X and Y are matrices representing the same linear map between two finite-
dimensional vector spaces with respect to different bases, write down the relation satisfied
by X and Y . [You should explain the terms appearing in this relation.]

Let Mk(C) denote the vector space of all k× k complex matrices. Let A be a block

matrix of the form A =

(
P Q
R S

)
, where P ∈ Mn(C), S ∈ Mm(C) and P is invertible.

Show that
rk(A) = rk(P ) + rk(S −RP−1Q).

Deduce that
rk(In −QR) = rk(Im −RQ) + n−m

where Ir is the identity matrix of size r.

Paper 2, Section II

8F Linear Algebra
Let m be a positive integer and α ∈ C. What is a Jordan block Jm(α)?

Let p(x) be a polynomial with complex coefficients. Show that

p(J2(α)) =

(
p(α) p′(α)
0 p(α)

)
.

Let A be an n× n complex matrix. Define the Jordan normal form of A.

Show that the Jordan normal form of A is a diagonal matrix if and only if
Ker(A− λIn)

2 = Ker(A− λIn) for all λ ∈ C, where In is the identity matrix of size n.

Let A ∈Mn(C) be an n× n complex matrix and let B be the Jordan normal form
of A. Show that B is also the Jordan normal form of the transpose matrix AT .

Show that A can be factorised as A = CD where the matrices C and D are
symmetric and C is non-singular.
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Paper 3, Section II

9F Linear Algebra
Throughout this question V is an n-dimensional complex vector space and

φ : V → V is a linear endomorphism of V .

(a) Define the minimal polynomial mφ of φ and explain why mφ is uniquely defined.
State the Cayley–Hamilton theorem. What can we deduce about the relationship between
mφ and the characteristic polynomial of φ?

(b) Now suppose that V has a basis (a1, . . . , an) such that φ(ak) = ak+1, for each
k = 1, 2, . . . , n − 1. Let θ be a map assigning to each complex polynomial p the vector
p(φ)(a1) ∈ V . By considering θ, or otherwise, show that the minimal polynomial of φ is

mφ(x) = xn −
n−1∑

k=0

ck+1x
k

where the coefficients cj are determined by φ(an) =
∑n

j=1 cjaj . [Hint: You do not need to
determine the eigenvalues of φ.]

(c) Show that if the minimal polynomial of a linear endomorphism φ : V → V is
of the form mφ(x) = (x − α)n for some constant α (where as above n = dimV ), then V
cannot be written as a direct sum V1 ⊕ V2, where V1, V2 are non-zero, proper subspaces
of V such that φ(Vi) ⊂ Vi, i = 1, 2. Show also that V has a basis B = (b1, . . . , bn) such
that φ(bk) = bk+1 for k = 1, 2, . . . , n− 1 and compute the matrix of φ with respect to the
basis B.
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Paper 4, Section II

8F Linear Algebra
Let Q be a quadratic form on a real vector space. What is the symmetric bilinear

form associated to Q and why does it exist? Define what it means for a symmetric bilinear
form to be positive semi-definite and positive definite.

State and prove Sylvester’s law of inertia, stating clearly any auxiliary result on the
diagonalization of real quadratic forms that you require.

Let ϕ be a non-degenerate, symmetric bilinear form on a 2n-dimensional real vector
space V and suppose that ϕ(v, v) = 0 for all v in a k-dimensional subspace E of V . Show
that k ⩽ n.

Given two real quadratic forms f(x) =
∑n

i,j=1 aijxixj and g(x) =
∑n

i,j=1 bijxixj , let
(f, g) denote the quadratic form

(f, g)(x) =
n∑

i,j=1

aijbijxixj .

Let a quadratic form l2(x) = (
∑n

i=1 lixi)
2 be the square of a real linear function.

Determine the rank and signature of the quadratic forms l2 and (l2, s2), where s(x) =∑n
i=1 sixi is another real linear function.

Deduce that if f and g are positive semi-definite quadratic forms, then so is (f, g).
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Paper 3, Section I

8H Markov Chains
(a) What does it mean to say a Markov chain is recurrent?

(b) Let X0 = 0 and Xn = Z1 + . . .+ Zn for n ⩾ 1, where Z1, Z2, . . . are independent and
P(Zn = +1) = p = 1 − P(Zn = −1) for each n. Prove that the Markov chain (Xn)n⩾0 is
recurrent if and only if p = 1/2.

[You may use the fact that there is a constant A > 0 such that k! (e/k)kk−1/2 → A
as k → ∞.]

Paper 4, Section I

7H Markov Chains
Consider a Markov chain (Xn)n⩾0 on the state space {1, 2, 3, 4} with transition

matrix

P =




1/2 0 1/2 0
0 1/3 0 2/3

1/3 0 1/3 1/3
0 1/4 0 3/4




(a) List the communicating classes of the chain. For each class say whether it is open or
closed.

(b) Find limn→∞ Pn.

Paper 1, Section II

19H Markov Chains
(a) What does it mean to say a Markov chain is reversible? Show that a random walk on
a finite connected graph is reversible.

Consider the random walk (Xn)n⩾0 on this graph, where X0 = A.

C

@@
@@

@@
@@

A B

~~~~~~~~

@@
@@

@@
@@

E F

D

~~~~~~~~

(b) Find the expected number of steps until the walk first returns to A.

(c) Find the probability that the walk returns to A before hitting F .

(d) Given that the walk returns to A before hitting F , find the conditional expected
number of steps until the walk first returns to A.
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Paper 2, Section II

18H Markov Chains
Let T1, T2, . . . be independent and identically distributed random variables taking

values in {1, . . . , N}. Construct (Xn)n⩾0 as follows. First X0 = 0. For 1 ⩽ n ⩽ T1, let
X1 = T1 − 1 and Xn = Xn−1 − 1. Note that XT1 = 0. For T1 + 1 ⩽ n ⩽ T1 + T2, let
XT1+1 = T2 − 1 and Xn = Xn−1 − 1 until XT1+T2 = 0. This pattern repeats forever with
XT1+T2+1 = T3 − 1 and so forth.

(a) Let S0 = 0 and Sk = T1 + . . .+ Tk for k ⩾ 1. Show that

Xn = max{Sk+1 : Sk < n} − n

for n ⩾ 1.

(b) Find the transition probabilities of the Markov chain (Xn)n⩾0 in terms of the given
constants qj = P(T1 = j) for 1 ⩽ j ⩽ N .

(c) Show that there is a unique invariant distribution (πi)0⩽i⩽N−1 for the Markov chain
and compute it in terms of (qj)1⩽j⩽N .

(d) Find an example of (qj)1⩽j⩽N such that P(Xn = 0) does not converge as n→ ∞.

Pick ε such that 0 < ε < 1 and consider a Markov chain (X
(ε)
n )n⩾0 on {0, . . . , N−1}

with X
(ε)
0 = 0 and transition matrix P (ε) = (p

(ε)
i,j )i,j given by

P (ε) = (1− ε)P + εI

where P = (pi,j)i,j is the transition matrix for (Xn)n⩾0 found in part (b) and I is the
N ×N identity matrix.

(e) Show that P(X(ε)
n = 0) converges as n → ∞, and compute the limit in terms of

(qj)1⩽j⩽N and ε.
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Paper 2, Section I

3B Methods
Consider the initial value problem for a second-order differential operator with

constant coefficients and a forcing term:

Ly(t) ≡ αy′′ + βy′ + γy = f(t), t > a, y(a) = y′(a) = 0 ,

with α ̸= 0. Write down the Green’s function G(t, τ) constructed to satisfy LG = δ(t−τ).
Use the Green’s function approach to determine an explicit solution for the forced

oscillator problem

y′′ + ω2y = sin(λt), t > 0 , y(0) = y′(0) = 0 .

Paper 3, Section I

5D Methods

The Fourier transform f̃(k) is defined in this question by f̃(k) =

∫ ∞

−∞
f(x)e−ikx dx.

Prove the convolution theorem in the form

1

2π

∫ ∞

−∞
f̃(k)g̃(k)eikx dk =

∫ ∞

−∞
f(u)g(x− u) du

for suitably integrable functions f(x), g(x).

Determine the Fourier transform of the function

f(x) =

{
1 for − 1 < x < 1,

0 otherwise.

Hence calculate

∫ ∞

−∞

sin2 k

k2
dk.
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Paper 1, Section II

13B Methods
(a) Legendre’s differential equation on the domain −1 < x < 1 is given by

(
1− x2

) d2y
dx2

− 2x
dy

dx
+ λ y = 0 .

Put this equation in Sturm-Liouville form and show that the Sturm-Liouville operator is
self-adjoint with respect to an inner product you should specify. Briefly state some key
properties of the eigenvalues λk and eigenfunctions yk(x) of any Sturm-Liouville differential
equation.

Consider a series solution y(x) =
∑∞

n=0 anx
n of Legendre’s equation and show that

the coefficients an satisfy the recurrence relation

an+2

an
=

n(n+ 1)− λ

(n+ 1)(n+ 2)
.

Hence, show that polynomial solutions y(x) = Pℓ(x) of degree ℓ exist when λ = ℓ(ℓ + 1),
where ℓ is a non-negative integer (ℓ ⩾ 0). Find expressions for P1(x) and P3(x), adopting
the convention that Pn(1) = 1.

(b) Laplace’s equation in spherical polars for the axisymmetric case takes the form

∂2Φ

∂r2
+

2

r

∂Φ

∂r
+

1

r2
∂

∂x

((
1− x2

) ∂Φ
∂x

)
= 0 ,

where x = cos θ. State the general form of the solution Φ(r, x) obtained using the method
of separation of variables (derivation not required).

Suppose that on the sphere at r = R, the boundary condition is Φ(R, x) = x(1−x2).
Find the regular solution in the interior of the sphere.
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Paper 2, Section II

14B Methods
Consider a string of uniform mass density ρ that is stretched under tension τ along

the x-axis. The string undergoes small transverse oscillations in the (x, y) plane, with
displacement represented by y(x, t). Derive the equation of motion governing y(x, t),
identifying the wave speed c in terms of ρ and τ (neglecting gravity).

The string is fixed at both ends, x = 0 and x = L. Determine the general solution
for the oscillatory motion of the string using the method of separation of variables.

Assume the string is at rest for t < 0. At time t = 0, the string is struck by a
hammer within the interval [l− ϵ/2, l+ ϵ/2], where x = l represents the position along the
string. The hammer’s impact imparts a constant velocity v/

√
ϵ to the section of the string

within this interval, while the rest of the string remains unaffected. Calculate the total
energy imparted to the string by this blow. Determine the eigenmode coefficients for the
resulting string solution and the energy excited in each mode relative to the total energy.

In musical terms, the n = 7 eigenmode is generally regarded as dissonant. Where
can you strike the string in order to minimise the vibration of this mode? Briefly comment
on the power law fall-off of the energy in each mode as the hammer head narrows, ϵ→ 0?

Paper 3, Section II

14D Methods
Prove that, for scalar fields ϕ(x) and ψ(x) in a three-dimensional domain D with

boundary ∂D, ∫

D
(ϕ∇2ψ − ψ∇2ϕ) dV ≡

∫

∂D

(
ϕ
∂ψ

∂n
− ψ

∂ϕ

∂n

)
dS,

where n is the outward unit normal to ∂D.

Let ψ(x) satisfy
∇2ψ = δ(x− x0) in z > 0

with
ψ = 0 on z = 0, ψ → 0 as |x| → ∞

in Cartesian coordinates x = (x, y, z). Use the method of images to determine ψ(x, y, z).

Now use the identity above to solve the equation

∇2ϕ = 0 in z > 0, ϕ→ 0 as |x| → ∞

with ϕ = 1 on z = 0, x2 + y2 < 1, while ϕ = 0 on z = 0, x2 + y2 > 1 in terms of a surface
integral. Find the closed-form solution for ϕ(0, 0, z).

Part IB, 2025 List of Questions [TURN OVER]



32

Paper 4, Section II

14D Methods
The function u(x, t) satisfies

∂2u

∂t2
= c2

∂2u

∂x2
on −∞ < x <∞

with

u(x, 0) = exp(−x2), ∂u

∂t
(x, 0) = 0,

where x is a space coordinate and t is time.

Define the spatial Fourier transform

ũ(k, t) =

∫ ∞

−∞
u(x, t)e−ikx dx,

and determine the differential equation and initial conditions satisfied by ũ(k, t). By
solving this differential equation, determine ũ(k, t) explicitly. Thence, by calculating an
appropriate integral, calculate u(x, t). Interpret your solution physically.
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Paper 1, Section I

5A Numerical Analysis
Consider the ODE of the form

y′(t) = f(t, y(t)), y(0) = y0 ∈ R, (∗)

where y(t) exists and is unique for t ∈ [0, T ] and T > 0.

(a) State the Dahlquist equivalence theorem regarding convergence of a multistep
method.

(b) Consider the following multistep method for (∗) with a parameter α ∈ R:

yn+3 + (2α− 3)(yn+2 − yn+1)− yn = hα
(
f(tn+2, yn+2)− f(tn+1, yn+1)

)
,

producing a sequence {yn}n⩽N , where N = ⌊Th ⌋ and h > 0 is the step-size. It is
given that the method is of at least order 2 for any α and also of order 3 for α = 6.
Determine all values of α for which the method is convergent, and find the order of
convergence.

Paper 4, Section I

6A Numerical Analysis
Consider the quadrature formula

∫ 1

0
f(x)x dx ≈

1∑

i=0

aif(xi), xi ∈ [0, 1], f ∈ C[0, 1], (∗)

which is exact for polynomials of degree 1.

(a) For i = 0, 1, find expressions for the weights ai in terms of the nodes x0, x1.

(b) Define what it means for (∗) to be a Gaussian quadrature, and determine the
numerical values of the nodes x0, x1 in that case.
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Paper 1, Section II

17A Numerical Analysis

(a) Define Householder reflections and show that a real Householder reflection is a
symmetric and orthogonal matrix.

(b) Let H ∈ Rn×n be a Householder reflection. Determine the eigenvalues of H and
their multiplicities.

(c) Show that for any A ∈ Rn×n there exist Householder reflections H1, . . . ,Hn such
that HnHn−1 · · ·H1A = R, where R is upper triangular.

(d) Show that if A is symmetric there exists an orthogonal matrix Q ∈ Rn×n such that
C = QAQT ∈ Rn×n is symmetric and tridiagonal (that is, only the diagonal, super
and subdiagonal have non-zero entries), and C can be computed in finitely many
operations (+,−,×,÷,

√
).

Paper 2, Section II

17A Numerical Analysis
Consider the scalar autonomous ODE of the form

y′ = f(y), y(0) = y0 ∈ R, (∗)

where y(t) exists and is unique for t ∈ [0, T ] and T > 0. Consider also the following two
Runge-Kutta methods:

k1 = f(yn), k2 = f
(
yn +

h

2
k1 +

h

2
k2
)
, yn+1 = yn +

h

2
(k1 + k2), (†)

same as (†) except k2 = f
(
yn +

h

4
k1 +

3h

4
k2
)
, (‡)

both producing a sequence {yn}n⩽N , where N = ⌊Th ⌋ and h > 0 is the step-size.

(a) Do the above Runge-Kutta methods have the same order? If so, determine the
order. If not, determine which method has the highest order.
[Hint: Think about how both methods can be written in terms of a single parameter.]

(b) For a numerical method approximating the solution of (∗), define the linear stability
domain. What does it mean for such a numerical method to be A-stable?

(c) Are any of the Runge-Kutta methods (†) and (‡) A-stable? If so, determine the
linear stability domain for the method(s).
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Paper 3, Section II

17B Numerical Analysis
Consider C[−1, 1] equipped with the inner product ⟨f, g⟩ =

∫ 1
−1 f(x)g(x)w(x) dx,

where w(x) > 0 for x ∈ (−1, 1). Moreover, for n ∈ N, let

An =




α1
√
β2 0 · · · 0

√
β2 α2

√
β3

. . .
...

0
√
β3 α3

. . . 0
...

. . .
. . .

. . .
√
βn

0 · · · 0
√
βn αn



,

where αn ∈ R and βn > 0.

(a) Let {pn}∞n=0 be a sequence of monic polynomials of degree n orthogonal with respect
to the above inner product. Prove that for n ⩾ 1 each pn has n distinct zeros in the
interval (−1, 1).

(b) Let P0(x) = 1, P1(x) = x− α1, and let Pn satisfy the following recurrence relation:

Pn(x) = (x− αn)Pn−1(x)− βnPn−2(x), n ⩾ 2.

Prove that for n > 1 we have Pn(x) = det(xI −An).

(c) Prove that if p0(x) = 1 and

αn =
⟨pn, xpn⟩
⟨pn, pn⟩

, βn =
⟨pn, pn⟩

⟨pn−1, pn−1⟩

then all the eigenvalues of An are distinct and reside in (−1, 1).

[Hint: You may quote the three-term recurrence relation theorem from the class notes.]
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Paper 1, Section I

7H Optimisation
(a) Derive the dual problem to

maximise c⊤x subject to Ax ⩽ b, x ⩾ 0

where the vectors c ∈ Rn, b ∈ Rm and the m× n matrix A are given, and the inequalities
are interpreted component-wise.

(b) Find the optimal solution to

maximise 2x1 + 3x2 + 4x3 subject to x1 + 3x2 + x3 ⩽ 2,
x1 + x2 + 4x3 ⩽ 1,
x1, x2, x3 ⩾ 0.

Paper 2, Section I

7H Optimisation
(a) What does it mean to say a set X ⊆ Rm is convex? Assuming X is convex, what does
it mean to say a function f : X → R is convex?

(b) Suppose f : Rn → R is convex. Let g : R+ × Rn → R be defined by g(t, x) = tf
(
x
t

)
,

where R+ = {t ∈ R : t > 0}. Show that g is convex.

(c) Suppose f : Rn → R has the property that there is a function λ : Rn → Rn such that

f(x)− f(y) ⩽ λ(x)⊤(x− y)

for all x, y ∈ Rn. Prove that f is convex.

Paper 3, Section II

19H Optimisation
Let A be the m× n payoff matrix of a two-person, zero-sum game.

(a) Write down the necessary and sufficient conditions that a vector p ∈ Rm is an optimal
mixed strategy for Player I in terms of the optimal mixed strategy q ∈ Rn for Player II
and the value v of the game.

(b) In the anti-symmetric case where m = n and A = −A⊤, show that the value of the
game is zero.

(c) Suppose there are rows i0 and i1 such that Ai0j ⩽ Ai1j for all 1 ⩽ j ⩽ n. Show that
there is an optimal strategy p ∈ Rm for Player I such that pi0 = 0.

(d) Find the optimal strategies for both players for the game with payoff matrix

A =




0 1 −1 0
−1 0 1 2
1 −1 0 1
0 −2 −1 0
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Paper 4, Section II

18H Optimisation
Given supplies (si)1⩽i⩽m, demands (dj)1⩽j⩽n and transport costs (cij)1⩽i⩽m,1⩽j⩽n,

consider the problem of minimising

∑

i,j

cijxij subject to
∑

j

xij = si for all i,

∑

i

xij = dj for all j,

xij ⩾ 0 for all i, j.

Assume that all supplies and demands are non-negative, that
∑

i si =
∑

j dj and that the
problem is not degenerate.

(a) Derive the dual problem. State the necessary and sufficient conditions for optimality
of the primal problem in terms of an optimal solution of the dual problem.

(b) Suppose (xij)ij is a basic feasible solution of the problem. How many ordered pairs
(i, j) are such that xij > 0?

(c) Explain the transportation algorithm. Your answer should include a method for
choosing an initial basic feasible solution as well as the details of the pivot step. Why
does the algorithm terminate at the optimal solution?

(d) Suppose that both the supplies (si)i and demands (dj)j are integer-valued. Show that
there is an integer-valued optimal solution (xij)ij .
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Paper 3, Section I

6C Quantum Mechanics
Let ψ(x, t) solve the time-dependent Schrödinger equation

iℏ
∂ψ

∂t
= − ℏ2

2m

∂2ψ

∂x2
+

1

2
kx2ψ , −∞ < x < +∞ ,

for a particle of mass m moving in a potential V (x) = 1
2kx

2. If O is an operator
representing an observable, its expectation value at time t in a normalized state ψ is

⟨O⟩(t) =
∫
ψ(x, t)∗Oψ(x, t)dx .

Write down operators Q and P representing, respectively, the position and the momentum
of the particle. Calculate the time derivative of ⟨P ⟩(t) as a function of ⟨Q⟩(t) and interpret
the answer.

[Hint: You may assume ψ and its derivatives are smooth and decrease to zero at
infinity as needed.]

Paper 4, Section I

4C Quantum Mechanics
A quantum particle of mass m is confined to move inside the rectangular box

{(x, y, z) : 0 ⩽ x ⩽ a , 0 ⩽ y ⩽ b , 0 ⩽ z ⩽ c }.

Derive the energy eigenvalues and eigenfunctions under the assumption that a < b < c.
(You need not normalize the eigenfunctions.)

What is the degeneracy of the ground state, i.e., the dimension of the eigenspace
corresponding to the lowest energy eigenvalue, and similarly for the next to lowest energy
eigenvalue (the first excited state)?

How do your conclusions change if a < b = c?
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Paper 1, Section II

14C Quantum Mechanics
Consider the one-dimensional potential

V (x) =

{
0 if |x| > a ,

− 1
2a if |x| ⩽ a ,

where a > 0. Show that for positive a there exist normalizable and even solutions to the
stationary Schrödinger equation

− ℏ2

2m
ψ′′ + V (x)ψ = Eψ , −∞ < x < +∞ ,

with energy E = E(a) = −ℏ2κ(a)2
2m , where κ(a) > 0 satisfies an equation which you should

give. Show that for small positive a the energy is unique and the solution is unique up to
multiplication by a constant.

Now consider the limit a → 0+. Calculate the limiting value E0 = lima→0+E(a),
and show that this is the energy of a normalizable and even solution ψ0 to the stationary
Schrödinger equation with a singular potential V0; give V0 and ψ0 explicitly.
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Paper 2, Section II

15C Quantum Mechanics
This question concerns one dimensional quantum mechanics on the real line, with

the momentum operator given by p = −iℏ d
dx as usual. A pair of distinct one dimensional

Hamiltonians

H+ =
p2

2m
+ V+(x) and H− =

p2

2m
+ V−(x) , −∞ < x < +∞,

are said to be partners if there exists a function f = f(x) such that

H± =
1

2m
(p± if)(p∓ if) .

Show that [f(x), p] = iℏf ′(x). Taking the upper sign show that

V+(x) =
1

2m

(
f(x)2 − ℏf ′(x)

)

and find V−.

Choosing f appropriately, find a partner Hamiltonian H+ = p2

2m + V+(x) to

H− =
p2

2m
+ 2m

giving V+(x) explicitly in as simple a form as possible. [Hint: sech2z+tanh2z = 1.] Show
that limx→±∞ V+(x) = 2m.

By considering the solutions ek(x) = eikx to H−ek =
(
ℏ2k2
2m + 2m

)
ek and applying

the operator p + if , show that it is possible to generate a corresponding solution to the
partner Hamiltonian H+. Hence compute the reflection and transmission coefficients for
the Hamiltonian

p2

2m
− 4m sech2

(
2mx

ℏ

)
.
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Paper 4, Section II

15C Quantum Mechanics
(i) The angular momentum operators for a particle moving in three dimensional

space are

La = −iℏϵabcxb
∂

∂xc
.

Show that if f = f(r), where r2 = x21 + x22 + x23, is a smooth radial function, then if m,n
are nonnegative integers χm,n = (x1 + ix2)

mxn3f(r) satisfies L3χm,n = λχm,n for some λ
depending onm,n which you should find. Find an analogous relation for (x1−ix2)mxn3f(r).

(ii) The Hamiltonian for a particle moving in three spatial dimensions in a symmetric
harmonic potential V (x1, x2, x3) =

1
2mω

2(x21 + x22 + x23) =
1
2mω

2r2 is

HΨ = − ℏ2

2m

(
∂2Ψ

∂x21
+
∂2Ψ

∂x22
+
∂2Ψ

∂x23

)
+ V (x1, x2, x3)Ψ , (x1, x2, x3) ∈ R3 .

Find the lowest eigenvalue of H and its corresponding eigenfunction Ψ0. Next, find all the
eigenfunctions and eigenvalues of H, and determine the degeneracy of each eigenvalue, i.e.
the dimension of the corresponding eigenspace. (You are not required to normalize the
eigenfunctions.)

Find χ such that L3χ = 2ℏχ and Hχ = 7
2ℏωχ.

[Hint: in (ii) you may freely use the fact that the functions

ψn(x) = hn(x)e
−1
2x

2

,

where hn is the Hermite polynomial of degree n, constitute a complete orthogonal set and
satisfy

−1

2

∂2ψn

∂x2
+ 1

2x
2ψn = (n+ 1

2)ψn ,

∫
ψm(x)ψn(x)dx = 0 if n ̸= m.

Explicitly, the first three Hermite polynomials are given by

h0(x) = 1 , h1(x) = x and h2(x) = (2x2 − 1) . ]
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Paper 1, Section I

6H Statistics
The distribution of a random variable X depends on an unknown parameter θ.

Consider testing the null hypothesis H0 : θ = θ0 versus the alternative hypothesis
H1 : θ = θ1. State and prove the Neyman–Pearson lemma in the case where X has a
probability density function p(x; θ).

Let X have probability density function p(x; θ) = 1
2θe

−θ|x| for x ∈ R and θ > 0.
Find the critical region of the most powerful test of size α when θ0 < θ1.

Paper 2, Section I

6H Statistics
Let X be a random variable with the Exp(θ) distribution. Suppose the prior

distribution of θ is Γ(m,λ) for known parameters m and λ; that is, the prior density
is p(θ) = Cm,λθ

m−1e−λθ where Cm,λ = λm/Γ(m).

(a) Find the posterior distribution of θ.

(b) Show that the Bayesian estimator of θ for the loss function L(θ, a) = (θ− a)2 is given
by θ̂Bayes = (m+ 1)/(λ+X).

(c) What is the Bayesian estimator of θ for the loss function L(θ, a) = cosh
(
r(θ − a)

)
for

a given positive constant r < λ. [Recall that coshu = 1
2(e

u + e−u).]

Paper 1, Section II

18H Statistics
A data set contains the ordered pairs of observations (X1, Y1), . . . , (Xn, Yn). A

statistician models these data as Yi = Xiβ + εi, where X1, . . . , Xn are known real
parameters, the noise εi ∼ N(0, σ2) are independent and identically distributed, and
the real parameters β and σ2 are unknown.

(a) Find the maximum likelihood estimator β̂ for β and σ̂2 for σ2. Using standard

properties of normal random variables, show that β̂ and σ̂2 are independent.

(b) Find a (1−α)-confidence interval for β. Express your answer in terms of the cumulative
distribution function of the tk distribution for an appropriately chosen k.

(c) Let β̃ =
∑n

i=1 ciYi, where c1, . . . , cn are known constants. If β̃ is an unbiased estimator
of β, show that

Var(β̃) ⩾ σ2∑n
i=1X

2
i

.

For which choice of constants c1, . . . , cn is there equality for all (β, σ2)? [If you use the
Gauss–Markov theorem, you must prove it.]

(d) Another statistician models the same data as Xi = Yib+ ei, where now it is assumed
that Y1, . . . , Yn are known parameters, the noise ei ∼ N(0, s2) are i.i.d., and the real

parameters b and s2 are unknown. Let b̂ and ŝ2 be the maximum likelihood estimators of

b and s2 respectively. Show that b̂β̂ ⩽ 1, with equality only if σ̂2 = 0 = ŝ2.
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Paper 3, Section II

18H Statistics
Let X = (X1, . . . , Xn) be a discrete random vector with probability mass function

f(x; θ), where θ is an unknown parameter.

(a) In this context, what is a sufficient statistic for θ? State and prove the factorisation
criterion for sufficiency.

(b) State and prove the Rao–Blackwell theorem.

(c) Let X1, . . . , Xn be independent and identically distributed Poisson random variables
with mean

√
q where q is unknown and n ⩾ 2 is given. Find a one-dimensional sufficient

statistic T for q. Show that q̃ = X2
1 − X1 is an unbiased estimator of q. Find another

unbiased estimator of q that is a function of T and that has strictly smaller variance
than q̃.

Paper 4, Section II

17H Statistics
Let X1, . . . , Xm and Y1, . . . , Yn be independent random variables. Assume Xi ∼

N(λ, 1) and Yj ∼ N(µ, 1) for each 1 ⩽ i ⩽ m and 1 ⩽ j ⩽ n, where the constants λ and µ
are unknown. Let X̄ = 1

m

∑m
i=1Xi and Ȳ = 1

n

∑n
j=1 Yj .

(a) Find the generalised likelihood ratio test of size α forH
(a)
0 : λ = 0 = µ versusH

(a)
1 : λ, µ

unrestricted. Express your answer in terms of the cumulative distribution function Fk of
the χ2

k distribution, for a suitable k.

(b) Find the generalised likelihood ratio test of size α for H
(b)
0 : λ = µ versus H

(b)
1 : λ, µ

unrestricted. Express your answer in terms of the cumulative distribution function Φ of
the N(0, 1) distribution.

(c) Show, regardless of the true values of λ and µ, that there is a positive probability that

the test from part (b) rejects H
(b)
0 but the test from part (a) does not reject H

(a)
0 .
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Paper 1, Section I

4C Variational Principles
Given a real symmetric n× n matrix A, consider the quadratic function

Q(x) = xTAx ,

on the unit sphere Sn−1 = {x ∈ Rn : xTx = 1}. Assume that x0 is a unit vector such that

Q(x0) ⩾ Q(x) , ∀ x ∈ Sn−1 .

Show that x0 is an eigenvector of the matrix A and determine the corresponding
eigenvalue E. How does this eigenvalue compare to the other eigenvalues of A?

For the case that

A =

(
1 t
t 1

)
−∞ < t < +∞

calculate E, as a function of t ∈ R, and draw a sketch to show that it is convex.

Paper 3, Section I

4C Variational Principles
Consider the functional

S[x, y] =
1

2

∫ t1

t0

((
dx

dt

)2

+

(
dy

dt

)2

+ 2 sinωt
dx

dt
− y2

)
dt

defined on smooth curves t 7→ (x(t), y(t)) in the plane. Assume ω ∈ R is constant.

Write out the Euler-Lagrange equations for S and find the general solution.

What symmetries does the system have?

Find all the first integrals (conserved quantities) of the system.

[You may either use the Noether theorem or work with the Euler-Lagrange equations.
Consider all values of ω ∈ R.]
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Paper 2, Section II

13C Variational Principles
This question concerns the movement of a particle in space R3. Introduce cylindrical

coordinates (ρ, ϕ, z) and assume that the trajectory of the particle can be parameterized
as a curve

z 7→ (ρ(z), ϕ(z))

going from A = (ρ(z0), ϕ(z0), z0) to B = (ρ(z1), ϕ(z1), z1), and is such as to make the
following functional stationary:

F [ρ, ϕ] =

∫ z1

z0

n(ρ, ϕ, z)

√
1 +

(
∂ρ

∂z

)2

+ ρ2
(
∂ϕ

∂z

)2

dz , where z1 > z0 ,

where the function n = n(ρ, ϕ, z) is positive and smooth. Write down the Euler-Lagrange
equations for this functional.

In the case that n = n(ρ) depends only on ρ, show that there are special solutions
to the Euler-Lagrange equations of the form

ρ(z) = R, ϕ(z) = ϕ0 + ω(R)z,

where R and ϕ0 are constants, and ω = ω(R) solves an equation

n(R)Rω2 + a(1 +R2ω2)n′(R) = 0 (∗)

for some constant a which you should find. [You may assume (∗) has two solutions ±ω,
with ω > 0.]

Find a condition on a positive number L which implies that the points having
cylindrical coordinates (R,ϕ0, 0) and (R,ϕ0, L) can be joined by means of these special
solutions and sketch two of them.
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Paper 4, Section II

13C Variational Principles
The equation of motion for a bead of mass m moving without friction on a cycloidal

shaped wire is the Euler-Lagrange equation for the functional

S[ϕ] =

∫ T

0

(
ma2(1− cosϕ)ϕ̇2 −mga(1 + cosϕ)

)
dt , T > 0 .

Write down the Euler-Lagrange equation for this functional, and show it implies that
u = cos(ϕ2 ) satisfies

ü+ ω2u = 0, (∗)
where ω2 is a positive number which you should find. [You should take m, g, a to be positive
constants.]

Using the change of dependent variable ϕ → u = cos(ϕ2 ), define a new functional

Ŝ[u] =
∫ T
0 f(u, u̇) dt such that Ŝ[u] = S[ϕ]; give a formula for f and give the Euler-

Lagrange equation for Ŝ. How is this equation related to (∗)?
Give the second variation functional δ2Ŝ(η), where the variation functions η vanish

at the endpoints t = 0 and t = T . Consider the solution u(t) = A cosωt of (∗) with fixed
endpoint conditions

u(0) = A, u(T ) = A cosωT,

on the interval 0 ⩽ t ⩽ T . By considering the orthonormal collection of functions

en(t) =

√
2

T
sin

nπt

T
,

find a number t0 such that A cosωt is a local minimizer of Ŝ if T < t0 but not for T > t0.

[Hint: you may assume all variations to be of the form η =
∑∞

n=1 cnen(t), and re-
arrange and interchange sums with derivatives as needed. Observe that ën = −(nπ/T )2en.]

END OF PAPER
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