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SECTION I

1F Number Theory
Let d be a positive integer.

Define what it means for a positive definite binary quadratic form f(x, y) =
ax2 + bxy + cy2 to be reduced. If d is congruent to 0 or 3 mod 4, define the class number
h(−d).

Show that if d is odd and has k distinct prime factors, then h(−4d) ⩾ 2k−1.

Give an example with d > 1 to show that the inequality h(−4d) ⩾ 2k−1 can be
strict.

2G Topics in Analysis
State Baire’s category theorem. Define an isolated point for a metric space.

Which of the following statements are true and which are false? Give a proof or a
counterexample. (By a metric space we mean a non-empty metric space.)

(i) A countable metric space must have isolated points.

(ii) A complete metric space cannot have isolated points.

(iii) An uncountable metric space without isolated points must be complete.

(iv) A complete metric space must be uncountable.

(v) A countable complete metric space must have isolated points.

(vi) All the points in a countable complete metric space are isolated.

(vii) A countable complete metric space containing at least two points must
contain at least two isolated points.

(viii) A countable complete metric space containing infinitely many points must
contain infinitely many isolated points.

Part II, Paper 2
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3K Coding and Cryptography
(a) Show that Hamming’s original code is perfect.

(b) Consider the code obtained by using Hamming’s original code for the first 7 bits
and the final bit as a check digit, so that

x1 + x2 + · · ·+ x8 ≡ 0 (mod 2).

Find the minimum distance for this code. How many errors can it detect? How many
errors can it correct?

(c) Given a code of length n which corrects e errors, can you always construct a
code of length n+1 which detects 2e+1 errors? Give a brief justification of your answer.

4J Automata and Formal Languages
(a) Define what an index set is and when it is called non-trivial.

(b) Define the index set Inf .

(c) State Rice’s theorem.

(d) Let X ⊆ W and let InfX := {w ∈ Inf : ran(fw,1) ⊆ X}. Show, by modifying
the proof of Rice’s theorem or otherwise, that for each nonempty X, the set InfX is not
computable.

5L Statistical Modelling
Suppose we observe the proportion Y ∼ n−1Binomial(n, p) where n ∈ N is known

and p ∈ (0, 1) is unknown. Compute the score function and the Fisher information for
this statistical model.

State the Newton–Raphson and Fisher scoring algorithms for computing the max-
imum likelihood estimator.

How many steps do these algorithms take to converge to the maximum likelihood
estimator when initialised at p(0) = Y ? How many steps does Fisher scoring take when
initialised at some p(0) ̸= Y ?

Part II, Paper 2 [TURN OVER]
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6A Mathematical Biology
The model of a viral infection in a population is given by the system

dX

dt
= µN − βXY − µX,

dY

dt
= βXY − (µ+ ν)Y,

dZ

dt
= νY − µZ,

where µ, β and ν are positive constants and X, Y , and Z are respectively the number of
susceptible, infected and immune individuals in a population of size N , independent of t,
where N = X + Y + Z.

(a) Interpret the biological meaning of each of the parameters µ, β and ν.

(b) Show that there is a critical population size Nc(µ, β, ν) such that if N < Nc

there is no steady state with the infection maintained in the population. Show that in
this case the numbers of infected and immune individuals decrease to zero for all possible
initial conditions.

(c) Show that for N > Nc there is a steady state (X,Y, Z) = (X∗, Y ∗, Z∗) with
0 < X∗, Y ∗, Z∗ < N . Show that this steady state is stable.

7D Further Complex Methods
Consider the differential equation

x
d3y(x)

dx3
+ 2y(x) = 0 (†)

on the domain x ∈ (0,∞).
(a) Write

y(z) =

∫

γ
eztf(t) dt,

where γ is a contour in the complex plane, and substitute this expression for y into the
differential equation (†). Explain how the resulting integral equation can be solved by
finding an appropriate function f(t) and contour γ. Determine this function f(t) and
clearly state any required conditions on γ.
(b) Express the solution y(x) in integral form. [You do not have to evaluate this integral,
but you should simplify it as far as possible.] [Hint: Consider a subset of the real axis for
your choice of the contour γ.]
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8E Classical Dynamics
(a) In Lagrangian mechanics, explain what is meant by the generalised momentum

associated to a generalised coordinate q.

(b) What does it mean for a generalised coordinate to be ignorable? Show that the
generalised momentum associated to an ignorable coordinate is conserved. [You may state
the Euler–Lagrange equations without proof.]

(c) A certain system has generalised coordinates (q1, q2, q3) and Lagrangian

L =
1

2

(
q̇21 + q̇22 + q̇23

)
− 1

2

(
q21 + q22 + q23

)
− α (q1q2 + q2q3 + q3q1) ,

where α is constant. Show that L is invariant under rotations around the (1, 1, 1) axis in
q-space. Hence find two conserved quantities.

Part II, Paper 2 [TURN OVER]
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9D Cosmology
A non-relativistic particle species in equilibrium with massm, temperature T and chemical
potential µ satisfying kBT ≪ mc2 and µ≪ mc2, is described by the Maxwell-Boltzmann
distribution. This can be integrated over momenta to give the total number density

n = gs

(
2πmkBT

h2

)3/2

exp
[
(µ−mc2)/(kBT )

]
,

where gs is the degeneracy.

(a) Deuterium is in equilibrium with non-relativistic protons and neutrons at around
t ≈ 100 seconds (kBT ≈ 0.1MeV) through the interaction D ←→ n + p. Show that the
ratio of the number densities can be expressed as

nD
npnn

≈
(
πmpkBT

h2

)−3/2

eBD/(kBT ) ,

where the deuterium binding energy is BD = (mp + mn − mD)c
2 = 2.2MeV, and

mp, mn and mD are the proton, neutron and deuterium masses, respectively. [Hint:
The degeneracy factor for Deuterium is gD = 4.]

(b) Now use fractional densities relative to the baryon number density nB (e.g.
Xp = np/nB) to find an expression for XD/(XpXn). In this case, replace nB = η nγ where
η is the baryon-to-photon ratio and the photon number is

nγ =
16πζ(3)

(hc)3
(kBT )

3 ,

where ζ is the Riemann zeta function. Briefly explain how the fractional density ratio
XD/(XpXn) offers insight into the “deuterium bottleneck”, that is, the delay in forming
deuterium nuclei to temperatures well below the binding energy, kBT ≪ BD?

(c) In an alternative cosmology, the baryon-to-photon ratio η is larger. Assuming
that the decoupling of neutrons and protons is unaffected by this change, would the helium
abundance YHe be larger or smaller in this scenario than the standard result YHe ≈ 0.25?
Explain your reasoning.
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10E Quantum Information and Computation
Consider a function f : Z12 → Z9 defined by

f(x) = 4xmod9.

(a) The function f is periodic. Find its period r.

(b) Suppose we are given the following quantum state of 2 registers:

|f⟩ := 1√
12

∑

x∈Z12

|x⟩ |f(x)⟩ ,

and a measurement of the second register yields a value y.

What are the possible values of y and what are the corresponding probabilities?

(c) If y = 4, find the resulting state |α⟩ of the first register after the above
measurement.

(d) Let QFT12 denote the quantum Fourier transform modulo 12. How does it act
on a state |x⟩ for x ∈ Z12?

(e) Suppose a measurement of the state QFT12 |α⟩ yields a value c. What are the
possible values of c and what are the corresponding probabilities?
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SECTION II

11G Topics in Analysis
Suppose that aj , bj are real and strictly positive for all j ⩾ 0, and we have p0 = a0,

p−1 = 1, q0 = 1, q−1 = 0 with

pj = ajpj−1 + bj−1pj−2

qj = ajqj−1 + bj−1qj−2

for j ⩾ 1. Show that

pn
qn

= a0 +
b0

a1 +
b1

a2 +
b2

a3 +
b3

. . .

an−1 +
bn−1

an

and that (
pn bnpn−1

qn bnqn−1

)
=

(
a0 b0
1 0

)(
a1 b1
1 0

)
. . .

(
an bn
1 0

)
.

We now specialise to the case when bj = 1 and the aj are strictly positive integers
for all j. Show that pnqn−1 − qnpn−1 = (−1)n+1 for all n ⩾ 1.

Show that pn/qn tends to a limit x and

∣∣∣∣
pn
qn
− x
∣∣∣∣+
∣∣∣∣
pn+1

qn+1
− x
∣∣∣∣ =

1

qnqn+1

for each n ⩾ 0.

Now specialise still further to the case when aj = 1 for all j. Show that pn = Fn+2,
qn = Fn+1 for all n ⩾ 1 where F0 = 0, F1 = 1 and Fn+2 = Fn+1+Fn. Solve this difference
equation to obtain an expression for Fn in terms of powers of ϕ = (1+

√
5)/2. Hence show

that, in this case, the limit x discussed in the previous paragraph is ϕ. Show also that

FnFn+1

∣∣∣∣
Fn+1

Fn
− ϕ

∣∣∣∣→
ϕ√
5

and FnFn+1

∣∣∣∣
Fn+2

Fn+1
− ϕ

∣∣∣∣→
1

ϕ
√
5

as n→∞.
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12K Coding and Cryptography

(a) (i) Describe briefly the Rabin cryptosystem, including how to encrypt and decrypt
messages. Show that breaking the Rabin cryptosystem is essentially as
difficult as factoring the public modulus, N .

(ii) Criticise the following authentication procedure:

Alice choosesN as the public modulus for the Rabin cryptosystem. To be sure
you are in communication with Alice, you send her a “random item” r = m2

(mod N). On receiving r, Alice proceeds to decode using her knowledge of
the factorisation of N , and finds a square root m1 of r. She returns m1 to
you and you check that r = m2

1 (mod N).

(b) (i) Describe briefly the RSA cryptosystem with public modulus N .

A budget internet company decides to provide each of its customers with
their own RSA ciphers using a common modulus N . Customer j is given
the public key (N, ej) and sent secretly their decrypting exponent dj . The
company then sends out the same message, suitably encrypted, to each of its
customers. You intercept two of these messages to customers i and j where
ei and ej are coprime. Explain how you would decipher the message.

You are one of the customers, and so also know your own decrypting exponent.
Can you decipher any message sent to another customer?

(ii) Explain why it might be a bad idea to use RSA with public modulus N = pq
with |p− q| small.

A user of RSA accidentally chooses the public modulus N to be a large prime
number. Explain why this system is not secure.

Part II, Paper 2 [TURN OVER]
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13D Further Complex Methods
(a) When is a function f : C→ C called elliptic? Define a fundamental cell explicitly

and state the property of an elliptic function regarding the number of its zeros and poles
in a fundamental cell.

(b) Show that an elliptic function without poles is constant. [You may use without
proof that an entire and bounded function is constant.]

(c) Let zj denote the poles of an elliptic function f in a fundamental cell. Show
that ∑

j

Res(f ; zj) = 0.

Can there exist an elliptic function with a single pole of order one in a fundamental cell?

(d) If h is a meromorphic function on and inside a simple closed clockwise contour
γ and h has no zeros or poles on γ, then

1

2πi

∮

γ

h′(z)
h(z)

dz = P − Z ,

where P and Z denote respectively the number of poles and zeros, counting multiplicities,
of h(z) inside the contour γ. Using this relation, show that a non-constant elliptic function
f takes each value the same number of times in a cell, counting multiplicities.

(e) An example of an elliptic function is the Weierstrass function

P(z) = 1

z2
+
∑

(m,n)

[
1

(z − wm,n)2
− 1

w2
m,n

]
,

where w1, w2 ∈ C \ {0} with w1
w2

/∈ R, wm,n = mw1 + nw2 and the sum extends over
(m,n) ∈ Z × Z \ {(0, 0)}. Identify and characterize the singularities of the Weierstrass
function.

(f) The Laurent series of the Weierstrass function about z0 = 0 can be written as

P(z) = 1

z2
+

∞∑

k=0

a2kz
2k.

Calculate the coefficients a2k.
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14E Classical Dynamics
A mass m1 is suspended from a fixed point with coordinates (x, y, z) = (0, 0, 0) by

a spring with spring constant k1. A second mass m2 is suspended from the first mass
by a spring with spring constant k2. Each spring has natural length ℓ. The motion of
the masses is restricted to the (x, y)-plane, with gravity acting in the −y direction. The
position of the first mass is (x1, y1, 0) and the position of the second mass is (x2, y2, 0).

(a) Write down the Lagrangian of the system and hence determine the equations of
motion.

(b) Find the equilibrium position of each mass that has y2 < y1 < 0.

(c) For the remainder of this question suppose that the x-coordinate of mass m2 is
held fixed at its equilibrium value, and consider the case m1 = m2 = m and k1 = k2 = k.
One of the system’s normal modes has the first mass moving in the x direction with no
motion in the y direction and the other mass stationary. Show that this mode’s frequency
ω1 satisfies

ω2
1 =

k

m

(
2− 1

2mg
kℓ + 1

− 1
mg
kℓ + 1

)
.

Find the other normal modes and corresponding frequencies, showing that they are
independent of the strength of gravity.
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15E Quantum Information and Computation
(a) Consider a circuit which uses a controlled unitary gate with unitary operator U :

|0⟩ H H

|ψ⟩ U

Here H represents a Hadamard gate, |ψ⟩ denotes a single qubit state which is an eigenstate
of U , U |ψ⟩ = e2πiθ |ψ⟩, and the measurement is done in the computational basis. Express
the phase θ in terms of the probability of the measurement giving zero.

(b) Consider the following circuit which uses a controlled SWAP gate. A SWAP
gate acts as: SWAP |i⟩ |j⟩ 7→ |j⟩ |i⟩ ∀ |i⟩ , |j⟩ ∈ C2.

|0⟩ H H

|ϕ1⟩
SWAP

|ϕ2⟩ V

Here V is a unitary operator, |ϕ1⟩ , |ϕ2⟩ are single qubit states, and the measurement is
done in the computational basis. Find the probability of the measurement giving zero.

(c) Consider the operator U and the state |ψ⟩ introduced in part (a). It is given
that θ = j/2m for some j ∈ {0, 1, 2, . . . , 2m − 1} and some m ∈ N. Define the controlled
unitary operator Θm(U) which acts on a state |k⟩ |ψ⟩ of m+ 1 qubits as:

Θm(U) |k⟩ |ψ⟩ = |k⟩Uk |ψ⟩ ,

where Uk |ψ⟩ is the state obtained by k successive applications of the operator U on the
state |ψ⟩ and k ∈ {0, 1, 2, . . . , 2m − 1}.

(i) Find an expression for the following state of (m+ 1) qubits:

|Φ⟩ := Θm(U)
(
H⊗m ⊗ I

)
|0⟩⊗m |ψ⟩ .

[You should write out the result of applying the operators to |0⟩⊗m |ψ⟩.]

(ii) Write an expression for the corresponding state |ϕj⟩ of the first m qubits.
Show that {|ϕj⟩}2

m−1
j=0 is an orthonormal basis.

(iii) Let F be an operator acting on m qubits as F |j⟩ = |ϕj⟩. Justify why F is
a unitary operator.

(iv) State the 2 sequential operations that you can do on |ϕj⟩ to find the value
of j. What is the probability pj of finding the value of j (and hence θ)?

[QUESTION CONTINUES ON THE NEXT PAGE]
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(d) Recall the Breidbart basis used in the intercept and resend attack by Eve in
the BB84 protocol. Suppose you do a measurement in this basis to discriminate between
two equiprobable states |ψ1⟩ = |0⟩ and |ψ2⟩ = |−⟩. What is your probability of success?
Justify why this is the best measurement that you can do to distinguish between the states
(clearly stating any relevant result from the course).

16I Logic and Set Theory
State and prove Hartogs’ Lemma.

Define ordinal exponentiation. Show that αβ+γ = αβ · αγ for all ordinals α, β,
γ. Given ordinals γ and α, show that there exist unique ordinals β and δ such that
γ = ωα · β+ δ with δ < ωα. [You may assume standard properties of ordinal addition and
multiplication. Other results used must be proved.]

Let X be a well-ordered set. Say x ∈ X is a limit point of X if Ix ̸= ∅ and Ix has
no greatest element, where Ix = {y ∈ X : y < x}. Let X ′ denote the set of limit points of
X and define X(α) for all ordinals α by recursion as follows:

X(0) = X

X(α+1) =
(
X(α)

)′

X(λ) =
⋂

α<λ

X(α) (for non-zero limit ordinal λ)

Show that if X ̸= ∅, then X ′ ̸= X. Deduce that X(α) = ∅ for some α. The least such α is
the index of X.

Show that if ξ is an ordinal, then

ξ′ = {γ < ξ : ∃β > 0 such that γ = ω · β}.

Describe ξ′′. Find the index of ω and the index of ω2.

17I Graph Theory
State and prove Turán’s theorem.

A rhombus is the graph formed by two triangles sharing an edge. Prove that if G is
a graph on n ⩾ 4 vertices that has more edges than T2(n), then G contains a rhombus.

Find a graph G on 6 vertices such that e(G) = e(T2(6)) and G does not contain a
rhombus, but G is not isomorphic to T2(6).
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18H Galois Theory
(a) Let L/K be a field extension. Explain what it means to say that

(i) L/K is finite;

(ii) L/K is separable;

(iii) L/K is simple.

Which pairs of these properties together imply the third? In each case give a proof or
counterexample.

(b) Let L be the splitting field of f(X) = X3 −X − 1 over Q. Compute Gal(L/Q).
Show that L has a unique quadratic subfield, and write it in the form Q(

√
d) for d a

squarefree integer. Show also that if α is a root of f then L = Q(α+
√
d).

19H Representation Theory
Let G be a finite group. What is the character χV of a complex representation

(ρ, V ) of G?

Suppose that (ρ, V ) and (σ,W ) are complex representations of G. Show that the
vector space HomC(V,W ) of C-linear maps α : V →W can be made into a representation
of G×G via

((g, h) · α)(v) = σ(h)
(
α(ρ(g−1)v)

)
for (g, h) ∈ G×G,α ∈ HomC(V,W ) and v ∈ V.

Show that the character χHomC(V,W ) satisfies

χHomC(V,W )(g, h) = χV (g)χW (h).

Consider the permutation representation CG of G × G arising from the action of
G×G on G via

(g, h) · x = gxh−1 for (g, h) ∈ G×G, x ∈ G
What is χCG?

Suppose that V1, . . . , Vr are all the simple representations of G (up to isomorphism).
Show there is an isomorphism

CG ∼=
r⊕

i=1

HomC(Vi, Vi)

of representations of G×G.

Part II, Paper 2



15

20F Number Fields
State Dirichlet’s unit theorem.

Let K = Q(
√
5), and determine the units in OK . [You may use without proof the

description of OK , as long as you state it clearly.]

For K = Q(
√
5), what are the possible degrees of extensions L/K of number fields

such that 1 < |O×
L/O×

K | <∞? Give an example for each possible degree.

21J Algebraic Topology
State the Seifert–van Kampen theorem.

If (X,x0) is a based topological space, and f : (Sn−1, ∗)→ (X,x0) is a map of based
spaces, define the space X ∪f Dn obtained by attaching an n-cell to X along f . For n = 2,
carefully prove a formula describing π1(X ∪f D2, x0) in terms of the group π1(X,x0) and
the element [f ] ∈ π1(X,x0).

Writing S1 ∨ S1 for the wedge of two circles, calculate π1(S
1 ∨ S1, ∗).

Explain how to attach 2-cells to S1∨S1 to obtain a space whose fundamental group
is the symmetric group on 3 letters, proving carefully that this is indeed the fundamental
group obtained.

[You may use any description of the group π1(S
1, ∗), provided it is clearly stated.

You should justify any presentation of the symmetric group on 3 letters that you use.]

22G Linear Analysis
State and prove the Baire Category Theorem.

LetX be a Banach space, and let S be a non-empty subset ofX that is closed, convex
and symmetric (S symmetric means x ∈ S implies −x ∈ S). Show that if ∪∞n=1nS = X
then S is a neighbourhood of the origin.

Give an example to show that the condition that S is convex cannot be omitted.
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23G Analysis of Functions
State (without proof) the Hahn–Banach theorem for linear functionals on a normed

real vector space X.

Now consider the topological dual space X ′. For each x ∈ X, define x̂ : X ′ → R by
the action

x̂(f) = f(x), f ∈ X ′.

Show carefully that x 7→ x̂ defines a linear isometry from X into the bidual space X ′′ (the
topological dual space of X ′), and that

∥x∥X = sup
∥f∥X′⩽1

|f(x)|.

Let I = [0, 1] and denote by L∞ the Banach space of µ-essentially bounded functions
on I, where µ is Lebesgue measure. Show that (L∞)′ does not coincide with L1(µ). [Hint:
Extend the functional ℓ(f) = f(0) from the subspace C(I) of continuous functions on I to
L∞.]

24H Riemann Surfaces
For a non-constant analytic map f : R → S between compact Riemann surfaces

and a point z ∈ R, let mf (z) denote the multiplicity of f at z and deg(f) the degree of f .

State the valency theorem. For the Riemann surface C∞ and a non-constant analytic
function f : C∞ → C∞, which you may assume is of the form f(z) = p(z)/q(z) for non-
zero polynomials p, q, explain how to find deg(f). Which f are the analytic isomorphisms
of C∞?

If h : C∞ → C∞ is the Möbius transformation that swaps ∞ with 1 and swaps 0
with −1, write down a formula for h, as well as a quadratic equation satisfied by the fixed
points of h.

Now consider the rotational symmetry group G of a regular octahedron P . You may
assume that G is realised as a group of Möbius transformations isomorphic to S4 with the
six vertices of P corresponding to the points 0,∞,±1,±i ∈ C∞. Write down the possible
sizes of the orbits under this action of G on C∞.

Consider the function F : C∞ → C∞ given by the formula

F (z) =
(z4 + 1)2(z4 + 6z2 + 1)2(z4 − 6z2 + 1)2

z4(z4 − 1)4
.

Which points in C∞ are mapped to ∞ by F and with what multiplicities? What is
deg(F )?

You may now assume that F is constant on orbits, namely that if z1 and z2 are in the
same orbit of this action of G on C∞ then F (z1) = F (z2). By using the valency theorem,
or otherwise, show that F distinguishes orbits, namely if F (z) = F (w) for z, w ∈ C∞ then
z and w are in the same orbit.
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25F Algebraic Geometry
In this question, all algebraic varieties are over an algebraically closed field k.

Let X be an affine variety. Define the tangent space of X at a point P ∈ X. Define
the dimension of X in terms of (i) the tangent spaces of X and (ii) Krull dimension. Say
what it means for the variety to be singular at P .

Assume the characteristic of the field k is not 2. Let X := Z(x21−x32, x23−x34) ⊆ A4.
Calculate the tangent space of X at each point of X.

Consider the subset Y ⊆ P4 consisting of points with homogeneous coordinates
(y0 : y1 : y2 : y3 : y4) such that the matrix

(
y0 y1 y2
y2 y3 y4

)

has rank one. Show that Y is a closed subset of P4 in the Zariski topology. You may now
assume Y is irreducible in the Zariski topology, and hence is a projective variety. What is
the dimension of Y ? Show that Y is non-singular.

26J Differential Geometry
Consider a smooth closed curve α : I → S2 on the sphere, parametrised by arc

length.

(a) Define the curvature κ, torsion τ , Frénet trihedron (t,n,b) and geodesic
curvature κg of a general curve on a general surface. Prove in the particular case of
the sphere that α = −κ−1n− τ−1κ−2κ̇b and κg = −κ−1τ−1κ̇.

(b) State the local Gauss–Bonnet theorem for the curve α on S2. Deduce that, given
a fixed length I = [0, L], the curve α maximising the enclosed area also minimises

∫
I κg.

(c) Consider φ : [0, L] → R smooth with compact support in {κg ̸= 0}, and
β : [0, L]→ R3 defined by β = −φt− κ−1φ̇n− κ−1κ−1

g φ̇b. Prove that β⊥α and β̇⊥α̇.
(d) Consider the curve γϵ := (α + ϵβ)/|α + ϵβ| for small ϵ. You may assume that,

if the value ϵ = 0 is a critical point of the enclosed area, then
∫ L
0 κ−1

g φ̇ = 0. Deduce from
this equation that area-maximising curves have constant geodesic curvature.

(e) Prove that a curve α on S2 with constant geodesic curvature is planar by showing
that the vector e(s) := α(s)× α̇(s) + κgα(s) is constant.

(f) Deduce that, if a curve on S2 of length L encloses an area A, then L2 ⩾ A(4π−A)
(with the convention that we always choose the smaller of the two areas enclosed by the
curve).
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27G Probability and Measure
(a) State the two Borel–Cantelli lemmas.

(b) Let (Xn)n∈N be independent exponential random variables with rate 1. Let
Mn = max1⩽m⩽nXm. Show that

(i) lim supXn/ log n = 1 almost surely;

(ii) lim infMn/ log n ⩾ 1 almost surely.

[Hint: You may use without proof the inequality ex ⩾ 1 + x for all x ∈ R.]

(c) Let µ, ν be two measures on a measurable space (Ω,F) such that µ(Ω) <∞. We
say µ ≪ ν if for any A ∈ F , ν(A) = 0 implies µ(A) = 0. Show that µ ≪ ν if and only if
for all ε > 0 there exists δ > 0 such that for any A ∈ F , µ(A) < ε whenever ν(A) < δ.

28K Applied Probability
(a) Let X = (Xt)t⩾0 be a simple birth process with rate λn = nλ > 0 for all n ⩾ 1,

and X0 = 1.

(i) Show that X is non-explosive.

(ii) Let n ⩾ 1. Show that conditional on the event {Xt = n + 1}, the times of
the n births have the distribution of the order statistics of n i.i.d. random
variables with probability density function

f(x) =
λeλx

eλt − 1
, 0 ⩽ x ⩽ t .

(b) Let Xt be a birth and death process with rates λn = nλ and µn = nµ for n ∈ N,
λ > 0, µ > 0, and assume that X0 = 1. Let h(t) = P(Xt = 0).

(i) Show that h(t) satisfies

h(t) =

∫ t

0
e−(λ+µ)s{µ+ λ(h(t− s))2} ds .

(ii) Show that h′(t) satisfies

h′(t) = (h(t)− 1)(λh(t)− µ) .

(iii) Find h(t) for λ ̸= µ.
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29L Principles of Statistics
Let X1, . . . , Xn be i.i.d. observations from a statistical model {f(·, θ) : θ ∈ Θ}

satisfying the usual regularity conditions, where Θ ⊆ Rp. Suppose we wish to test

H0 : θ = θ0 vs H1 : θ ̸= θ0.

(a) Define the Wald statistic Wn(θ) and write down a test for H0 based on Wn(θ0)
with asymptotic type-I error bounded by a given α ∈ (0, 1).

(b) Define the likelihood ratio statistic Λn and write down a test for H0 based on
Λn with asymptotic type-I error bounded by a given α ∈ (0, 1).

(c) Suppose now that p = 1, i.e. θ is a scalar parameter, and we are under the null
H0. By considering an appropriate Taylor expansion, show that the two test statistics
above are asymptotically equivalent, in the sense that

Λn
Wn(θ0)

P→ 1.

[You may use, without proof, a uniform law of large numbers, as long as it is clearly
stated.]

30L Stochastic Financial Models
Let (Fn)n be a filtration such that F0 is trivial. Let (Mn)n be a martingale and let

T be a stopping time with respect to the filtration.

(a) Show that the stopped process (Mn∧T )n is a martingale. [Results on the
martingale transform may not be assumed without proof.]

(b) Assuming (Mn∧T )n is bounded and T is finite, show that E(MT ) =M0. [Versions
of the optional stopping theorem may not be assumed without proof.]

For the rest of the problem, let X0 = 0 and Xn = ξ1 + · · · + ξn for n ⩾ 1, where
(ξn)n are IID and generate the filtration. Suppose P(ξn = +1) = P(ξn = −1) = 1/2 for all
n.

(c) Given a real number w > 1, show that there exists a real number z > 0 such
that the process

Mn =
(
AwXn +Bw−Xn

)
zn

is a martingale for all constants A and B.

(d) Fix positive integers a, b and define

T = min{n ⩾ 0 : Xn ∈ {−a, b}}.

For any 0 < z < 1, compute E(zT ). [You may use the fact that T is a finite stopping time
without proof.]
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31K Mathematics of Machine Learning
(a) Carefully describe the construction of the regions {R̂1, . . . , R̂J} of a decision

tree x 7→ T̂ (x) =
∑J

j=1 γ̂j1R̂j
(x) trained on data D′ consisting of input–output pairs

(X ′
i, Y

′
i ) ∈ Rp×R, i = 1, . . . , n. [You need not explain how computations may be performed

in a computationally efficient manner.]

(b) In the following, consider the data D′ as deterministic (i.e. not random). Let
data D := (Xi, Yi)

n
i=1 consist of i.i.d. input–output pairs, and let (X,Y ) ∈ Rp × R have

the same distribution as (X1, Y1) and be independent of D. Set

T̃ (x) :=
J∑

j=1

γ̃j1R̂j
(x),

where γ̃j :=
1

Nj + 1

n∑

i=1

Yi1R̂j
(Xi) and Nj :=

n∑

i=1

1R̂j
(Xi).

Let γj := E[γ̃j |X1:n]. Show that

E
[
(γ̃j − γj)2 |X1:n

]
=

1

(1 +Nj)2

n∑

i=1

Var(Yi |Xi)1R̂j
(Xi).

Now suppose further that Var(Y |X = x) is bounded from above by σ2 for all
x ∈ Rp. Show that

E
[{
T̃ (X)− E

(
T̃ (X) |X,X1:n

)}2] ⩽ σ2J

n
.

[Hint: You may use without proof, the fact that if N ∼ Binomial(n, q), for success
probability q ∈ (0, 1], then E[1/(N + 1)] ⩽ 1/(nq).]
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32C Asymptotic Methods
(a) Suppose f(x) is a real-valued function and the set of functions ϕn(x), where

n = 0, 1, 2, 3, . . . , forms an asymptotic sequence as x → x0. What is meant by the
statement “f(x) has an asymptotic expansion as x→ x0, with respect to the ϕn(x)”?

Given that

f(x) ∼
∞∑

n=0

anϕn(x) as x→ x0,

show that

a0 = lim
x→x0

f(x)

ϕ0(x)
and an = lim

x→x0

f(x)−∑n−1
k=0 akϕk(x)

ϕn(x)
. (†)

(b) Consider the asymptotic sequence ϕn(x), defined by ϕ0 = x−1 and ϕn(x) =
x−n+1e−x for n ⩾ 1, as x→∞, and the function

f(x) =
1

x
+
xe−x

x− 1
.

Find the asymptotic expansion of f(x) with respect to the ϕn(x) as x→∞.

Verify explicitly that your coefficients satisfy (†) for all n.
What is the asymptotic expansion of f(x) with respect to the asymptotic sequence

ψn(x) = x−n as x→∞?

(c) Consider the sine-integral function,

si(x) =

∫ ∞

1

sin(xt)

t
dt.

Using integration by parts, show that

si(x) ∼ cosx

∞∑

n=0

anx
−2n−1 + sinx

∞∑

n=0

bnx
−2n−2 as x→∞,

where you should determine the coefficients an and bn.
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33A Dynamical Systems
(a) State the normal form for a transcritical bifurcation in terms of the time t,

the dependent variable x and parameter µ. Illustrate using diagrams why this type of
bifurcation is not structurally stable, making sure that your diagrams are clearly labelled.

(b) Consider the system given by

ẋ = y − x+ ax3,

ẏ = rx− y − zy,
ż = −z + xy,

where a and r are constants.

(i) Show that the fixed point at the origin of the system is non-hyperbolic at
r = 1.

(ii) Find the stable, unstable and centre subspaces of the linearised system of
the fixed point at the origin at r = 1.

(iii) Set r = 1 and change to new coordinates (v, w, z) where v = (x + y)/2,
w = (x−y)/2 and z is unchanged. Seek the (non-extended) centre manifold
by writing w = wc(v) and z = zc(v). Find wc and zc to fourth order in v.

[Hint: By considering symmetries, some of this calculation can be simpli-
fied.]

(iv) Show that the evolution equation on the centre manifold is of the form

v̇ =
a− 1

2
v3 +

(3a− 1)(a+ 3)

8
v5 + . . .

(v) For what values of a is the origin asymptotically stable when r = 1?
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34C Integrable Systems
(a) Explain what it means to say the KdV equation ut + uxxx − 6uux = 0, where

u = u(x, t), has a Lax pair formulation in terms of the linear operators

L = −∂2x + u and A = 4∂3x − 3u∂x − 3∂xu .

(b) Consider now the case of periodic boundary conditions for the KdV equation, so
that at each time t the unknown u is a real-valued function satisfying u(x+2π, t) = u(x, t).
At each fixed time t, introduce a basis φ+, φ− of solutions to the scattering equation
Lϕ = k2ϕ (for k2 > 0) determined by the initial conditions at x = 0,

φ±(0) = 1, ∂xφ±(0) = ±ik .

(i) Show that there exists a matrix

T̂ =

(
a b

b a

)
,

where a(t) and b(t) are functions of time and a, b denote the complex
conjugates, such that

(
φ+(x+ 2π)
φ−(x+ 2π)

)
= T̂

(
φ+(x)
φ−(x)

)
.

Show further that |a|2 − |b|2 = 1.

(ii) Now as t varies let u evolve in time according to the KdV equation. Show
that there exists a matrix

Λ =

(
λ µ

µ λ

)
,

where λ(t) and µ(t) depend on time, such that

(
Aφ+ + ∂tφ+

Aφ− + ∂tφ−

)
= Λ

(
φ+

φ−

)
.

Prove that ∂tT̂ = [Λ, T̂ ].

[Hint: Consider ∂t(T̂Ψ) = (∂tT̂ )Ψ + T̂ ∂tΨ , with Ψ =

(
φ+

φ−

)
.]

Deduce that Re[a] = 1
2(a+ a) is independent of t.
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35B Principles of Quantum Mechanics
(a) State the defining properties of a density operator ρ in a Hilbert space of finite

dimension N , and state the number of real free parameters that determine ρ. Starting
from ρH in the Heisenberg picture, derive the time-dependent ρS(t) in the Schrödinger
picture.

(b) State the commutation relations for the spin operators S with each other and
with S · S . For the pure state |ψ⟩ of a spin-12 qubit, you are given ⟨Sx⟩ψ, ⟨Sz⟩ψ, and the
sign of ⟨Sy⟩ψ. Determine the normalised state |ψ⟩. [Hint: Recall that the state need only
be determined up to an overall phase, so that the normalised state can be parametrised by
a single complex number.]

(c) For a general mixed state of a spin-12 qubit, you are given ⟨Sx⟩, ⟨Sz⟩, and ⟨Sy⟩.
Determine the mixed state. Are the expectation values of any three linearly independent
Hermitian operators sufficient to fully specify a general mixed state? Present a proof or a
counterexample.
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36E Applications of Quantum Mechanics
Consider a Hamiltonian H that has a discrete spectrum and a ground state with

energy E0.

(a) Describe briefly how to use the variational method to provide an upper bound
on E0.

(b) Suppose that the trial wavefunction in the variational method is given by

|ψ⟩ =
N∑

n=1

αn|ϕn⟩ ,

where αn are complex variational parameters, and the |ϕn⟩ form an orthonormal set, i.e.,
⟨ϕm|ϕn⟩ = δmn, for m and n = 1, 2, . . . N .

Apply the variational method to H with trial wavefunction |ψ⟩, and show that the
lowest eigenvalue of the matrix H, which has entries Hnm = ⟨ϕn|H|ϕm⟩, gives the optimal
upper bound on the ground state energy E0.

(c) Consider a particle of mass m in an infinite one-dimensional square well of width
a, with a linear potential in the well,

V (x) =

{
V0
x

a
0 ⩽ x ⩽ a ,

∞ otherwise ,

where V0 =
9ℏ2

ma2
. Determine an upper bound for the ground state energy of this system

using

ϕn =

{ √
2
a sin

(
nπx
a

)
0 ⩽ x ⩽ a ,

0 otherwise ,

with n = 1, 2, as trial wavefunctions.
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37B Statistical Physics
(a) Explain what is meant by an intensive quantity and what is meant by an

extensive quantity. Give two examples of each.

(b) A real-valued homogeneous function f of degree k satisfies

f(λx1, λx2, . . . , λxn) = λk f(x1, x2, . . . , xn) ,

for any real λ. Show that
n∑

i=1

xi
∂f

∂xi
= kf .

(c) Explain why the energy E(S, V,N) is a homogeneous function of degree 1, where
S is the entropy, V is the volume and N is the number of particles. Hence, using the
first law of thermodynamics, find an expression for E in terms of S, V , N , µ, p and T ,
where µ is the chemical potential, p is the pressure and T is the temperature. Show that
dµ = (V dp− SdT )/N .

(d) Consider a chemical reaction at constant T and p where each molecule of
chemical A can change into two molecules of chemical B and one molecule of chemical C,
and vice-versa, i.e. A↔ 2B+C. By minimising the Gibbs free energy G, derive a relation
between the chemical potentials of the three chemicals at equilibrium, where the chemical
potential of chemical i is µi =

∂G
∂Ni

.

38B General Relativity

(a) Define the Einstein tensor Gµν in terms of the Riemann tensor Rαβµν and use
the Bianchi identity ∇ρRα

βµν + ∇µRα
βνρ + ∇νRα

βρµ = 0 to show that ∇ν Gµν = 0.
Comment briefly on the significance of this result for consistency of the Einstein equations
(including a cosmological constant).

(b) For a universe described by the line element

ds2 = −dt2 + a(t)2 (dx2 + dy2 + dz2) ,

the Einstein tensor is diagonal with Gt
t = −3ȧ2/a2 and Gx

x = −2ä/a− ȧ2/a2, where dots
denote differentiation with respect to t. Verify by direct computation that ∇ν Gµν = 0,
justifying the steps that you make and computing any metric connection components Γ µ

ν ρ

that you may need.

Solve the vacuum Einstein equations with a cosmological constant Λ > 0 to obtain
a result for a(t) that corresponds to an expanding universe.
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39C Fluid Dynamics II
A two-dimensional incompressible Stokes flow has stream function ψ such that the

velocity u = ∇×(ψk), where k is the unit vector normal to the plane of the flow. Show
that

∇4ψ = 0.

In plane polar coordinates (r, θ) the velocity is

u =
1

r

∂ψ

∂θ
er −

∂ψ

∂r
eθ.

Given that the stream function has the form ψ = r2f(θ), determine the rate-of-strain
tensor in terms of f and its derivatives. Hence write down the corresponding deviatoric
stress tensor for a fluid of dynamic viscosity µ.

Fluid with dynamic viscosity µ fills the two-dimensional region −α < θ < 0, r > 0,
where α > 0 is a constant. The boundary θ = −α is rigid, while a tangential stress S
is applied to the horizontal surface θ = 0. Given that the stream function has the form
ψ = r2f(θ), write down the boundary conditions that apply to f(θ). Hence, determine
f(θ) and show that the surface velocity

U(r) = u(r, 0) =
Sr

µ

1− cos 2α− α sin 2α

sin 2α− 2α cos 2α
.

[Hint: In plane polar coordinates, ∇2ψ =
1

r

∂

∂r

(
r
∂ψ

∂r

)
+

1

r2
∂2ψ

∂θ2
.]
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40D Waves
The linearized Cauchy momentum equation governing small and smooth displace-

ments u(x, t) in a uniform, linear isotropic elastic solid of density ρ is

ρ
∂2u

∂t2
= (λ+ µ)∇(∇ · u) + µ∇2u,

where the constants λ and µ are the Lamé moduli.

(a) Show that this equation supports two distinct classes of wave-like motion: P-
waves for the dilatation ϑ = ∇ · u with phase speed cp; and S-waves for the rotation
Ω = ∇× u with phase speed cs. You should express cp and cs explicitly in terms of the
Lamé moduli.

(b) Now consider a region of this solid with a horizontal plane boundary at z = 0
in which plane waves propagate with wave vector k = κ(sin θ, 0, cos θ), i.e. θ is the angle
the wave vector makes with the vertical z−direction and κ is the magnitude of the wave
vector. Explain briefly why such a domain can in general support:

(i) harmonic P-waves: u = A exp[iκ(x sin θ + z cos θ)− iωt];

(ii) harmonic SV-waves: u = BV exp[iκ(x sin θ + z cos θ)− iωt];

(iii) and harmonic SH-waves: u = BH exp[iκ(x sin θ + z cos θ)− iωt].

You should define explicitly the orientations of the complex vector amplitudes A, BV and
BH .

(c) Now consider a region of the solid between a rigid plane boundary at z = 0 and
a free surface at z = h > 0.

(i) Show that this region can support propagating SH-waves with wave vector
in the x−direction (i.e. with θ = π/2), calculating explicitly the dispersion
relation.

(ii) Deduce that there is a cut-off frequency ωn for each mode in the vertical,
given by

ωn =
(2n+ 1)π

2h
cs ,

for non-negative integers n = 0, 1, 2 . . . .

(iii) Express the phase velocity c and the group velocity cg of each mode in terms
of cs, ωn and κ.

(iv) Deduce that, for any given wave number κ > 0 and mode with n ⩾ 0,
c = mcg with m > 1, where you should express m in terms of n, κ and h.

(v) Calculate m explicitly for the specific wave with horizontal wavelength h
and n = 1.

[ Hint: You may find it useful to recall that ∇2q = ∇(∇ · q)−∇× (∇× q). ]
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41A Numerical Analysis
(a) Let h : R→ R be a 2-periodic function with Fourier series h(x) =

∑
n∈Z ĥne

iπnx.

Let I(h) = 1
2

∫ 1
−1 h(x) dx. For N ⩾ 1, consider the approximation

IN (h) =
1

2N

N∑

k=−N+1

h(k/N).

Find the error |IN (h)− I(h)| in terms of the ĥn.

Assuming |ĥn| ⩽ Mc|n| for all n ∈ Z, where M > 0 and c ∈ (0, 1), show that the
error decays exponentially fast with N .

(b) Let w : R→ R be a 2-periodic function with a finite Fourier expansion

w(x) =
∑

|n|⩽d
ŵne

iπnx.

Consider the partial differential equation for u(x, t)

∂u

∂t
=
∂2u

∂x2
− dw

dx

∂u

∂x

with initial condition u(x, 0) = u0(x) which is 2-periodic. Seek an approximate solution
for u(x, t) for all t ⩾ 0 that is 2-periodic in x with an expansion of the form

u(x, t) =
∑

|n|⩽D
ûn(t)e

iπnx,

where D is the truncation level. Write down a differential equation for the ûn(t) of the
form

dûn(t)

dt
=
∑

|m|⩽D
Bnmûm(t),

for a matrix B that you should specify.

Assume that w(x) = cos(πx). Show that in this case, the eigenvalues of B have
non-positive real part. Is B invertible?
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