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SECTION I

1F Number Theory
Let N ∈ N be an odd composite integer, and let b ∈ (Z/NZ)×. Define what it means

for N to be a Fermat pseudoprime to the base b, and for N to be an Euler pseudoprime
to the base b.

Now let N = 105. Determine the proportion of bases b ∈ (Z/NZ)× such that N
is a Fermat pseudoprime to the base b. Determine the proportion of bases b ∈ (Z/NZ)×
such that N is an Euler pseudoprime to the base b.

2G Topics in Analysis
(a) Define the nth Chebychev polynomial Tn. Show that it is indeed a polynomial

and that −1 ⩽ Tn(x) ⩽ 1 for all x ∈ [−1, 1].

(b) Show that, if n ⩾ 1, the leading coefficient of Tn is 2n−1.

(c) Show that Tn(x) = Tn(−x) if n is even, and Tn(x) = −Tn(−x) if n is odd,
explaining why these results hold for all x ∈ R.

(d) By looking at the roots of T
(k)
n (x), or otherwise, show that, if 0 ⩽ r ⩽ n − 1,

then T
(r)
n (x) is increasing for x ⩾ 1.

(e) Compute T ′
n(1) and show that Tn(x) ⩾ n(x− 1) + 1 for all x ⩾ 1.

3K Coding and Cryptography
Briefly describe the binary Huffman code for encoding symbols 1, 2, . . . ,m occurring

with probabilities p1 ⩾ p2 ⩾ · · · ⩾ pm > 0.

Consider the discrete random variable X taking seven values xi (1 ⩽ i ⩽ 7) with
the following probabilities:

X =

(
x1 x2 x3 x4 x5 x6 x7
0.49 0.26 0.12 0.04 0.04 0.03 0.02

)
.

Find a binary Huffman code for X. What is its expected word length? [You do not
need to simplify the expression.]

Part II, Paper 1
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4J Automata and Formal Languages
In this question, let Σ = {a, b} and V = {S,A} be the set of terminal and non-

terminal symbols, respectively.

(a) Give an example of a context-free grammar G = (Σ, V, P, S) and a word w ∈ W
such that w has a unique G-parse tree starting from S, but exactly two different G-
derivations. Justify your claim.

(b) Suppose that G is a context-free grammar such that there is a G-parse tree
starting from A producing baba and the following two trees are G-parse trees:

S

A S

a b A A

a b b b a b

S

A A

a a b b

For each of the following words w, prove that w ∈ L(G):

(i) w = abbabaab and

(ii) w = abbbaa.

(c) Prove that the language L := {anbmamin(n,m) : n,m > 1} is not context-free.

[You may use the context-free pumping lemma without proof.]

5L Statistical Modelling
(a) What are the three main components of a generalised linear model for observa-

tions (Y1, x1), . . . , (Yn, xn)?

(b) Assuming the model holds with the canonical link function, give expressions for
the mean and variance of the Yi as functions of the covariates xi.

(c) Define the Poisson generalised linear model with the canonical link function.

Part II, Paper 1 [TURN OVER]
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6A Mathematical Biology
Consider a model for population growth in which the population n(t) evolves

according to
dn

dt
= αn− βn3,

where α, β > 0.

(a) Find and analyse the stability of the non-negative fixed points.

(b) Sketch the solution starting from a range of (non-negative) population sizes.

(c) Suppose a population either follows the model above, or it follows logistic growth.
Explain briefly how these possibilities may be distinguished by observing population
dynamics starting from a very small population. Illustrate your answer with a sketch
showing the difference between the two models.

7D Further Complex Methods
(a) Let f(x), x ∈ R, be a function with a finite number of singular points x = ck,

k = 1, 2, . . . , N , where −∞ < a < c1 < c2 < · · · < cN < b <∞. Define what is meant by
the Cauchy Principal Value integral P

∫∞
−∞ f(x)dx. [You may assume that the improper

integrals
∫ a
−∞ f(x)dx and

∫∞
b f(x)dx exist.]

(b) What is the Hilbert transform H(f)(y) of a function f?

(c) Let f(x) = 1
x2+1

. Evaluate H(f)(−1).

8E Classical Dynamics
A rigid circular hoop of mass m and radius a hangs from a fixed point on its

circumference, is constrained to lie in a vertical plane and is free to oscillate within this
plane. A bead, also of mass m, can slide without friction around the hoop. [You may
assume that the moment of inertia of a circular hoop of mass m and radius a about an
axis through its circumference and perpendicular to the plane of the hoop is I = 2ma2.]

(a) Choose a set of generalised coordinates and write down the Lagrangian for the
system.

(b) Show that the frequencies for small oscillations around equilibrium are ω1 =√
c1g/a and ω2 =

√
c2g/a, where c1 and c2 are positive real numbers that you should

determine.
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9D Cosmology
Consider a flat (k=0) FLRW universe dominated by the potential energy of a scalar

field ϕ given by

V (ϕ) =
λ

n
ϕn , where λ > 0 ,

and n is a positive integer. The evolution equations for the scale factor a(t) and the field
ϕ(t) in the slow-roll approximation are respectively

H2 =
8πG

3c2
V (ϕ) ,

3Hϕ̇ = −c2dV
dϕ

,

where H = ȧ/a and a dot denotes differentiation with respect to time t.

(a) By considering the chain rule ȧ = (da/dϕ)ϕ̇, or otherwise, solve the slow-roll
equations to find the scale factor as a function of ϕ(t),

a (ϕ(t)) = exp

[
4πG

c4n

(
ϕ2i − ϕ(t)2

)]
,

where ti is the initial time with a(ti)=1 and ϕi=ϕ(ti), with ϕi assumed to be large enough
to ensure inflationary expansion.

(b) By determining the Hubble parameter H, show that during inflation we have

1

2c2
ϕ̇2 ≈ c4

48πG

n2V (ϕ)

ϕ2
.

Deduce the approximate value of ϕ=ϕend when inflation ends, that is, when the slow-roll
approximation breaks down. If n=6, roughly estimate the initial value ϕi relative to ϕend
that would be required to solve the flatness problem of the standard cosmology.
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10E Quantum Information and Computation
Let Uf denote a quantum oracle which acts on (n+1) qubits as follows: ∀ x ∈ {0, 1}n

and y ∈ {0, 1},
Uf |x⟩ |y⟩ = |x⟩ |y ⊕ f(x)⟩ ,

where the addition is taken modulo 2 and

f(x) = a.x⊕ b :=
n∑

i=1

aixi ⊕ b for some a ∈ {0, 1}n and b ∈ {0, 1}.

(a) (i) Write down an expression for the state |Φ1⟩ obtained when the state |0⟩⊗n |1⟩
of (n+1) qubits is acted on by (UfH

⊗(n+1)), where H denotes the Hadamard
gate.

(ii) Let |Φ2⟩ := H⊗(n+1) |Φ1⟩. Write an expression for this state.

(iii) Let |Φ3⟩ := Uf |Φ2⟩. Write an expression for this state.

(b) (i) |Φ3⟩ is a state of n+1 qubits. What is the probability of obtaining the n-bit
string a by doing a measurement of the first n qubits in the computational
basis?

(ii) What is the state of the last (i.e., the (n + 1)th) qubit after the above
measurement?

(iii) Find the probability that a measurement on this qubit yields the value of b
when a contains an odd number of 1s and when a contains an even number
of 1s.

Part II, Paper 1
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SECTION II

11K Coding and Cryptography
(a) Consider the use of a binary [n,m]-code to send one of m messages through a

binary symmetric channel (BSC) with error probability p, making n uses of the channel.
Define the following decoding rules: (1) ideal observer, (2) maximum likelihood, and (3)
minimum distance. Show that if all the messages are equally likely then (1) and (2) agree.
If p < 1

2 show that (2) and (3) agree.

(b) Show that a BSC with error probability p < 1
4 has non-zero operational capacity.

(c) State Shannon’s second coding theorem. Consider a discrete memoryless channel
with input X taking values over the alphabet {0, 1}. For a, b ∈ Z, let Z be a random
variable that is independent of X, taking values over the alphabet {a, b} with distribution
P(Z = a) = P(Z = b) = 1

2 . The output of the channel is Y = X+Z. What is the capacity
of this discrete memoryless channel? [Hint: The capacity depends on the value of b− a.]

12J Automata and Formal Languages
(a) Let M = (Σ, Q, P ) be a register machine and w⃗ a finite sequence of words.

Define the upper register index of M and {C(t,M, w⃗) : t ∈ N}, the computation sequence
of M upon input w⃗. [When defining the computation sequence, you may assume that “M
transforms C into C ′” is already defined.]

(b) LetM = (Σ, Q, P ) be a register machine such that fM,1 = χL for some language
L ⊆ W. Show that for every n ∈ N there is a word w such that the computation sequence
of fM,1(w) uses at least n remove instructions of the form −(0, q, q′) for some q, q′ ∈ Q.

A register machine with upper register index n is called an n-register machine (i.e.
a register machine using n+ 1 registers). A language L ⊆ W is called n-computable if its
characteristic function is computable by an n-register machine. In the following, let us
assume that Σ = {a, b}.

(c) Show that L = {anbn : n > 0} is 1-computable. [You may use constructions
from the course, as long as you state them precisely and justify the scratch space that
they use.]

(d) Let M = (Σ, Q, P ) be a 0-register machine such that fM,1 = χL for some
language L. Show that there are natural numbers t, t′, k, and ℓ and q ∈ Q such that k ̸= ℓ
and for all x ∈ W, we have

C(t,M, xbk) = (q, x) = C(t′,M, xbℓ).

(e) Using part (d) or otherwise, show that L = {anbn : n > 0} is not 0-computable.
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13L Statistical Modelling
During spawning season, female horseshoe crabs lay clusters of eggs which are

fertilised externally by a number of nearby male crabs. We are given a dataset with
information on n = 173 female crabs. It contains, among other variables, the weight and
width of each crab, as well as the number y of male crabs in the vicinity. Consider the
following (shortened) R output from an analysis of this dataset.

> head(Crabs[c("y", "weight", "width")])

y weight width

1 8 3.05 28.3

2 0 1.55 22.5

> crabs.lm <- lm(y ~ weight + width, data=Crabs)

> summary(crabs.lm)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.5721 4.2132 -1.085 0.2794

weight 1.6817 0.9015 1.865 0.0639

width 0.1446 0.2218 0.652 0.5153

> anova(lm(y ~ 1, data=Crabs), crabs.lm)

Model 1: y ~ 1

Model 2: y ~ weight + width

Res.Df RSS Df Sum of Sq F Pr(>F)

1 172 1704.9

2 170 1477.7 2 227.2 13.069 5.252e-06 ***

> cor(Crabs$weight, Crabs$width)

[1] 0.8769373

> plot(crabs.lm, add.smooth=FALSE, which=c(1,2))

[QUESTION CONTINUES ON THE NEXT PAGE]
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(a) Write down the statistical model fitted by crabs.lm.

(b) State mathematical formulas for what the columns displayed in the output of
crabs.lm describe.

(c) State the null and alternative hypotheses for the hypothesis test performed using
the anova command. What can we conclude from the output?

Explain this in relation to the final column of the summary command output by
referring to the output of the cor command.

(d) What would you expect to see in the two diagnostic plots if the model crabs.lm
were to fit the data well? Which model assumptions appear to be violated according to
these plots?

(e) Suggest two modifications that may help to improve the quality of the fit.
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14D Further Complex Methods
(a) Consider a linear input–output system

Ly(t) = f(t),

where f(t) is the input, y(t) is the output and L is a linear operator. Define what it means
for the system to be causal and stable.

(b) Consider a linear ordinary differential equation for t > 0,

αy′(t) + y(t) = f(t) , (†)

with α ∈ R, α ̸= 0, and initial condition y(0) = 0.

(i) Using a Laplace transform, show that the transfer function of the linear
system (†) is G(s) = 1

αs+1 . Determine for which values of α the system is
stable.

(ii) A negative feedback loop with H(s) = k, k ∈ R, is introduced into the
system for stable values of α such that the closed-loop transfer function is
GCL(s) =

G(s)
1+H(s)G(s) . By direct inspection of GCL(s), determine the values

of k for which the closed-loop system is stable. [You do not have to consider
the limiting cases for k.]

Explain the Nyquist criterion to determine the stability of a closed-loop
system. By calculating appropriate winding numbers, use the Nyquist
stability criterion to determine the values of k for which the closed-loop
system is stable. Compare the result with that obtained by direct inspection
of GCL(s). [Hint: You may use without proof that the number P of poles and
the number Z of zeros, counting multiplicities, of a meromorphic function
f(z) inside a clockwise simple closed contour γ obey the relation

1

2iπ

∮

γ

f ′(z)
f(z)

dz = P − Z ,

if f(z) has no zeros or poles on γ.]

Part II, Paper 1
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15D Cosmology
Consider a uniformly expanding universe with energy density ρ(t) and pressure P (t)

which obey the continuity equation

ρ̇ = −3
ȧ

a
(ρ+ P ) , (⋆)

where a dot denotes a derivative with respect to time t.

(a) Consider the conserved mass M of matter inside a uniform expanding sphere
of radius r(t) = a(t)x0, with fixed comoving radius x0. Suppose that the radius of the
sphere satisfies

r̈ = −dΦ

dr
, where Φ(r) = −GM

r
− 1

6
Λ r2c2 ,

with Λ a constant. By multiplying the acceleration r̈ by the velocity ṙ and integrating,
show that the scale factor obeys the Friedmann equation

(
ȧ

a

)2

=
8πG

3c2
ρ− kc2

a2
+

1

3
Λc2 , (†)

where k is a constant.

(b) Now differentiate the Friedmann equation (†) and substitute the continuity
equation (⋆) to find the acceleration equation for ä/a in terms of ρ, P and Λ. Briefly note
two of the shortcomings of this Newtonian analysis.

(c) Consider a flat (k=0) universe with a positive cosmological constant Λ > 0 that
is filled with radiation pressure PR = ρR/3, measured to have energy density ρR(t0) = ρR0

at given time t = t0. Use the Friedmann equation (†) to show that the Hubble parameter
H = ȧ/a can be expressed as

H2 = H2
0 ΩR0 a

−4 +
1

3
Λc2 , where ΩR0 ≡ 8πGρR0

3c2H2
0

,

with H(t0)=H0 and a(t0)= 1. By considering the substitution b = a2 (or otherwise) find
the solution for the scale factor

a(t) = α [ sinh(β t) ]1/2 ,

where α and β are constants you should determine in terms of H0 and ΩR0. [You may
assume that the universe started with a big bang.]

Show that the scale factor a(t) gives anticipated results at early and late times.
Estimate the transition time tΛ that separates the decelerating and accelerating epochs.

[Hint:
∫

dx/
√
1 + κ2x2) = (1/κ) sinh−1(κx) + const, where κ > 0 is a constant.]
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16I Logic and Set Theory
State the Soundness Theorem for Propositional Logic.

Let S be a consistent set of propositions. Explain briefly why the function
v : L→ {0, 1} on the set L of all propositions defined by

v(t) =

{
1 if S ⊢ t
0 if S ̸⊢ t

need not be a model of S. Show that S is contained in a consistent, deductively closed
set T ⊂ L such that the definition of v above with S replaced by T is a model of S. [You
need not prove that v is a model. The set of primitive propositions here is arbitrary. You
may assume Zorn’s lemma.]

Show that if every finite subset of an arbitrary set S of propositions has a model,
then S has a model.

Let X,Y be infinite sets such that there is an injection from X to Y . For each
x ∈ X, let Ax be a non-empty, finite subset of Y . Let P be a set consisting of pairwise
distinct primitive propositions px,y for all x ∈ X and y ∈ Y . For a valuation v on L, set

fv = {(x, y) ∈ X × Y : v(px,y) = 1} .

For each of the following statements, either write down a set S ⊂ L that makes the
statement true or prove that no such set S exists.

(i) {fv : v is a model of S} is the set of all injective functions from subsets of
X to Y .

(ii) {fv : v is a model of S} is the set of all injective functions g : X → Y such
that g(x) ∈ Ax for all x ∈ X.

(iii) {fv : v is a model of S} is the set of all injective functions from X to Y .

17I Graph Theory
(a) Let G be a graph on n ⩾ 3 vertices with minimum degree at least n

2 . Prove that
G is Hamiltonian.

(b) Now let G be a bipartite graph of minimum degree at least k ⩾ 2. Prove that G
contains either a path of length 2k or a cycle of length 2k. Give an example to show that
G need not contain a path of length 2k. Show also that G must contain either a path of
length 4k − 3 or a 4-cycle.

Part II, Paper 1
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18H Galois Theory
(a) Let α, β ∈ C be algebraic over Q. Show that if α and β have the same minimal

polynomial over Q then Q(α) ∼= Q(β). Let k ⩾ 1 be the number of such isomorphisms.
Give an example where 1 < k < [Q(α) : Q]. Must k always divide [Q(α) : Q]? Justify
your answer.

(b) Let L/K be a finite extension of degree coprime to n. Clearly stating any
properties of the norm that you use, show that if α ∈ K is an nth power in L then it is
an nth power in K.

(c) Let K = Q(α) where α has minimal polynomial f over Q. Let p be a prime.
Show that f(Xp) is irreducible in Q[X] if and only if α is not a pth power in K.

19H Representation Theory
What is a complex representation (ρ, V ) of a group G? What does it mean to say

that a representation (ρ, V ) of G is faithful? Show that every finite group has a faithful
representation over the complex numbers.

Let G be a finite group, (ρ, V ) be a complex representation of G, and g ∈ G. Writing
S(g) for the set of eigenvalues of ρ(g), show that if g is conjugate to gk in G then

λ ∈ S(g) =⇒ λk ∈ S(g).

Deduce that if p is a prime number and (ρ, V ) is a faithful complex representation of Sp,
then dimV ⩾ p− 1.

Consider the group G of all invertible functions σ : N → N, under composition. Does
G have a faithful complex representation?

20F Number Fields
Define algebraic integer.

Prove that the set of algebraic integers is closed under multiplication. [You may use
without proof any characterisation of algebraic integers, provided it is properly stated.]

What is the ring of integers in the number field Q(
√
2)? Prove your claim.

For a polynomial f ∈ C[x], we define

M(f) = |ad|
d∏

j=1

max{1, |αj |},

where d is the degree, ad is the leading coefficient and α1, . . . , αd are the roots of f in C.

Suppose f ∈ Z[x] is irreducible, M(f) = 2, and f has a real root α1 > 1.

Prove that α1 is an algebraic integer and |NQ(α1)/Q(α1)| = 2. [Hint: Consider the
number |NQ(α1)/Q(α1)|/2, and show that it is a rational integer.]
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21J Algebraic Topology
What does it mean to say that p : X̃ → X is a covering map? If γ : [0, 1] → X is

a path and x̃0 ∈ X̃ is such that p(x̃0) = γ(0), prove carefully that there is a unique path
γ̃ : [0, 1] → X̃ such that

(i) γ̃(0) = x̃0, and

(ii) p ◦ γ̃ = γ.

[You may use the Lesbegue number lemma.]

Let Y be a topological space, A ⊆ Y and B ⊆ Y be open subspaces with disjoint
closures, and ϕ : A → B be a homeomorphism. Let Y/ϕ denote the quotient of Y by the
equivalence relation generated by a ∼ ϕ(a) for all a ∈ A. Show that the function

p : Ŷ/ϕ :=
Y × Z

(a, i) ∼ (ϕ(a), i− 1) for a ∈ A, i ∈ Z
−→ Y/ϕ

[(y, i)] 7−→ [y]

is continuous and is a covering map.

Assume now that Y is path-connected. Let a0 ∈ A be a basepoint, which

determines a basepoint [a0] ∈ Y/ϕ. Show that Ŷ/ϕ is path-connected, that the subgroup

G ⩽ π1(Y/ϕ, [a0]) associated to the covering space p : Ŷ/ϕ→ Y/ϕ is normal, and that the
quotient group π1(Y/ϕ, [a0])/G is isomorphic to Z.

22G Linear Analysis
State and prove the Closest Point Theorem. Deduce that if F is a closed subspace

of a Hilbert space H then H is the direct sum of F and F⊥.

Let H be a separable Hilbert space. An operator T on H is called a shift if there
exists an orthonormal (Hilbert) basis (en)

∞
n=1 of H such that T (en) = en+1 for all n.

Show that T is a shift if and only if T is an isometry with ∩∞
n=1Im (Tn) = {0} and

dim (ImT )⊥ = 1.

Part II, Paper 1
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23G Analysis of Functions
(a) Set R+ = (0,∞), and let Lp = Lp(R+, dx), 1 < p < ∞, where dx is Lebesgue

measure on R+. Let F : R+ ×R+ → R be integrable for the product measure dx⊗ dx on
R+ × R+. Set

G(y) =

∫

R+

F (x, y)dx, y ∈ R+.

Show that if ∥g∥Lq ⩽ 1 for 1 < q <∞ conjugate to p, then

∫

R+

|G(y)g(y)| dy ⩽
∫

R+

[ ∫

R+

|F (x, y)|pdy
]1/p

dx.

(b) Now let K : R+ × R+ → R be integrable and such that

K(λx, λy) = λ−1K(x, y), λ, x, y > 0; and

∫ ∞

0
|K(x, 1)|x−1/p dx = 1.

Define Tf(y) =
∫∞
0 K(x, y)f(x) dx. Show that for f ∈ Lp we have

∥Tf∥Lp ⩽ ∥f∥Lp .

[Hint: Consider fz(y) = f(yz) and show first that ∥fz∥Lp = z−1/p∥f∥Lp.]

[You may use the identity

∥f∥Lp = sup
{∫

|f(x)g(x)|dx : g ∈ Lq, ∥g∥Lq ⩽ 1
}
, q conjugate to p,

without proof.]

24H Riemann Surfaces
Given two suitable topological spaces Y and X, define a covering map π : Y → X.

What does it mean to say that X is simply connected? Write down the simply connected
Riemann surfaces (up to analytic isomorphism).

What is a lattice of C? Prove that for any lattice L there exists a non-constant
analytic function f : C → C∞ where f(z + l) = f(z) for all z ∈ C and l ∈ L.

Assuming now that the quotient space C/L is a Riemann surface where the natural
projection q : C → C/L is analytic, deduce the existence of a unique analytic function
f : C/L→ C∞ such that f = fq for your function f above.

Show that neither f nor f are covering maps. Does there exist a covering map from
C/L to C∞? Justify your answer, stating clearly any results which you use.
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25F Algebraic Geometry
In this question, all algebraic varieties are over an algebraically closed field k.

What does it mean for a topological space to be irreducible? Show that if X ⊆ An

is a Zariski closed subset, then X can be written as a finite union of irreducible closed
subsets of An.

Write the closed subset Z(x3−x22, x
2
1−x22−x42+x23) of A3 as a union of irreducible

closed sets.

Now take k = C to be the field of complex numbers. Show that the set

Z := {(x, ex) |x ∈ C} ⊆ A2

is dense in A2 in the Zariski topology.

Let X be an affine algebraic variety, and let U = {Ui | i ∈ I} be an open cover of
X. Show that U has a finite subcover. [Hint: Define for any regular function f on X the
distinguished open set

D(f) := {x ∈ X | f(x) ̸= 0}.
You may use without proof the fact that the collection of distinguished open sets form a
basis for the topology on X.]
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26J Differential Geometry
Let Σ ⊂ R3 be a smooth surface.

(a) For a point p ∈ Σ, define the first fundamental form IΣp and the second

fundamental form IIΣp . Give the definitions of the shape operator, the mean curvature
and the Gaussian curvature at p. What does it mean for Σ to be minimal?

Now let Ω be a non-empty open subset of R2 and let h : Ω → R be smooth with
non-degenerate differential. Let

ϕ : Ω → R3

(x, y) 7→ (x, y, h(x, y))

and let S = ϕ(Ω).

(b) Calculate ISϕ(x,y) at an arbitrary point (x, y) ∈ Ω in terms of h.

(c) Write down a Gauss map N : Ω → S2 for S. Let

ϕt : Ω → R3

(x, y) 7→ ϕ(x, y) + tN(x, y)

and assume that there is ϵ > 0 so that St := ϕt(Ω) is a smooth surface for any t ∈ (−ϵ, ϵ).
Prove that the second fundamental form of S satisfies

IISϕ(x,y) = −1

2

d

dt

∣∣∣
t=0

ISt

ϕt(x,y)

at any point (x, y) ∈ Ω. Calculate IISϕ(x,y) in terms of h.

(d) Derive a differential equation in h that characterises when the surface S is
minimal.

(e) Calculate the area of S in terms of the height function h. Assume that for any
η : Ω → R smooth and compactly supported in Ω, the area Aη(t) of

Sη
t := {(x, y, h(x, y) + tη(x, y)) | (x, y) ∈ Ω}

is locally minimal at t = 0. Use the Euler–Lagrange equation to recover the differential
equation in h from part (d).
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27G Probability and Measure

(a) (i) What does it mean for a measure µ on a measurable space (Ω,F) to be
σ-finite? State the uniqueness of extension theorem for a σ-finite measure.

(ii) Let B be the Borel σ-algebra on R. Show that Lebesgue measure λ is
translation invariant, i.e., for x ∈ R and B ∈ B,

λ(B) = λ(B + x)

where B + x = {b+ x : b ∈ B}.

(iii) Show that Lebesgue measure λ is the unique translation invariant σ-finite
measure on B such that λ((0, 1]) = 1.

(b) Let X, (Xn)n∈N be real-valued random variables with distribution functions FX ,
(FXn)n∈N respectively.

(i) State what it means to say that Xn → X in distribution in terms of their
distribution functions.

(ii) Now assume that Xn → X in distribution. Let B(0,1) and λ|(0,1) be
the Borel σ-algebra and the Lebesgue measure on (0, 1) respectively. On
((0, 1),B(0,1), λ|(0,1)), define for all ω ∈ (0, 1),

X̃n(ω) = inf{x ∈ R : ω ⩽ FXn(x)} , X̃(ω) = inf{x ∈ R : ω ⩽ FX(x)} .

Show that X̃ has the same distribution as X and X̃n has the same
distribution as Xn for all n, and X̃n → X̃ almost surely.

[You may use the fact that for a non-constant, right-continuous, non-
decreasing function g, f(ω) := inf{x ∈ R : ω ⩽ g(x)} is left-continuous
non-decreasing and f(ω) ⩽ x if and only if ω ⩽ g(x). You may also use the
fact that a non-decreasing function has at most a countable set of points of
discontinuity.]
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28K Applied Probability
(a) Let (Xt)t⩾0 ∼ Markov(Q) be a continuous time Markov chain with generator

matrix Q on a countable state space I, jump times Jn and jump chain (Yn)n⩾0. Show that
for n ⩾ 1 and i1, i2, . . . , in ∈ I,

qinP(Jn ⩽ t < Jn+1|Y0 = i0, . . . , Yn = in) = qi0P(Jn ⩽ t < Jn+1|Y0 = in, . . . , Yn = i0) .

(b) Now let (Xt)t⩾0 be irreducible. Fix any h > 0 and let Zn = Xnh for
n = 0, 1, 2, . . .. Show that (Zn)n⩾0 is a discrete-time Markov chain and give its transition
matrix. Show that (Xt)t⩾0 is recurrent if and only if (Zn)n⩾0 is recurrent.

(c) Finally, let I be finite and f : I → R be a function, identified with the vector
(f(x))x∈I . Show that

Qf(x) = lim
t→0+

Ex(f(Xt))− f(x)

t
,

and

Ex(f(Xt)) = f(x) +

∫ t

0
Ex(Qf(Xs)) ds.

29L Principles of Statistics
(a) Let θ̂ denote the maximum likelihood estimator based on i.i.d. observations

X1, . . . , Xn from a parametric statistical model {f(·, θ) : θ ∈ Θ}, where θ0 ∈ Θ is the true
parameter. Write down the limiting distribution of

√
n(θ̂ − θ0) under standard regularity

conditions. [You should define any quantities involved in the expression of the limiting
distribution.]

Now suppose X1, . . . , Xn are i.i.d. Uniform[−θ, θ] random variables, for a parameter
θ > 0.

(b) Derive an expression for the maximum likelihood estimator θ̂ of θ.

(c) Let θ0 denote the true parameter. By calculating the cumulative distribution

function of θ̂ or otherwise, show that n(θ0 − θ̂)
d→ Z for a random variable Z whose

distribution you should specify.

(d) Find, with brief justification, the limiting distribution of n(θ̂2 − θ20).

(e) Do we have
√
n(θ̂ − θ0)

d→ W for a random variable W with positive variance?
Justify your answer.
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30L Stochastic Financial Models
(a) In the context of a one-period market model, define the terms arbitrage and

risk-neutral measure. State the one-period fundamental theorem of asset pricing.

(b) Given an n× d matrix P , let

A = {φ ∈ Rd : (Pφ)i ⩾ 0 for all i and (Pφ)i > 0 for some i}

and

Q =

{
q ∈ Rn : P⊤q = 0,

n∑

i=1

qi = 1, qi > 0 for all i

}
.

Prove that Q = ∅ if and only if A ≠ ∅.

Consider a one-period market model with d risky assets, where Si
t is the price of asset

i at time t ∈ {0, 1} and r is the interest rate. Assume that there exists at least one risk-
neutral measure for the model, and that the random variables {Si

1− (1+ r)Si
0 : 1 ⩽ i ⩽ d}

are linearly independent.

(c) Let Y be a random variable such that EQ(Y ) > 0 for all risk-neutral measures
Q. Show that there exists a vector θ ∈ Rd such that

Y ⩾ θ⊤[S1 − (1 + r)S0] almost surely,

and we have strict inequality with positive probability.

(d) Let Z be a random variable such that EQ(Z) ⩾ 0 for all risk-neutral measures
Q. Show that there exists a vector ϕ ∈ Rd such that

Z ⩾ ϕ⊤[S1 − (1 + r)S0] almost surely.
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31K Mathematics of Machine Learning

(a) (i) Let Z be a non-empty set. Given z1, . . . , zn ∈ Z and a class F of functions
f : Z → R, what is meant by the empirical Rademacher complexity
R̂(F(z1:n))? Given i.i.d. random variables Z1, . . . , Zn taking values in Z,
what is meant by the Rademacher complexity Rn(F)?

(ii) Suppose H is a class of functions h : Rp → {0, 1} with |H| ⩾ 2. Define the
shattering coefficient s(H, n) and the VC dimension VC(H) of H.

(iii) Let H = {1A : A ∈ A} where A :=
{∏p

j=1(−∞, aj ] : a1, . . . , ap ∈ R
}
. Show

that VC(H) ⩽ p.

(b) A new painkilling drug is tested on n patients. Let Y
(0)
i and Y

(1)
i be the

pain levels, on a scale from 0 (no pain) to M > 0 (maximum pain), of the ith patient,
before and after taking the painkiller respectively. Suppose the vector Xi ∈ Rp records
p additional characteristics of the ith patient, such as their age, weight, height, etc. We

treat
(
Y

(0)
i , Y

(1)
i , Xi

)
∈ [0,M ]2 × Rp for i = 1, . . . , n as independent copies of a random

triple
(
Y (0), Y (1), X

)
. Let A and H be defined as in part (a) (iii) above. We wish to

determine a region A ∈ A where if X ∈ A, we expect the drug to be effective. To this
end, let h∗ and ĥ minimise

Q(h) := E
[(
Y (1) − Y (0)

)
h(X)

]
and Q̂(h) :=

1

n

n∑

i=1

(
Y

(1)
i − Y

(0)
i

)
h(Xi)

respectively, over h ∈ H.

(i) Using any results from the course that you need, show that

EQ(ĥ) ⩽ Q(h∗) + 2Rn(F)

for an appropriate class of functions F that you should specify.

(ii) Using any results from the course that you need, show that

EQ(ĥ) ⩽ Q(h∗) + 2M

√
2p log(n+ 1)

n
.
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32A Dynamical Systems
Let F : I → I be a continuous map of an interval I ⊂ R.

(a) (i) Define what it means for F to be chaotic, according to Glendinning.

(ii) Define what it means for F to be chaotic, according to Devaney.

(b) Suppose now that F has a periodic orbit of period 3.

(i) Show that F also has periodic orbits of period n for all positive integers n.

(ii) Explain briefly why F must have at least four distinct 7-cycles.

(iii) How many distinct 8-cycles must F have?

[Relevant theorems that you use from the course should be stated clearly.]
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33C Integrable Systems
Consider the initial boundary value problem for a function u = u(x, t),

ut = iuxx , 0 < x <∞ , t > 0,

u(x, 0) = u0(x), u(0, t) = h(t) .

Show that the equation ut = iuxx has a formulation as the consistency condition
for the following pair of equations for ψ = ψ(x, t) ∈ C,

ψt + ik2ψ = iux − ku,

ψx − ikψ = u.

By means of the integrating factor e−ikx+ik2t, or otherwise, deduce that

û(k, t)eik
2t − û0(k) =

∫ t

0
eik

2τ [ku(0, τ)− iux(0, τ)] dτ ,

where

û(k, t) =

∫ ∞

0
e−ikxu(x, t)dx, and û0(k) =

∫ ∞

0
e−ikxu0(x)dx .

Hence, by considering also û(−k, t), find a function G = G(k, τ) such that

u(x, t) =
1

2π

∫ +∞

−∞
e−ik2t+ikx [û0(k)− û0(−k)] dk

+
1

π

∫ +∞

−∞

∫ t

0
e−ik2(t−τ)+ikxG(k, τ)dτdk .

[You may assume that u is smooth and rapidly decreasing so that û(k, t) is holomorphic
for Im{k} < 0, and satisfies lim|k|→∞ û(k, t) = 0.]

Part II, Paper 1 [TURN OVER]



24

34B Principles of Quantum Mechanics
(a) A two-dimensional Hilbert space is spanned by two normalised vectors |ϕ⟩ and

|ψ⟩, which are not necessarily orthogonal. Consider the linear operator H defined by

H |ψ⟩ = g |ϕ⟩ , H |ϕ⟩ = g∗ |ψ⟩ ,

where g is a complex constant. Determine the condition on ⟨ψ|ϕ⟩ under which H is
Hermitian. Henceforth assume this condition is satisfied and find the eigenvectors |±⟩ of
H and the corresponding eigenvalues. Verify that the distinct eigenvectors are orthogonal.

(b) Now assume g = 1. The Hamiltonian of a two-dimensional system is given by
H ′ = H +∆(t) where H is as in part (a) and

∆(t) |ϕ⟩ = ∆(t) |ψ⟩ = V (t) (|ϕ⟩+ |ψ⟩) ,

with V (t) a real and time-dependent function. Working in the |±⟩ basis, or otherwise,
determine the exact probability to find the system in state |ϕ⟩ at time t > 0 if it was in
state |ψ⟩ at t = 0.
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35E Applications of Quantum Mechanics
Consider the quantum mechanical scattering of a particle of mass m in three-

dimensions, with Hamiltonian

H =
|p|2
2m

+ V (r) .

Here the potential V (r) is spherically symmetric, and it is localised in some region of
space. Using a partial wave decomposition,

ψ(r) =
∞∑

l=0

ul(r)

r
Pl(cos θ) ,

where Pl(cos θ) are Legendre polynomials, and boundary condition ul(0) = 0, the time-
independent Schrödinger equation for the wavefunction ψ(r) of the particle reduces to

(
− d2

dr2
+
l(l + 1)

r2
+

2m

ℏ2
V (r)

)
ul(r) = k2ul(r) , with E =

ℏ2k2

2m
.

(a) The asymptotic behaviour, for large r, of the wavefunction can be written

ψ(r) ∼
∞∑

l=0

2l + 1

2ik

(
(−1)l+1 e

−ikr

r
+ Sl(k)

eikr

r

)
Pl(cos θ) .

For real values of k, show that the coefficients Sl(k) satisfy

Sl(k)
∗ Sl(k) = 1 , Sl(k)Sl(−k) = 1 .

Hence deduce that Sl(k) = e2iδl(k) for some real function δl(k), and that δl(k) = −δl(−k).
(b) Focus now on the low-momentum behaviour, where the l = 0 mode dominates.

For some choice of potential V (r),

S0(k) =
(k + 3iλ)(k + 2iλ)

(k − 3iλ)(k − 2iλ)
,

where λ is a real positive constant. Evaluate the scattering length as, and give an estimate
for the total cross-section σT at low energies.

Briefly explain the significance of the poles of S0(k). Are there any resonances in
S0(k)? Why is it important that λ is positive?
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36B Statistical Physics
(a) What systems are described by a canonical ensemble? If the energy of the ith

microstate is Ei, with i = 0, 1, 2, . . ., write down an expression for the partition function
Z in terms of temperature T and the Boltzmann constant kB.

(b) Calculate the partition function Z1 for a single classical ultra-relativistic spinless
particle moving in three-dimensional space in a potential U(x). [Ultra-relativistic means
that the energy-momentum relation is E = pc, where c is the speed of light.]

(c) A system of a large number N of identical, non-interacting particles of the type
described in part (b) is in equilibrium at temperature T in a potential

U(x) =
(x2 + y2 + z2)n

V 2n/3
,

where n is a positive integer and V > 0 is an external parameter analogous to volume.

(i) Calculate the partition function and hence show that the Helmholtz free
energy is

F = −NkBT
[
lnV +A ln(kBT ) + ln In +B

]
,

where

In =

∫ ∞

0
u2 e−u2n

du ,

and you should determine A and B.

(ii) Considering the conjugate pressure to V , p = −
(
∂F
∂V

)
T,N

, derive the
equation of state.

(iii) Compute the average energy E, the variance of energy (∆E)2 and the heat
capacity CV for the system. Comment on the behaviour of (∆E)/E in the
thermodynamic limit.

(iv) Obtain the local particle number density as a function of x and hence
determine the most likely |x| to find a particle.
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37D Electrodynamics
Consider a spacetime with coordinates xµ = (ct,x) and metric ηµν =

diag(−1, 1, 1, 1), where µ, ν = 0, 1, 2, 3 and c is the speed of light. A 4-vector potential
Aµ(x) fills spacetime and is described by the action

S[Aµ] = − 1

µ0c

∫ (
1
4FµνF

µν + m2

2 AµA
µ − µ0AµJ

µ
)
d4x ,

where Fµν = ∂µAν − ∂νAµ is the field strength tensor, Jµ(x) is a conserved 4-current
density, m and µ0 are constants and m ⩾ 0.

(a) Show that the equations of motion for the field,

∂µF
µν −m2Aν = −µ0Jν ,

follow from the principle of stationary action.

(b) Clearly state the conditions for the action to be invariant under Lorentz
transformations and under gauge transformations of the form Aµ → Aµ + ∂µχ, where
χ is a scalar field.

(c) Show that for m > 0 the equations of motion imply the identity ∂µA
µ = 0.

(d) Writing the vector potential as Aµ = (ϕ/c,A), show that form ⩾ 0 the equations
of motion for ϕ and A can be written as

□ϕ+
∂α

∂t
−m2ϕ = −cµ0J0 , (†)

□A−∇α−m2A = −µ0J ,

where α = 1
c2

∂ϕ
∂t +∇ ·A and □ = − 1

c2
∂2

∂t2
+∇2 is the wave operator.

(e) For a point charge q at rest, the 4-current density is J0 = cqδ(x) and J = 0,
where δ denotes the 3-dimensional δ function. By applying a Fourier transform in the
spatial coordinates to the equation of motion (†), show that form > 0, a time-independent
field solution for a point charge at r = 0 is given by

ϕ = λ
exp(−mr)

r
, A = 0 ,

where r = |x| and λ is a constant you do not need to determine. [Hint: You may use
without proof that the inverse Fourier transform of 1/(|k|2 +m2) is

∫
eik·x

|k|2 +m2

d3k

(2π)3
= C

e−m|x|

|x| ,

where k is the wave vector and C is a non-zero constant.]

Provide a brief physical interpretation of this result, including the limiting case
where m→ 0, and connect this interpretation to the result of part (b).
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38B General Relativity

Consider a massive test particle moving in the Schwarzschild metric of a black hole
with mass m (in units with c = G = 1):

ds2 = −
(
1− 2m

r

)
dt2 +

(
1− 2m

r

)−1
dr2 + r2( dθ2 + sin2 θ dϕ2 ) .

(a) Assuming that the motion lies in the equatorial plane θ = π/2, justify briefly
why

h = r2ϕ̇ and
1

2
ṙ2 − m

r
+

h2

2r2
− mh2

r3

are constants of the motion, where dots denote derivatives with respect to the proper time
of the particle.

(b) For a circular orbit with a fixed value of r, determine h and hence deduce that
(i) r > 3m and (ii) (dϕ/dt)2 = m/r3.

(c) Now consider a nearly circular orbit with shape given by u(ϕ) = 1/r. Let prime
denote differentiation with respect to ϕ, so that u′ = du/dϕ. Given that ṙ = −hu′, and
assuming if needed that u′ ̸= 0, show that

u′′ + u =
m

h2
+ 3mu2 .

For m/h≪ 1, this equation has an approximate solution of the form

u =
m

h2
(1 + α) + A cos[(1 + β)ϕ] ,

where the constant A obeys |A| ≪ 1 but is otherwise arbitrary. The constants α and β
are small for m/h≪ 1. Verify this solution by working to first order in A and determining
the constants α and β to leading non-trivial order in m/h.

Comment briefly on the significance of your result for β.
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39C Fluid Dynamics II
A solid cylinder of density ρ+∆ρ, length L and radius a < L is placed with its axis

vertical at the centre of a long, closed, vertically oriented cylindrical container of radius
a + h, where h ≪ a. The container is otherwise filled with an incompressible fluid of
density ρ and dynamic viscosity µ, through which the solid cylinder falls with speed U .
Ignoring end effects, show that the downwards velocity field in the thin gap between the
solid cylinder and the container can be approximated as

u = − ∆p

2µL
y(h− y) + U

y

h
,

where y is the coordinate directed inwards across the thin gap from the wall of the
cylindrical container and ∆p is the dynamic pressure difference between the fluid below
and above the cylinder. Determine the associated volume flux along the gap and the
viscous shear stress on the solid cylinder.

Use global mass conservation to show that ∆p ≈ 6µaLU/h3. Show that the
associated form drag is much larger than the viscous force on the cylinder and hence
determine the speed of fall U .

40D Waves
(a) Starting from the linearized mass and momentum conservation equations gov-

erning sufficiently small and smooth perturbations of a compressible homentropic inviscid
fluid at rest with constant reference density ρ0, pressure p0 and sound speed c0, show that
the pressure perturbation p̃ satisfies a wave equation. How is p̃ related to the velocity
potential ϕ?

(b) Consider a semi-infinite straight duct of uniform cross-section, aligned along the
x−axis for −L ⩽ x < ∞. There is a piston at the end of the duct which performs
oscillations ϵeiωt about its equilibrium position at x = −L. The duct is filled with
compressible fluid of density ρ− and sound speed c− in the region −L < x < 0 and
with compressible fluid of density ρ+ and sound speed c+ in the region 0 < x < ∞.
The piston’s oscillations are sufficiently small so that you may assume 0 < ϵ ≪ L and
|ϵω| ≪ min(c−, c+).

(i) Show that the complex amplitude of the velocity potential in x > 0 is given
by

ϵc−
iρ+ρ− sinλ− c−

c+
cosλ

(
ρ+
ρ−

)2
sin2 λ+

(
c−
c+

)2
cos2 λ

, where λ =
ωL

c−
.

(ii) Consider the two sets of frequencies of oscillation such that λ = nπ and
λ = (n + 1

2)π for integer n. Calculate the time-averaged acoustic energy
flux in x > 0 for each set, and briefly comment on the behaviour in the case
where ρ+ ≪ ρ− and c+ ≈ c−.
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41A Numerical Analysis
(a) The Fourier transform of an infinite sequence (vm)m∈Z is defined as

v̂(θ) =
∑

m∈Z
vme

−imθ, −π ⩽ θ ⩽ π.

(i) Prove Parseval’s identity:

∑

m∈Z
|vm|2 = 1

2π

∫ π

−π
|v̂(θ)|2 dθ.

(ii) Consider the following two-step recurrence in n for unm with n ∈ Z+ and
m ∈ Z:

un+1
m =

1

1 + µ

[
(1− µ)un−1

m + µ(unm+1 + unm−1)
]
,

with µ ⩾ 0. Use Fourier analysis to determine the range of µ for which the
method is stable.

(b) The linear system dy/dt = Ay is discretised by the scheme

yn+1 = (I − kB)−1(I − kC)−1yn,

with B+C = A and k = ∆t, where y ∈ RM and A, B and C are M ×M square matrices.

(i) Define the exponential of a matrix. Show that for k ≪ 1,

exp[kB] exp[kC] = exp[k(B + C)] + 1
2k

2(BC − CB) +O(k3).

(ii) Find the order of the local truncation error of the scheme.

(iii) In the special case when the matrices B and C commute, does the order of
the scheme change?
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