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SECTION I

1E Groups, Rings and Modules
State Eisenstein’s irreducibility criterion.

(i) Let n > 1 be an integer. Prove that Xn−1 +Xn−2 + · · ·+X +1 is irreducible in
Z[X] if and only if n is a prime number.

(ii) Show that the polynomial X2 + Y 2 − 1 in Q[X,Y ] is irreducible. Would your
argument work over any field?

2F Analysis and Topology
Let (X, d) be a metric space. Define what it means for h : X → X to be a

contraction.

State and prove the contraction mapping theorem.

Let f : R → R be a twice differentiable function, and let r be a root of f . Suppose
that on some neighbourhood U of r, |f ′(x)| > δ for some δ > 0 and |f ′′(x)| < M for some
M < ∞. Define g : U → R by g(x) = x− f(x)/f ′(x). Show that g′(r) = 0 and that g′ is
bounded by 1/2 in absolute value on some neighbourhood U ′ of r. Deduce that r is the
unique fixed point of g on U ′.

3B Methods
For integer n, the Chebychev polynomials Tn satisfy the equation

(1− x2)T ′′
n − xT ′

n + n2Tn = 0 , −1 < x < 1 .

Put this equation into Sturm-Liouville form and derive an orthogonality relation between
Tn and Tm for n ̸= m. Find a second order differential equation satisfied by the derivatives
Un = T ′

n, and an orthogonality relation between Un and Um for n ̸= m.
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4C Electromagnetism
The two equations of magnetostatics are

∇ ·B = 0 and ∇×B = µ0J.

Explain briefly how the current density J can be non-zero even though the charge density
vanishes.

Explain how a vector potential A can be introduced to solve one of these equations.
Is A unique?

Show that in Cartesian coordinates (x, y, z) the following current density is consist-
ent with charge conservation:

J = J0




sin(λz)
cos(λz)

0




with λ and J0 constant. What is the resulting magnetic field? What is the vector potential?

[Hint: Consider ∇× J.]

5D Fluid Dynamics
A fluid has velocity u = (y, ax) in Cartesian coordinates (x, y), where a is a real

constant. Show that the flow is incompressible, determine a stream function ψ(x, y) for
the flow, and sketch the streamlines for a > 0 and for a < 0.

For what value of a is the flow also irrotational? In this case, determine a velocity
potential ϕ(x, y) for the flow.
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6H Statistics
After losing a large amount of money, an unlucky gambler questions whether the

game was fair and the die was really unbiased. The last 90 rolls of this die gave the
following results:

score on the die 1 2 3 4 5 6

number of times it occurred 20 15 12 17 9 17

(i) Suppose the gambler wishes to test the hypothesis that the die is fair. What are
the null and alternative hypotheses?

(ii) Describe Pearson’s test. What is the limiting distribution of the Pearson statistic
under the null hypothesis?

(iii) Compute the Pearson statistic for this test.

(iv) What is the asymptotic p-value of the test (written as a quantile of an
appropriate distribution)?

[Standard results can be quoted without proof, provided they are stated clearly.]

7H Optimisation
Consider the following optimisation problem:

minimise x1 log x1 − x2

subject to: x1 + x2 ⩽ c√
x2 ⩽ d

x1, x2 ⩾ 0.

At x1 = 0, the value of x1 log x1 is defined to be equal to 0, its limiting value.

(a) Use the Lagrange method to search for a solution when c = 3/e2 and d = 2/e, where
e is the base of the natural logarithm.

(b) Now use the Lagrange method to search for a solution when c = 3/e2 and d = 1/e.
Explain your observations.
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SECTION II

8G Linear Algebra

(a) Let A be an n×n complex matrix. Define the characteristic polynomial of A. Show
that A is similar to an upper-triangular matrix.

Define the minimal polynomial mA of A. Prove that mA exists and is unique. Prove
that deg(mA) ⩽ n.

[You may assume properties of determinants and results about matrix representation
of linear maps. Any other results used must be proved.]

(b) Let V be the real vector space of all real-valued functions on R. For each
r ∈ R× = R \ {0}, define Dr : V → V by (Drf)(x) = f(x + r) − f(x) for f ∈ V ,
x ∈ R. Find the eigenvalues of Dr and show that the corresponding eigenspaces are
infinite-dimensional. Show further that DrDs = DsDr for all r, s ∈ R×.

Call f ∈ V periodic if f ∈ kerDr for some r ∈ R×. Show that a polynomial function
in V of degree n cannot be written as a sum of n periodic functions.

9E Groups, Rings and Modules

(a) If R is a Noetherian ring, show that R/I is Noetherian for each ideal I in R.

State the Hilbert basis theorem.

Explain briefly why Z is Noetherian. Deduce from these results that the ring Z[
√
d]

for a non-square integer d is Noetherian.

(b) Let K be any field. Consider the set

R =
{
f(X,Y ) =

∑

i,j

cijX
iY j ∈ K[X,Y ] : c0j = cj0 = 0 whenever j > 0

}
.

Verify that R is a subring of K[X,Y ] and determine, with justification, whether or
not R is Noetherian.
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10F Analysis and Topology

(a) Define what it means for a topological space (X, τ) to be compact. Define what it
means for (X, τ) to be Hausdorff.

Show that a closed subspace Y of a compact space (X, τ) is compact.

Let (X, τ) be a compact Hausdorff space. Show that for any two disjoint closed
subsets A and B of X, there exist disjoint open sets U and V containing A and B,
respectively.

(b) A topological space (X, τ) is called locally compact if for each x ∈ X and every
neighbourhood U of x, U contains a compact neighbourhood K of x. Show that a
compact Hausdorff space is locally compact.

Let (X, τ) be a locally compact Hausdorff space. Let A ⊆ X be such that A ∩K is
closed in K for every compact K ⊆ X. Show that A is closed.

11G Geometry
The torus T 2 and Klein bottle K can both be described as quotients of R2 by

equivalence relations ∼ and ≃ given by

(x, y) ∼ (x+ a, y + b) for (a, b) ∈ Z2

and
(x, y) ≃ (x+ c, (−1)cy + d) for (c, d) ∈ Z2 ,

respectively. Equip T 2 and K with the standard flat Riemannian metrics induced from
R2 by these quotient constructions.

(a) Show that the map π̃ : R2 → R2 defined by π̃(x, y) = (2x, y) induces a well-
defined 2:1 continuous map π : T 2 → K.

(b) Draw a fundamental domain, with arrows indicating boundary gluing directions,
for each of the two quotients.

(c) On separate copies of the fundamental domain for K, draw the images of closed
geodesics γ1, γ2 and γ3 with the following properties: γ1 cuts K into a Möbius strip; γ2
cuts K into a cylinder; γ3 intersects itself in a single point.

(d) For each i, how many closed geodesics γ̃i are contained in the preimage of the
image of γi under π? For the purpose of counting, we consider two closed geodesics the
same if they have the same image. On separate copies of the fundamental domain for T 2,
draw examples of γ̃1, γ̃2 and γ̃3.
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12B Complex Analysis OR Complex Methods
By considering the integral of an appropriate function on a semi-circular contour in

the upper half plane, or otherwise, compute

∫ ∞

0

(lnx)4

1 + x2
dx .

[Hint: You may use that

∫ ∞

0

(lnx)2

1 + x2
dx =

π3

8
.]

13C Variational Principles
A functional of y(x) takes the form

I[y] =

∫ x0

0
F (y′, y, x) dx .

Derive the Euler-Lagrange equation and explain why solutions to this equation, assuming
that they exist, extremise I[y] under the assumption that y(x) is fixed at each end.

The system is said to have free boundary conditions if ∂F/∂y′ = 0 at the end points.
Explain why the solutions to the Euler-Lagrange equations, if they exist, also extremise
I[y] if free boundary conditions are imposed at each end.

Consider the functional of y(x) and z(x) given by

J [y, z] =

∫ x0

0

[
y′ 2 + z′ 2 + 2yz

]
dx .

Find the most general solution to the Euler-Lagrange equations subject to the requirement
that y(0) = z(0) = 0. For which values of x0 are there solutions if we impose free boundary
conditions at x0? Find these solutions.
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14B Methods
Define the convolution f ∗ g of two functions on the real line. The function F is

defined by

F (x) =

{
e−x if x ⩾ 0

0 if x < 0.

A sequence of functions F1, F2, F3 . . . is defined by F1 = F , Fn = F ∗ Fn−1 for n ⩾ 2 (so
Fn is the n-fold convolution of F with itself). Use induction to find Fn, without using the
Fourier transform.

The Fourier transform f̂ of a function f : R → C is given by

f̂(k) =

∫ +∞

−∞
e−ikxf(x)dx.

Compute the Fourier transform F̂n.

State and prove the convolution theorem. Verify that F̂n = (F̂ )n.

Using the identity ∫ +∞

−∞
e−ikxdk = 2πδ(x)

and interchanging the order of integration, show that the convolution theorem with an
appropriate choice of g implies the Parseval identity

∫ +∞

−∞
|f(x)|2dx =

1

2π

∫ +∞

−∞
|f̂(k)|2dk .

[You may assume that f and f̂ are integrable and decrease rapidly at infinity, and that the
order of integration in multiple integrals can be interchanged.]

Deduce the value of the integral

∫ +∞

−∞

1

(1 + k2)n+1
dk.
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15A Quantum Mechanics

(i) Calculate the commutation relation between a position operator x̂ and its associated
momentum p̂x = −iℏ∂/∂x.

(ii) Write down the time-dependent Schrödinger equation for a quantum mechanical
system with Hamiltonian Ĥ and wavefunction ψ.

(iii) Calculate the rate of change of the expectation value of some operator Ô = Ô(t) in

terms of ⟨[Ô, Ĥ]⟩ and ⟨∂Ô∂t ⟩.

(iv) Express each of [x̂, p̂2x] and [x̂2, p̂x] in terms of a single operator.

(v) Consider the two-dimensional harmonic oscillator whose Hamiltonian is

Ĥ =
p̂2x + p̂2y
2m

+
mω2

2
(x̂2 + ŷ2).

Setting L̂ = x̂p̂y − ŷp̂x, calculate [L̂, Ĥ].

(vi) Changing variables to z = x+ iy, consider the two degenerate energy eigenstates

ψ = Az exp(−β|z|2) and ψ∗ = Az∗ exp(−β|z|2)

where A and β are positive real constants. At time t = 0, a state
√
5
3 ψ + 2

3ψ
∗ is

prepared. What is the expectation value of L̂ at a later time t > 0?
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16C Electromagnetism
Throughout this question, use the Minkowski metric ηµν = diag(−1, 1, 1, 1).

The electromagnetic covector potential is

Aµ = (−Φ/c,Ai),

where Φ is the electrostatic potential, Ai are the components of the vector potential and
c is the speed of light. The field-strength tensor is defined as

Fµν = ∂µAν − ∂νAµ,

where ∂µ denotes differentiation with respect to the spacetime coordinates xµ = (ct, xi).

Define a gauge transformation of Aµ and show that it leaves Fµν unchanged.

Compute the components of Fµν in terms of the electric and magnetic fields, which
you should define in terms of Φ and Ai.

Explain how two of the four Maxwell equations follow automatically from the
definition of Fµν . Show how the remaining two Maxwell equations follow from

∂νF
µν = µ0j

µ

for some 4-vector jµ that you should define.

Consider the tensor

Tµν =
1

µ0

(
FµρF ν

ρ −
1

4
ηµνF ρσFρσ

)
.

Compute T 00 in terms of the electric and magnetic fields and identify its physical meaning.

Show that, for any vector kµ that is null (i.e. lightlike), if Tµνkµkν is non-vanishing
then it has a particular sign that you should determine. [Hint: Consider a particular
inertial frame chosen to simplify your expression.]
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17D Numerical Analysis

(a) Define the linear stability domain of a numerical method to solve the system of
equations

y′ = f(t,y).

What does it mean for the numerical method to be A-stable? Determine the linear
stability domains for the forward and backward Euler methods, and deduce whether
each is A-stable.

(b) What does it mean for a differential equation y′ = f(t,y) to be stiff? Illustrate your
answer with the example

y′ = My, M =

(
−10 10
81 −91

)
,

determining what step size h is required to maintain stability of the forward and
backward Euler methods, respectively, applied to this ODE.

(c) For the ODE y′ = My with a general matrix M, use the Milne device with the
forward and backward Euler methods to determine a local error estimate, and
describe how you would use that estimate to construct a stable integration scheme
that achieves a desired tolerance in a reasonably small number of steps.

18H Markov Chains
An urn initially contains m green balls and m + 2 red balls. A ball is picked at

random: if it is green, a red ball is also removed and both are discarded; if it is red, it is
replaced together with an extra red and an extra green ball. This is repeated until there
are no green balls in the urn. Compute the probability that the process terminates. [Your
answer should be a function of m.]

[Standard results can be quoted without proof, provided they are stated clearly.]

END OF PAPER
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