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SECTION I

1A Differential Equations
(a) Find all solutions of the differential equation for y(x)

xyy′′ − xy′2 = yy′.

[Hint: you may find the substitution z(x) = y′(x)/y(x) helpful.]

(b) For n ̸= 0, 1, show that the substitution z = y1−n transforms the differential
equation for y(x)

y′ + P (x)y = Q(x)yn

into a linear differential equation that you should state explicitly.

Hence, or otherwise, solve the differential equation for x(t) > 0

1√
x
ẋ = 2te−t3 − 6t2

√
x

subject to the condition x(1) = 4.

2A Differential Equations
A real-valued function f(x) is differentiable on some interval (−a, a). For any

x, y ∈ (−a, a) such that x+ y ∈ (−a, a), the equality

f(x+ y) =
f(x) + f(y)

1− f(x)f(y)

holds.

(i) Show that f(0) = 0.

(ii) By considering the definition of the derivative as a limit, or otherwise, show that
there exists a number C such that f ′(x) = C(1 + f2(x)) everywhere on the interval
(−a, a).

(iii) Hence find the most general form of f(x). Also, find f(x) that satisfies f ′(0) = 2.
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3F Probability
(a) State Markov’s inequality. Prove that for any random variable X and any t > 0,

P(X ⩾ x) ⩽ e−txMX(t) ,

where MX(t) = E(etX) is the moment generating function of X.

(b) Let X1, X2, . . . , Xn be i.i.d. Poisson random variables with mean 1. Let
S = X1 + · · ·+Xn.

(i) Compute the moment generating function of S. Find the distribution of S.

(ii) Prove that
P(S ⩾ 2n) ⩽ (e/4)n .

[You may use the fact that the moment generating function MX(t) of a Poisson random
variable X with mean λ is eλ(e

t−1).]

4F Probability
Let (X1, X2) have a bivariate normal distribution with E(Xi) = µi, var(Xi) = σ2i

for i = 1, 2 and corr(X1, X2) = ρ.

(a) Write down the joint probability density function of (X1, X2).

(b) Find the conditional probability density function of X1|X2.

(c) If σ1 = σ2 = σ, show that X1+X2 and X1−X2 are independent random variables.
Find their distributions.
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SECTION II

5A Differential Equations
Let φ1(x) and φ2(x) be non-trivial solutions of the equations

φ′′
1 + q1(x)φ1 = 0

and
φ′′
2 + q2(x)φ2 = 0,

where q1(x) and q2(x) are continuous functions such that q1(x) ⩽ q2(x) for all x.

(i) Let x1 and x2 with x1 < x2 be consecutive zeroes of φ1. By considering

∫ x2

x1

(q1(x)− q2(x))φ1(x)φ2(x) dx

or otherwise, show that if both φ1(x) and φ2(x) are strictly positive on (x1, x2) then
q1(x) ≡ q2(x) on (x1, x2).

(ii) Hence prove that between any two consecutive zeroes x1 and x2 of φ1(x), there
exists at least one zero of φ2(x), unless q1(x) ≡ q2(x) on (x1, x2).

(iii) Hence show that any solution of the equation

y′′ + (2 + cos 3x)y = 0

has at least one zero on the interval [−1, π − 1].

(iv) Show that each non-trivial solution of the equation

√
1 + x3 y′′ + y = 0

has at most one zero on the interval [2, 6].
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6A Differential Equations
Define the generating functionG(x) for a difference equation F (un, un−1, . . . , u0) = 0

as
G(x) = u0 + u1x+ u2x

2 + · · · .

(a) Consider the difference equation un + un−1 − 6un−2 = n for n ⩾ 2. Find the
solution of this equation, given u0 = 0, u1 = 2.

Show that
(1 + x− 6x2)G(x) = x+

x

(1− x)2

and use this expression to find the power series expansion of G(x). Verify that this
expansion is consistent with the un determined directly above.

[Hint: it may be helpful to note that 1 + 2x+ 3x2 + 4x3 + · · · = 1
(1−x)2

.]

(b) Find the generating function G(x) for the difference equation

un − 2un−1 =
⌊n
2

⌋
, n ⩾ 1, u0 = 1,

where ⌊n2 ⌋ is the greatest integer less than or equal to n
2 . Hence solve this equation.
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7A Differential Equations
Consider the following system of equations involving two functions, x(t) and y(t):

ẋ = y + kx(x2 + y2),

ẏ = −x+ ky(x2 + y2),

where k is a constant.

(i) Show that there exists a function F (x(t), y(t)) (which you should state explicitly in
terms of x(t) and y(t)) such that

dF

dt
= 2kF 2.

Solve this equation assuming that F = 1 at t = 0.

(ii) Find the equilibrium point of this system and show that the linearised system has
a centre at this point. Taking into account the nonlinear terms, deduce for which
values of k this equilibrium point is stable, and why. Do the trajectories rotate
clockwise or anticlockwise as t increases, and why?

(iii) By changing variables to polar coordinates, via x(t) = r(t) cos θ(t) and y(t) =
r(t) sin θ(t), find f(r) and g(θ) such that

ṙ = f(r),

θ̇ = g(θ).

Integrate these equations to find r(t) and θ(t) if r(0) = 1 and θ(0) = 0.

(iv) Now the system is modified to:

ẋ = y + x− 2x(x2 + y2),

ẏ = −x+ y − 2y(x2 + y2).

At t = 0, the system is at a point on the circle x2 + y2 = 1. Determine x2 + y2 as a
function of t. Find limt→∞(x2 + y2).
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8A Differential Equations
The dynamics of a gas is described by a partial differential equation for the complex

function ψ(x, t) =
√
ρ(x, t) exp[iS(x, t)] as

−2i
∂ψ

∂t
=
∂2ψ

∂x2
+ (1− |ψ|2)ψ. (∗)

Let v(x, t) = ∂S/∂x.

(i) Determine the real-valued equations describing the gas dynamics in terms of ρ and
v as

∂ρ

∂t
=

∂A

∂x
,

∂v

∂t
=

∂B

∂x
+
∂C

∂x
,

where you should specify the functions A that depends only on ρ and v, B that
depends only on ρ and its derivatives in x, and C that depends only on v.

(ii) Write down the ordinary differential equation for a(x) =
√
ρ(x, t) in the case of a

stationary gas (S = constant). What is the constant solution a(x) = d > 0 of this
equation?

(iii) There are solutions of (∗) of the form ψ(x, t) = ψ0(ξ) where ξ = x − Ut with U a
constant satisfying 0 ⩽ U < 1√

2
. Determine the ordinary differential equation that

ψ0(ξ) satisfies if it is known that Im(ψ0(ξ)) =
√
2U for all ξ and |ψ0(ξ)| → d as

ξ → ±∞.

(iv) Plot |ψ0(ξ)|2 for the solutions when U = 0 and when U = 1/2 as a function of ξ,
and discuss how these solutions evolve in time.
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9F Probability
Let S1, S2, . . . be independent exponential random variables with means E(Si) =

1/qi for i = 1, 2, . . .. Let T = min{S1, S2, . . . , Sn} and let K be the value of i for which
Si = T .

(i) Find P(K = k, T ⩾ t) for k ∈ {1, 2, . . . , n}, t ⩾ 0.

(ii) Find the distributions of the random variables K and T . Show that K and T are
independent.

Now assume that qi = 1 for all i = 1, 2, . . ..

(iii) Show that for all n ⩾ 1, the probability density function of Xn =
∑n

i=1 Si is given
by

f(x) =
xn−1

(n− 1)!
e−x , x > 0 .

(iv) Let N be a geometric random variable independent of the sequence S1, S2, . . ., with
P(N = n) = p(1− p)n−1 for n = 1, 2, . . .. Define

Y =
N∑

i=1

Si .

Find E(eθY ) for θ < p. Hence or otherwise, find the distribution of Y .

[You may use the fact that the moment generating function MX(t) of an exponential
random variable X with mean 1/λ is λ/(λ− t) for t < λ.]
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10F Probability
A fair n-sided die is rolled repeatedly so that each roll is independent. We say a

match occurs if the face i appears on the i-th roll.

(i) Find the probability pn that at least one match occurs in the first n rolls. What is
the value of limn→∞ pn?

Now let Tn be the minimum number of rolls required until all the n faces have appeared
at least once.

(ii) Show that Tn is the sum of n independent geometric random variables.

(iii) Find the expectation E(Tn).

(iv) Find the variance var(Tn). Show that var(Tn) ⩽ Cn2 where C =
∑∞

i=1 i
−2 .

[You may use the fact that the variance of a geometric random variable of parameter
p is (1− p)/p2.]

(v) Show that for any ε > 0 we have

lim
n→∞

P
(∣∣∣∣

Tn
n log n

− 1

∣∣∣∣ > ε

)
= 0 .

[You may use the fact that
∑n

i=1 i
−1/ log n → 1 as n → ∞. You may use standard

inequalities from lectures if you state them clearly.]
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11F Probability
Let (Sn : n ⩾ 0) be a simple random walk on Z with S0 = 0 and P(Sn−Sn−1 = 1) = p

and P(Sn − Sn−1 = −1) = q = 1− p for all n ⩾ 1.

(i) Find the distribution of Sn.

(ii) Find bn, cn so that

P
(
Sn − bn
cn

⩽ x

)
→ Φ(x)

as n→ ∞, where Φ is the standard normal distribution function.

[You may quote standard results from lectures.]

From now on, assume that p = q = 1/2.

(iii) Let T be the random number of steps taken by the random walk until it first hits
−a or b for some a, b ∈ N. Find E(T ).

(iv) Let Vn be the number of visits to the origin until time n, that is, Vn =
|{0 ⩽ i ⩽ n : Si = 0}|. Using Stirling’s formula or otherwise, prove that there exists
some c > 0 such that

E(V2n) ⩾ c
√
n

for all n.
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12F Probability
A graph on a set V is a set of some unordered pairs of (distinct) elements of V : we

call these the edges of the graph and the elements of V are called the vertices. The degree
of a vertex is the number of edges that contain it.

We form a random graph with n vertices v1, v2, . . . , vn by including the edge vivj
with probability p for all i ̸= j independently.

(i) Find the distribution of the degree of the vertex vi.

We call a vertex isolated if its degree is 0. Let N be the number of isolated vertices.

(ii) Find the expectation E(N).

(iii) Let p = c log n/n. Show that if c > 1, then P(N = 0) → 1 as n→ ∞.

(iv) Show that if p is such that var(N)/E(N)2 → 0 as n → ∞, then P(N = 0) → 0 as
n→ ∞.

(v) Find E(N2). Now let p = c log n/n with c < 1. Show that P(N = 0) → 0 as n→ ∞.

[You may want to use the inequalities e−x ⩾ 1−x for all x; and for any α > 1, e−αx ⩽ 1−x
for all x ⩾ 0 small enough (depending on α). You may use standard inequalities from
lectures if you state them clearly.]

END OF PAPER
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