
MATHEMATICAL TRIPOS Part IB 2024

List of Courses

Analysis and Topology

Complex Analysis

Complex Analysis or Complex Methods

Complex Methods

Electromagnetism

Fluid Dynamics

Geometry

Groups, Rings and Modules

Linear Algebra

Markov Chains

Methods

Numerical Analysis

Optimisation

Quantum Mechanics

Statistics

Variational Principles



2

Paper 2, Section I

2F Analysis and Topology
Let (X, d) be a metric space. Define what it means for h : X → X to be a

contraction.

State and prove the contraction mapping theorem.

Let f : R → R be a twice differentiable function, and let r be a root of f . Suppose
that on some neighbourhood U of r, |f ′(x)| > δ for some δ > 0 and |f ′′(x)| < M for some
M < ∞. Define g : U → R by g(x) = x− f(x)/f ′(x). Show that g′(r) = 0 and that g′ is
bounded by 1/2 in absolute value on some neighbourhood U ′ of r. Deduce that r is the
unique fixed point of g on U ′.

Paper 4, Section I

2F Analysis and Topology
Define what it means for a subset A of a topological space (X, τ) to be connected.

Let f : X → Y be a continuous map between topological spaces (X, τ) and (Y, σ).
Show that if X is connected, then f(X) is connected.

Let Y = {0, 1} be equipped with the discrete topology. Show that a topological
space (X, τ) is connected if and only if every continuous function h : X → Y is constant.

Given a subset A of a topological space (X, τ), define the closure Cl(A) of A to be
the set of all points of A together with the set of points y ∈ X such that every open set
in τ containing y contains some point of A other than y. Using the preceding part or
otherwise, show that given a connected set C ⊆ X, Cl(C) is connected.

Part IB, 2024 List of Questions
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Paper 1, Section II

10F Analysis and Topology

(a) Define what it means for a metric space (X, d) to be complete. Show that a closed
subspace Y of a complete metric space (X, d) is complete.

(b) Let (X, d) be a metric space. For non-empty A ⊆ X and r ⩾ 0, define the r-
expansion Er(A) by Er(A) =

⋃
a∈AB(a, r), where B(a, r) is the closed ball of radius

r centred at a. Given non-empty A,B ⊆ X, is it always true that B ⊆ Er(A) if and
only if A ⊆ Er(B)? Justify your answer.

Let H(X) denote the set of non-empty closed and bounded subsets of X. Given
A,B ∈ H(X), define

dH(A,B) = inf{r ⩾ 0 : A ⊆ Er(B) and B ⊆ Er(A)}.

Show that dH is a metric on H(X). Would this continue to hold if the word ‘closed’
were omitted from the definition ofH(X)? [You may assume that dH is well defined.]

Show that the function θ : X → H(X) defined by x 7→ {x} is a distance-preserving
map, and that its image is closed in H(X). Deduce that if (H(X), dH) is complete,
so is (X, d).

Paper 2, Section II

10F Analysis and Topology

(a) Define what it means for a topological space (X, τ) to be compact. Define what it
means for (X, τ) to be Hausdorff.

Show that a closed subspace Y of a compact space (X, τ) is compact.

Let (X, τ) be a compact Hausdorff space. Show that for any two disjoint closed
subsets A and B of X, there exist disjoint open sets U and V containing A and B,
respectively.

(b) A topological space (X, τ) is called locally compact if for each x ∈ X and every
neighbourhood U of x, U contains a compact neighbourhood K of x. Show that a
compact Hausdorff space is locally compact.

Let (X, τ) be a locally compact Hausdorff space. Let A ⊆ X be such that A ∩K is
closed in K for every compact K ⊆ X. Show that A is closed.

Part IB, 2024 List of Questions [TURN OVER]
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Paper 3, Section II

11F Analysis and Topology
Let X,Y be non-empty sets.

(a) Let dX , dY be metrics on X, Y , respectively. Define what it means for a function
f : X → Y to be uniformly continuous.

We say that a sequence of functions fn : X → Y converges uniformly to a function
f : X → Y with respect to dY if for all ϵ > 0, there exists N ∈ N such that for all
n ⩾ N and for all x ∈ X, dY (fn(x), f(x)) < ϵ.

Show that a uniform limit of uniformly continuous functions fn : X → Y is
uniformly continuous. Give an example to show that the conclusion is false if
convergence is pointwise but not uniform.

(b) Recall that two metrics d1 and d2 on X are equivalent if the identity map
id : (X, d1) → (X, d2) is a homeomorphism.

Show that if d1 and d2 are such that there exist constants α, β > 0 with the property
that for every x, y ∈ X,

αd1(x, y) ⩽ d2(x, y) ⩽ βd1(x, y),

then d1 and d2 are equivalent.

Does the reverse conclusion hold? Give a proof or a counterexample as appropriate.

If d3 and d4 are equivalent metrics on Y , is it true that a sequence of functions
fn : X → Y converges uniformly with respect to d3 if and only if it converges
uniformly with respect to d4? Give a proof or a counterexample as appropriate.

Paper 4, Section II

10F Analysis and Topology
What does it mean for a function f : R2 → R to be differentiable at x ∈ R2? Define

the derivative Df |x and the partial derivatives D1f(x) and D2f(x) of f at x ∈ R2.

Show that if the partial derivatives of f exist in some open ball around x ∈ R2 and
are continuous at x, then f is differentiable at x.

Let f : R2 → R be given by

f(x, y) =




(x2 + y2) sin

(
1√

x2+y2

)
if (x, y) ̸= (0, 0)

0 otherwise.

Find the partial derivatives of f at every point in R2. Are D1f and D2f continuous at
(0, 0)? Is f differentiable at (0, 0)? Justify your answers.

Is it true that if f is differentiable everywhere in R2 then in a neighbourhood of each
point at least one of the partial derivatives is bounded? Give a proof or a counterexample
as appropriate.

Part IB, 2024 List of Questions
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Paper 4, Section I

3F Complex Analysis
Define what it means for f : U → C to be holomorphic on a domain U .

State Morera’s theorem.

Deduce that the function f defined on C by

f(z) =

∫ 1

0

etz

1 + t2
dt

is holomorphic.

Give an example to show that a holomorphic function need not possess an anti-
derivative on its domain.

[Any further results you use should be stated clearly.]

Paper 3, Section II

13F Complex Analysis
Define the winding number of a closed curve γ : [a, b] → C about a point w ∈ C

which is not in the image of γ. [You do not need to justify its existence.]

State the argument principle on a domain U bounded by a closed curve γ.

Deduce Rouché’s theorem, which you should state carefully.

Let f be non-constant and holomorphic on an open set containing the closed unit
disc D. Suppose that |f(z)| ⩾ 1 for all z satisfying |z| = 1, and that there exists z0 in the
unit disc D such that |f(z0)| < 1. Show that the image of f contains D.

Let g be holomorphic and non-zero on the punctured unit disc D∗ = D \ {0} such
that g′/g has a simple pole at 0. Show that there exists a non-zero integer k such that
h′/h has a removable singularity at 0, where h is defined by h(z) = z−kg(z).

Part IB, 2024 List of Questions [TURN OVER]
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Paper 1, Section I

3B Complex Analysis OR Complex Methods
Let f(z) = coshπz. Show that z 7→ ζ = f(z) defines a mapping that is conformal

from the complex z-plane to the complex ζ-plane, except at certain critical points which
you should identify. Find the image in the ζ-plane of the strip

S = {x+ iy : 0 < x <∞, 0 < y < 1},

identifying clearly the image of each of the three line segments

L1 = {x+ iy : 0 < x <∞, y = 0} , L2 = {x+ iy : x = 0, 0 < y < 1}

and
L3 = {x+ iy : 0 < x <∞, y = 1} .

Paper 1, Section II

12F Complex Analysis OR Complex Methods

(a) Define what it means for a holomorphic function on a domain U \ {a} to have (i) a
removable singularity, (ii) a pole of order k, (iii) an essential singularity at z = a.

(b) Let f be holomorphic on the punctured unit disc D∗ = D \ {0} such that for all
0 < r < 1, ∫ 2π

0
|f(reiθ)|2dθ ⩽ 1.

Show that f has a removable singularity at z = 0.

(c) Let h(z) = tan z.

(i) Classify the singularities of h(z) in C.
(ii) Find the first two terms of the Laurent expansion of h(1/z) around zk = 2

(2k+1)π ,
k ∈ Z.
(iii) Classify the singularities of exp(h(1/z)) in C.

Paper 2, Section II

12B Complex Analysis OR Complex Methods
By considering the integral of an appropriate function on a semi-circular contour in

the upper half plane, or otherwise, compute

∫ ∞

0

(lnx)4

1 + x2
dx .

[Hint: You may use that

∫ ∞

0

(lnx)2

1 + x2
dx =

π3

8
.]

Part IB, 2024 List of Questions
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Paper 3, Section I

3B Complex Methods
State Cauchy’s theorem.

Calculate the Fourier transform of the function

fa,b(x) = exp[−ax2 + ibx],

where a > 0 and b are real numbers, making sure to justify any change of variables you
use.

[Take the Fourier transform f̂ of a function f : R → C to be given by
f̂(k) =

∫ +∞
−∞ e−ikxf(x)dx.]

Paper 4, Section II

12B Complex Methods
(i) Calculate the Laplace transform of the function defined for 0 ⩽ t < ∞ by

f(t) = H(t − t0) where H is the Heaviside function defined by H(t) = 1 if t ⩾ 0 and
H(t) = 0 otherwise. (Here t0 is an arbitrary positive number.)

(ii) Use the Fourier transform and contour integration to find the Green function
defined by

−d
2G

dx2
+m2G = δ(x), G(x) → 0 as |x| → ∞,

where m > 0 and −∞ < x < +∞. Explain why this Green function makes sense for
m ∈ C with positive real part, and use it to write down a solution to

−d
2u

dx2
+m2u = f(x), u(x) → 0 as |x| → ∞.

[Take the Fourier transform Ĝ of G to be given by Ĝ(k) =
∫ +∞
−∞ e−ikxG(x)dx.]

(iii) Use the Laplace transform to obtain an integral expression for the solution
u = u(t, x) of the initial value problem

∂2u

∂t2
− ∂2u

∂x2
= 0 for −∞ < x < +∞, 0 ⩽ t < +∞

u(0, x) = 0 , ut(0, x) = f(x) .

[You may assume that u(t, x) and f(x) vanish for |x| sufficiently large.]

Part IB, 2024 List of Questions
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Paper 2, Section I

4C Electromagnetism
The two equations of magnetostatics are

∇ ·B = 0 and ∇×B = µ0J.

Explain briefly how the current density J can be non-zero even though the charge density
vanishes.

Explain how a vector potential A can be introduced to solve one of these equations.
Is A unique?

Show that in Cartesian coordinates (x, y, z) the following current density is consist-
ent with charge conservation:

J = J0




sin(λz)
cos(λz)

0




with λ and J0 constant. What is the resulting magnetic field? What is the vector potential?

[Hint: Consider ∇× J.]

Paper 4, Section I

5C Electromagnetism
State Faraday’s law of induction, defining any terms that appear in the equation.

A circular wire loop has resistance R and lies in the z = 0 plane in a constant
magnetic field B = Bẑ with B > 0. The radius of the loop varies in time as r(t). What
is the current in the wire?

Distinguishing the two situations ṙ(t) > 0 and ṙ(t) < 0, draw a picture showing the
magnetic field due to the induced current. Is the magnetic field increased or decreased
inside the loop? In what direction is the Lorentz force on the wire in each case?

Part IB, 2024 List of Questions [TURN OVER]
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Paper 1, Section II

15C Electromagnetism
The vector potential A is related to the steady current density J by

Ai(x) =
µ0
4π

∫
d3x′

Ji(x
′)

|x− x′| .

Show that this vector potential obeys ∇ ·A = 0, stating clearly any assumption that you
make.

Show that, far from a localised current, the vector potential can be written as

A(x) =
µ0
4π

m× x

r3
+ . . .

where r = |x| and m is the magnetic dipole moment, which you should define in terms of J.

What are the dimensions of J and of m? Compute the magnetic dipole m for:

(i) a circular thin wire, with charge per unit length η and radius R, rotating around the
axis of symmetry n̂ that is normal to the plane of the hoop, with angular velocity
ω;

(ii) a circular disc with charge per unit area σ and radius R, rotating around the axis
of symmetry n̂ that is normal to the plane of the disc, with angular velocity ω.

Part IB, 2024 List of Questions
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Paper 2, Section II

16C Electromagnetism
Throughout this question, use the Minkowski metric ηµν = diag(−1, 1, 1, 1).

The electromagnetic covector potential is

Aµ = (−Φ/c,Ai),

where Φ is the electrostatic potential, Ai are the components of the vector potential and
c is the speed of light. The field-strength tensor is defined as

Fµν = ∂µAν − ∂νAµ,

where ∂µ denotes differentiation with respect to the spacetime coordinates xµ = (ct, xi).

Define a gauge transformation of Aµ and show that it leaves Fµν unchanged.

Compute the components of Fµν in terms of the electric and magnetic fields, which
you should define in terms of Φ and Ai.

Explain how two of the four Maxwell equations follow automatically from the
definition of Fµν . Show how the remaining two Maxwell equations follow from

∂νF
µν = µ0j

µ

for some 4-vector jµ that you should define.

Consider the tensor

Tµν =
1

µ0

(
FµρF ν

ρ −
1

4
ηµνF ρσFρσ

)
.

Compute T 00 in terms of the electric and magnetic fields and identify its physical meaning.

Show that, for any vector kµ that is null (i.e. lightlike), if Tµνkµkν is non-vanishing
then it has a particular sign that you should determine. [Hint: Consider a particular
inertial frame chosen to simplify your expression.]

Part IB, 2024 List of Questions [TURN OVER]
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Paper 3, Section II

15C Electromagnetism
Explain why all points of a conductor must sit on an equipotential. What does this

imply for the electric field near the surface of a conductor? Derive an expression for the
surface charge of a conductor in terms of the electric field.

Two spherical conducting shells, with radii R1 and R2 > R1 are connected by a long,
thin conducting rod of length d≫ R1+R2. A charge Q is deposited on the spheres. What
fraction of this charge resides on each shell? [You may ignore the effect of the electric field
from one shell on the other, and neglect the charge on the rod.]

The same two spherical shells are are now placed concentrically around the origin.
Again, they are connected by a thin conducting rod. What fraction of the charge Q sits
on each shell? [Again, you may neglect the charge on the rod.]

A neutral conducting sphere of radius R is placed in a constant electric field E = Eẑ.
Work in spherical polar coordinates, with z = r cos θ, and find a solution for the potential
Φ outside the sphere of the form

Φ = α

(
r +

β

r2

)
cos θ

for some α and β that you should determine. What is the induced surface charge on the
sphere? Confirm that the sphere is indeed neutral.

Part IB, 2024 List of Questions
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Paper 2, Section I

5D Fluid Dynamics
A fluid has velocity u = (y, ax) in Cartesian coordinates (x, y), where a is a real

constant. Show that the flow is incompressible, determine a stream function ψ(x, y) for
the flow, and sketch the streamlines for a > 0 and for a < 0.

For what value of a is the flow also irrotational? In this case, determine a velocity
potential ϕ(x, y) for the flow.

Paper 3, Section I

7D Fluid Dynamics
Starting from Euler’s equations for steady, inviscid flow u of an incompressible

fluid of uniform density ρ, subject to a body force −∇χ, prove that u · ∇H = 0, where
H ≡ 1

2ρ|u|2 + p+ χ and p is the fluid pressure. Interpret this equation physically.
[You may use the identity u× (∇× u) = ∇(12 |u|2)− u · ∇u.]

Fluid initially occupies a tank with uniform horizontal cross-sectional area A. It
is syphoned out of the tank using a tube of cross-sectional area a ≪ A as shown in the
diagram below, in which flow directions (not magnitudes) are indicated. One end of the
tube is held at a distance h0 below the initial position of the free surface of the fluid in
the tank, while the other end is held at a distance H below that. The tube is full of fluid
and drains freely from its lower end into the surrounding air. Assuming the flow to be
quasi-steady, show that the fluid level in the tank reaches the upper end of the tube after
a time

t =
√
2

(
A2

a2
− 1

)1/2 √
H + h0 −

√
H√

g
.

h0

H

Part IB, 2024 List of Questions [TURN OVER]
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Paper 1, Section II

16D Fluid Dynamics
A layer of fluid of uniform thickness h, density ρ and dynamic viscosity µ flows

steadily down a rigid plane that is inclined at angle α to the horizontal. The surrounding
air has uniform pressure p0 but blows upslope, exerting a uniform shear stress τ on the
fluid surface.

Write down the equations and boundary conditions describing parallel viscous flow
in the fluid layer. Solve these to determine the pressure and velocity fields in the fluid.
Hence, determine the surface velocity uh, the shear stress τ0 exerted by the fluid on the
slope and the volume flux of fluid q per unit width across the plane. Determine how large
a shear stress the blowing air must exert to cause (i) the surface velocity to be upslope
(ii) the stress on the plane to be upslope (iii) the volume flux to be upslope, and order
these measures of flow reversal by the magnitude of shear stress required.

Paper 3, Section II

16D Fluid Dynamics
A solid sphere of radius a moves in a straight line with speed U through fluid of

density ρ that is at rest far from the sphere. Calculate the velocity potential ϕ for inviscid,
irrotational flow of the surrounding fluid. Calculate the velocity components in the frame
of reference in which the fluid is at rest far from the sphere. Hence calculate the total
kinetic energy of the fluid.

Now suppose that the sphere has density ρs > ρ and falls with speed U under
gravity g. Write down the rate of change of the potential energy of the system (sphere
plus fluid). By considering the rate of change of the total energy of the system (potential
plus kinetic) or otherwise, show that

dU

dt
=

ρs − ρ

ρs +
1
2ρ
g.

Part IB, 2024 List of Questions
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Paper 4, Section II

16D Fluid Dynamics
A thin, horizontal layer of fluid of height h = h0 + η(x, y, t) flows with horizontal

velocity components u = (u, v, 0) relative to a rotating frame of reference with Coriolis
parameter f = (0, 0, f), in which (x, y, z) are Cartesian coordinates and where h0 and f are
constant and u and v are independent of z. When η ≪ h0, u and η satisfy the linearised
equations

∂u

∂t
+ f × u = −g∇η,

∂η

∂t
+ h0∇ · u = 0,

where g is the acceleration due to gravity and ∇ ≡ (∂/∂x, ∂/∂y, 0) is the horizontal
gradient operator.

Show that the linearised potential vorticity ω − (η/h0)f is independent of time,
where ω = ∇× u is the relative vorticity.

Suppose that η = η0 when u ≡ 0. Derive the evolution equation

∂2η

∂t2
− gh0∇2η + f2η = f2η0.

Given that the fluid starts at rest with

η0 =

{
ϵ, |x| < a
0, |x| > a

where ϵ is constant, determine the steady state η∞(x) to which the system settles. Draw
a sketch of the corresponding velocity field.

Paper 1, Section I

2E Geometry
Suppose a closed orientable surface Σ of genus g is obtained by identifying pairs of

edges of a 2n-gon. By considering Euler characteristics, show that n ⩾ 2g.

Draw a regular hyperbolic octagon in the Poincaré disc model, indicating edge
identifications to produce a genus 2 surface. What are the interior angles of the octagon?

Paper 3, Section I

2G Geometry
Given a smooth function h : R2 → R, show that the graph

Γ = {(x, y, z) : z = h(x, y)}

is a smooth surface in R3. Write down a parametrisation of Γ, and compute the first
fundamental form and Gauss map with respect to it.

Part IB, 2024 List of Questions [TURN OVER]
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Paper 1, Section II

11E Geometry
Let Σ ⊂ R3 be an embedded smooth surface and γ : I → R3 be a smooth curve

contained in Σ, where I ⊂ R is an open interval.

(i) Define what it means for γ to be a geodesic in Σ, and what it means for a geodesic
to be complete.

Now suppose Σ1 and Σ2 are embedded smooth surfaces in R3 that are tangent to
each other along the image of a curve γ : I → R3.

(ii) Show that γ is a geodesic in Σ1 if and only if it is a geodesic in Σ2.

(iii) Let Σ1 be the surface parametrised by

σ(u, v) =
(
(2 + cos v) cosu, (2 + cos v) sinu, u+ sin v

)
.

Sketch Σ1 and, by considering a suitable surface Σ2, show that the curve γ : R → R3

defined by
γ(t) = (cos t, sin t, t)

is a geodesic in Σ1. [You should justify why γ is a geodesic in Σ2.]

(iv) Show that Σ1 contains a complete geodesic Γ that is disjoint from this γ.

Paper 2, Section II

11G Geometry
The torus T 2 and Klein bottle K can both be described as quotients of R2 by

equivalence relations ∼ and ≃ given by

(x, y) ∼ (x+ a, y + b) for (a, b) ∈ Z2

and
(x, y) ≃ (x+ c, (−1)cy + d) for (c, d) ∈ Z2 ,

respectively. Equip T 2 and K with the standard flat Riemannian metrics induced from
R2 by these quotient constructions.

(a) Show that the map π̃ : R2 → R2 defined by π̃(x, y) = (2x, y) induces a well-
defined 2:1 continuous map π : T 2 → K.

(b) Draw a fundamental domain, with arrows indicating boundary gluing directions,
for each of the two quotients.

(c) On separate copies of the fundamental domain for K, draw the images of closed
geodesics γ1, γ2 and γ3 with the following properties: γ1 cuts K into a Möbius strip; γ2
cuts K into a cylinder; γ3 intersects itself in a single point.

(d) For each i, how many closed geodesics γ̃i are contained in the preimage of the
image of γi under π? For the purpose of counting, we consider two closed geodesics the
same if they have the same image. On separate copies of the fundamental domain for T 2,
draw examples of γ̃1, γ̃2 and γ̃3.

Part IB, 2024 List of Questions
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Paper 3, Section II

12E Geometry
Consider the Poincaré disc model of the hyperbolic plane, with Riemannian metric

4(dx2 + dy2)

(1− x2 − y2)2
.

Let D0, . . . , Dn be distinct closed hyperbolic discs of hyperbolic area π
2 , such that D0 is

centred at the origin O and each successive Di is centred on the positive real axis and
tangent to Di−1, as shown in the figure below. Show that the hyperbolic centre of Dn is
at (4n − 1)/(4n + 1). [If you use any formulae for hyperbolic lengths or areas then they
should be proved.]

O

D0
D1

D2

Now consider the upper-half-plane model. Let D′
0, . . . , D

′
n be distinct closed

hyperbolic discs of hyperbolic area π/2 such that D′
0 has hyperbolic centre at (0, 1) and

each successive D′
i has hyperbolic centre on the line y = 1 and is tangent to D′

i−1. For
n ⩾ 3, is there an isometry from the Poincaré disc model to the upper-half-plane model
which carries each Di to D

′
i? Briefly justify your answer.

Part IB, 2024 List of Questions [TURN OVER]
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Paper 4, Section II

11G Geometry
Fix real numbers a ∈ (0, 1] and b ∈ (0,

√
2a− a2). Let f : [−4, 4] → R be an even

function that is smooth and strictly positive on (−4, 4) with the properties that

f(x) =
√

1− (3− x)2 for x ⩾ 2 + a

f(x) = b for x ∈ [−2 + a, 2− a]

f ′′ has a unique zero in (2− a, 2 + a).

Let Σ ⊂ R3 be the smooth surface defined by

x ∈ [−4, 4] and f(x)2 = y2 + z2.

(a) Sketch Σ in R3. Sketch its orthogonal projection onto the (x, z)-plane, and
mark on this diagram (without proof) the regions of Σ where its Gaussian curvature K is
positive, negative and zero respectively.

(b) Compute the integral of K over the region R ⊂ Σ where x ∈ [2 − a, 2 + a].
[You may use without proof the fact that a spherical disc of spherical radius θ has area
2π(1− cos θ).]

(c) Show that the polygons obtained by cutting R along y = 0 are geodesic polygons
only if a = 1.

Part IB, 2024 List of Questions
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Paper 2, Section I

1E Groups, Rings and Modules
State Eisenstein’s irreducibility criterion.

(i) Let n > 1 be an integer. Prove that Xn−1 +Xn−2 + · · ·+X +1 is irreducible in
Z[X] if and only if n is a prime number.

(ii) Show that the polynomial X2 + Y 2 − 1 in Q[X,Y ] is irreducible. Would your
argument work over any field?

Paper 3, Section I

1E Groups, Rings and Modules
(i) Suppose that A is a matrix over Z. What is the Smith normal form for A? State

the structure theorem for finitely-generated modules over Z.

(ii) Find the Smith normal form of the matrix

(
−4 −6
2 2

)
. Justify your answer.

Suppose that M is the Z-module with generators e1, e2, subject to the relations
−4e1 + 2e2 = −6e1 + 2e2 = 0. Describe M in terms of the structure theorem.

(iii) An abelian group is called indecomposable if it cannot be written as the direct
sum of two non-trivial subgroups. Show that a finite group is indecomposable if and only
if it is cyclic of prime power order.

Paper 1, Section II

9E Groups, Rings and Modules

(a) State Sylow’s theorems.

(i) Identify the Sylow 2-subgroups and the Sylow 3-subgroups in the symmetric
group S3.

(ii) Identify the Sylow 2-subgroups of S4.

(iii) Identify the Sylow 2-subgroups of the alternating group A5.

(b) Let G be a finite group that has no subgroup of index 2. Let P be a Sylow 2-
subgroup of G, let H be a subgroup of index 2 in P , and let x be an element of
order 2 in G.

(i) Show that x acts as an even permutation on the set of cosets of H in G. Deduce
that x must fix some points of this set.

(ii) Deduce that x must be conjugate to some element of H.

Part IB, 2024 List of Questions [TURN OVER]
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Paper 2, Section II

9E Groups, Rings and Modules

(a) If R is a Noetherian ring, show that R/I is Noetherian for each ideal I in R.

State the Hilbert basis theorem.

Explain briefly why Z is Noetherian. Deduce from these results that the ring Z[
√
d]

for a non-square integer d is Noetherian.

(b) Let K be any field. Consider the set

R =
{
f(X,Y ) =

∑

i,j

cijX
iY j ∈ K[X,Y ] : c0j = cj0 = 0 whenever j > 0

}
.

Verify that R is a subring of K[X,Y ] and determine, with justification, whether or
not R is Noetherian.

Paper 3, Section II

10E Groups, Rings and Modules

(a) (i) Let R be a commutative unital ring. Show that an ideal I of R is prime if and
only if R/I is an integral domain.

(ii) R is said to be Boolean if r2 = r for all r ∈ R. If R is Boolean, prove that
r + r = 0 for all r ∈ R. Show also that if R is a non-zero integral domain and is
Boolean, it is isomorphic to the field of two elements. Deduce that in a Boolean
ring every prime ideal is maximal.

(b) (i) Let R be a commutative unital ring and let R[X] be the ring of polynomials in
X, with coefficients in R. Let I be an ideal of R and let I[X] be the ideal of R[X]
consisting of all polynomials with coefficients in I. [You may assume I[X] is indeed
an ideal.] Show that R[X]/I[X] ∼= (R/I)[X]. Deduce that if I is a prime ideal of R
then I[X] is a prime ideal of R[X].

(ii) Give an example to show that if I is a maximal ideal of R then I[X] need not
be a maximal ideal of R[X].

(c) In this part, we assume the prime number p is odd.

Let Fp be the field of p elements. Prove that its multiplicative group F×
p = Fp \ {0}

is a cyclic group.

Consider the group homomorphism ϕ : F×
p → F×

p given by x 7→ x2, and let H be
its image. Show that H has index 2 in F×

p and deduce that one of 2, 3 or 6 is a
square in Fp. Deduce that the polynomial f(x) = x6 − 11x4 + 36x2 − 36 has a root
modulo p.
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Paper 4, Section II

9E Groups, Rings and Modules
Let R be a commutative unital ring.

(a) Let M be an R-module. What does it mean for M to be free? Assuming R is
non-zero, if Rn ∼= Rm as R-modules, show that n = m.

If P and Q are R-modules such that P ⊕ Q is free, must P be free? Justify your
answer.

(b) (i) We say that an R-module P is projective if, whenever we have R-module
homomorphisms f : M → N and g : P → N with f surjective, then there exists a
homomorphism h : P → M with f ◦ h = g. Show that any free module (over an
arbitrary commutative unital ring) is projective.

(ii) Suppose now that R is a principal ideal domain. Prove that any submodule N of
a finitely-generated free module M over R is free. [Hint: If N is a submodule of Rn

for some n, you may wish to consider the composition of maps N → Rn → R, where
the first map is inclusion and the second map is projection onto the first summand.]

Deduce that a finitely-generated projective module over a principal ideal domain is
free.
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Paper 1, Section I

1G Linear Algebra
Define the rank and nullity of a linear map. State and prove the Rank-Nullity

Theorem.

Let

W =
{
(xi)

5
i=1 ∈ R5 : x1−x2+3x4+5x5 = x1+x2+6x3+4x4−2x5 = x1+3x3+5x4−4x5 = 0

}
.

Find dimW and a basis for W .

Paper 4, Section I

1G Linear Algebra
State a theorem classifying n× n complex matrices up to similarity.

Let α be an endomorphism of an n-dimensional complex vector space. Define the
algebraic multiplicity aλ and the geometric multiplicity gλ of an eigenvalue λ of α. Express
aλ and gλ as well as the minimal polynomial of α in terms of a representation of α using
the classification above.

Let α be represented by the 3× 3 matrix

A =




5 0 3
−1 −1 −1
−6 0 −4


 .

Find the eigenvalues of α and their algebraic and geometric multiplicities. Find the
minimal polynomial of α.
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Paper 1, Section II

8G Linear Algebra

(a) Define the dual space V ∗ of a vector space V over a field F . Show that if V is
finite-dimensional then so is V ∗, and that dimV ∗ = dimV .

Let U ⩽ V . Define the annihilator U◦ of U . Provide an expression, with proof, for
dimU◦ in terms of dimU in the case when V is finite-dimensional. Deduce that if
U ̸= V then there exists f ∈ U◦ such that f ̸= 0.

Let α : V → W be a linear map between finite-dimensional vector spaces over
F . Define the dual map α∗ : W ∗ → V ∗. Prove that kerα∗ = (imα)◦ and
imα∗ = (kerα)◦.

Let V be a finite-dimensional vector space over F and U ⩽ V . By considering the
quotient map Q : V → V/U and the inclusion map J : U → V , show that

(
V/U

)∗
is isomorphic to U◦, and that U∗ is isomorphic to V ∗/U◦.

(b) Let V be a vector space over a field F . Let q1, . . . , qn ∈ V ∗ be linearly independent.
Show that the linear map Q : V → Fn given by Q(x) =

(
qj(x)

)n
j=1

is surjective.

Deduce that if f ∈ V ∗ and
⋂n

j=1 ker qj ⊆ ker f then f is in the span of q1, . . . , qn.

Paper 2, Section II

8G Linear Algebra

(a) Let A be an n×n complex matrix. Define the characteristic polynomial of A. Show
that A is similar to an upper-triangular matrix.

Define the minimal polynomial mA of A. Prove that mA exists and is unique. Prove
that deg(mA) ⩽ n.

[You may assume properties of determinants and results about matrix representation
of linear maps. Any other results used must be proved.]

(b) Let V be the real vector space of all real-valued functions on R. For each
r ∈ R× = R \ {0}, define Dr : V → V by (Drf)(x) = f(x + r) − f(x) for f ∈ V ,
x ∈ R. Find the eigenvalues of Dr and show that the corresponding eigenspaces are
infinite-dimensional. Show further that DrDs = DsDr for all r, s ∈ R×.

Call f ∈ V periodic if f ∈ kerDr for some r ∈ R×. Show that a polynomial function
in V of degree n cannot be written as a sum of n periodic functions.
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Paper 3, Section II

9G Linear Algebra
Let V be a finite-dimensional complex inner product space with inner product ⟨·, ·⟩.

A map f : V → C is conjugate-linear if f(λv + µw) = λ̄f(v) + µ̄f(w) for all v, w ∈ V and
λ, µ ∈ C. A map θ : V × V → C is a sesquilinear form if the map v 7→ θ(v, w) is linear for
each w ∈ V and the map w 7→ θ(v, w) is conjugate-linear for each v ∈ V . Show that for
each such θ, there is a unique map β : V → V such that θ(x, y) = ⟨x, β(y)⟩ for all x, y ∈ V ,
and moreover that β is linear.

Let α ∈ End(V ). Use the results above to show the existence and uniqueness of the
adjoint α∗ of α. Prove the following statements. [Standard properties of adjoints can be
assumed.]

(a) For a subspace U of V , α(U) ⊆ U if and only if α∗(U⊥) ⊆ U⊥.

(b) If ⟨α(x), x⟩ = 0 for all x ∈ V , then α = 0. Does the same hold in a real inner
product space? Justify your answer.

(c) αα∗ = α∗α if and only if ∥α(x)∥ = ∥α∗(x)∥ for all x ∈ V . Does the same hold in a
real inner product space? Justify your answer.

(d) If αα∗ = α∗α, then there is an orthonormal basis of V consisting of eigenvectors
of α.
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Paper 4, Section II

8G Linear Algebra

(a) Letm,n ∈ N. Show that twom×n matrices A and A′ over a field F are equivalent if
and only if there exist vector spaces V,W , a linear map α : V →W and bases B,B′

of V and C,C ′ of W such that A = [α]B,C and A′ = [α]B′,C′ . [You may assume the
correspondence between composition of linear maps and products of matrices.]

Define the column rank and the row rank of an m× n matrix A over F and prove
that they are equal. [You may assume the Rank-Nullity Theorem. Other results
used should be proved.]

(b) Fix m,n ∈ N. Let [m] = {1, . . . ,m} and [n] = {1, . . . , n}. Let e1, . . . , en be the
standard basis of Cn. For x = (xj)

n
j=1 ∈ Cn, let supp(x) = {j ∈ [n] : xj ̸= 0}, and

for B ⊆ [n], let Bx be the vector in Cn with jth coordinate xj if j ∈ B and 0 if
j /∈ B.

Let v1, . . . , vm be linearly independent vectors in Cn. Show that there is an injection
f : [m] → [n] such that f(i) ∈ supp(vi) for all i ∈ [m]. [Hint: You may use the
following result. If F : [m] → P[n], where P[n] is the power set of [n], satisfies

|A| ⩽
∣∣∣
⋃

i∈A
F (i)

∣∣∣

for all A ⊆ [m] then there is an injection f : [m] → [n] such that f(i) ∈ F (i) for all
i ∈ [m].]

Using part (a), or otherwise, show that there is a subset B of [n] of size m such that
Bv1, . . . , Bvm are linearly independent.

Deduce that there is an injection f : [m] → [n] such that f(i) ∈ supp(vi) for all
i ∈ [m], and that

(
{ej : j ∈ [n]} \ {ef(i) : i ∈ [m]}

)
∪ {vi : i ∈ [m]}

is a basis of Cn.
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Paper 3, Section I

8H Markov Chains
Let {Xn : n ⩾ 1} be independent, identically distributed, integer-valued random

variables. Define

(i) Sn =
∑n

i=1Xi

(ii) Ln = min{X1, X2, . . . , Xn}
(iii) Kn = Xn +Xn−1, with X0 = 0.

Which of the sequences {Xn}, {Sn}, {Ln}, {Kn} are necessarily Markov chains?
Justify your answers.

Paper 4, Section I

7H Markov Chains
A taxi driver moves between the airport A and two hotels B and C according to

the following rules: if she is at the airport, she will proceed to one of the hotels with equal
probability; if she is at a hotel, she will return to the airport with probability 3

4 and travel
to the other hotel with probability 1

4 .

(a) What is the transition matrix for the corresponding Markov chain?

(b) Suppose the driver begins at the airport at time 0.

(i) Find the probability for each of her three possible locations at time 2.

(ii) What is the probability that the driver is at the airport at time n ⩾ 1?

Paper 1, Section II

19H Markov Chains
Suppose {Xn}n⩾0 is a Markov chain such that there exists a pair (i, j) of distinct

states that are “symmetric” in the sense that

P(Tj < Ti | X0 = i) = P(Ti < Tj | X0 = j),

where Ti = min{n ⩾ 1 : Xn = i}. Denote this common conditional probability by α.
Suppose X0 = i, and let N denote the number of visits to j before the chain revisits i.

(a) Compute E[N ].

(b) For each k ⩾ 0, compute P(N = k) as a function of α.

(c) Prove that if an irreducible Markov chain has an invariant distribution π, two states
i and j are symmetric if and only if π(i) = π(j).

[Standard results can be quoted without proof.]
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Paper 2, Section II

18H Markov Chains
An urn initially contains m green balls and m + 2 red balls. A ball is picked at

random: if it is green, a red ball is also removed and both are discarded; if it is red, it is
replaced together with an extra red and an extra green ball. This is repeated until there
are no green balls in the urn. Compute the probability that the process terminates. [Your
answer should be a function of m.]

[Standard results can be quoted without proof, provided they are stated clearly.]
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Paper 2, Section I

3B Methods
For integer n, the Chebychev polynomials Tn satisfy the equation

(1− x2)T ′′
n − xT ′

n + n2Tn = 0 , −1 < x < 1 .

Put this equation into Sturm-Liouville form and derive an orthogonality relation between
Tn and Tm for n ̸= m. Find a second order differential equation satisfied by the derivatives
Un = T ′

n, and an orthogonality relation between Un and Um for n ̸= m.

Paper 3, Section I

5B Methods
Let u(r, θ) satisfy the Laplace equation

∇2u ≡ ∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= 0

in the annulus A given in polar coordinates by

A = {(r, θ) : a < r < b , 0 ⩽ θ < 2π} .

Use separation of variables to derive a general expression for u. Given boundary conditions
u(a, θ) = 0 and u(b, θ) = cos 2θ, find u explicitly.

Paper 1, Section II

13B Methods
The Green function G(x, ξ) satisfies

G′′ + α(x)G′ + β(x)G = δ(x− ξ) for 0 < x < 1,

with G′(0, ξ) = G′(1, ξ) = 0, where primes denote differentiation with respect to x.

Find the function c(ξ) for 0 < ξ < 1 such that the Green function can be written as

G(x, ξ) =

{
c(ξ)y1(x)y2(ξ) for 0 < x < ξ

c(ξ)y2(x)y1(ξ) for ξ < x < 1

in terms of linearly independent solutions y1(x) and y2(x) of

y′′ + α(x)y′ + β(x)y = 0 for 0 < x < 1

that satisfy y′1(0) = 0 and y′2(1) = 0.

Deduce that if α(x) = 0 for all x then G(x, ξ) = G(ξ, x).

Find G explicitly for the case α(x) = 0 and β(x) = −1 for all x. Hence solve the
equation y′′ − y = x on the interval [0, 1] with boundary conditions y′(0) = 0 = y′(1).
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Paper 2, Section II

14B Methods
Define the convolution f ∗ g of two functions on the real line. The function F is

defined by

F (x) =

{
e−x if x ⩾ 0

0 if x < 0.

A sequence of functions F1, F2, F3 . . . is defined by F1 = F , Fn = F ∗ Fn−1 for n ⩾ 2 (so
Fn is the n-fold convolution of F with itself). Use induction to find Fn, without using the
Fourier transform.

The Fourier transform f̂ of a function f : R → C is given by

f̂(k) =

∫ +∞

−∞
e−ikxf(x)dx.

Compute the Fourier transform F̂n.

State and prove the convolution theorem. Verify that F̂n = (F̂ )n.

Using the identity ∫ +∞

−∞
e−ikxdk = 2πδ(x)

and interchanging the order of integration, show that the convolution theorem with an
appropriate choice of g implies the Parseval identity

∫ +∞

−∞
|f(x)|2dx =

1

2π

∫ +∞

−∞
|f̂(k)|2dk .

[You may assume that f and f̂ are integrable and decrease rapidly at infinity, and that the
order of integration in multiple integrals can be interchanged.]

Deduce the value of the integral

∫ +∞

−∞

1

(1 + k2)n+1
dk.
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Paper 3, Section II

14B Methods
Transverse oscillations y = y(t, x) of a string in a resisting medium are governed by

the damped wave equation

∂2y

∂t2
− ∂2y

∂x2
+
∂y

∂t
= 0 , 0 < x < 1 , t > 0 .

Assuming the string is fixed at x = 0 and x = 1 so that y(t, 0) = 0 = y(t, 1), use separation
of variables to derive an expression for the solution with given initial values

y(0, x) =
∞∑

n=1

an sinnπx ,
∂y

∂t
(0, x) = 0 . (∗)

Calculate the Fourier coefficients {an} in the particular case

y(0, x) =

{
x if 0 ⩽ x ⩽ 1

2

1− x if 1
2 ⩽ x ⩽ 1 .

For (∗) in the case of general coefficients {an}, use the Parseval identity to calculate
the energy

E(t) =
1

2

∫ 1

0

(
∂y

∂t

)2

+

(
∂y

∂x

)2

dx

at time t in terms of the coefficients {an}. Hence, or otherwise, show that the energy is
decreasing.
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Paper 4, Section II

14B Methods
Let a and κ ⩾ 0 be real constants. Consider the problem

∂u

∂t
+ a

∂u

∂x
= κ

∂2u

∂x2

with initial condition u(0, x) = u0(x), where u0(x) is a given function. [You may assume
u0 and u to be smooth and decreasing to zero as |x| → ∞ as needed.]

(i) For a = 0, κ > 0 write down an integral expression for the solution in terms of
the function

Kt(x) =




(4πκt)−

1
2 exp

[
− x2

4κt

]
if t > 0

0 if t ⩽ 0 .

Explain briefly why your formula for u(t, x) reduces to u0(x) when t tends to zero by
considering the behaviour of Kt in this limit, and give a sketch to illustrate.

(ii) For κ = 0, use the method of characteristics to find the solution.

(iii) For the general case with κ > 0 and a ∈ R arbitrary, find an integral expression
for the solution.
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Paper 1, Section I

5A Numerical Analysis
Let pn be the real polynomial of degree at most n that interpolates a continuous

function f(x) at the n + 1 distinct points {x0, x1, . . . , xn}. Define the divided difference
f [x0, x1, . . . , xk].

Starting from the Lagrange formula, prove that pn satisfies

pn(x) = f(x0) +

n∑

k=1

f [x0, x1, . . . , xk]

k−1∏

i=0

(x− xi),

the Newton form. [You need not write an explicit expression for the divided difference.]

Write down (without proof) the recurrence relation for the divided difference. For
n = 2, draw a diagram that explains how the divided difference f [x0, x1, . . . , xk] could be
computed efficiently. Find the exact number of divisions needed for such computations
with n+ 1 distinct points {x0, x1, . . . , xn}.

Paper 4, Section I

6D Numerical Analysis
The composite, mid-point, quadrature rule for computing the integral

I(f) =

∫ 1

0
f(x) dx is given by

IN (f) =
1

N

N−1∑

n=0

f(xn) with xn =
1

N

(
n+ 1

2

)
.

Determine the order of convergence IN (f) → I(f) of this scheme as N → ∞ if f is at
least twice differentiable on [0, 1].

A different function f(x) is known to have a square-root singularity at x = 0, so
that f(x) = x−1/2g(x), where g(x) is analytic on [0,1]. Determine, with justification, a
sequence yn such that the quadrature

JN (f) =
2

N

N−1∑

n=0

y1/2n f(yn)

has the same order of convergence JN (f) → I(f) as the scheme above. [Hint: Consider a
change of variables in I(f).]
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Paper 1, Section II

17A Numerical Analysis
Suppose that the real orthogonal matrix Ω[p,q] ∈ Rm×m with 1 ⩽ p < q ⩽ m is a

Givens rotation with rotation angle θ. Write down the form of Ω[p,q].

Show that for any matrix A ∈ Rm×m and for any given j it is possible to choose θ
such that the matrix Ω[p,q]A satisfies (Ω[p,q]A)qj=0, where 1 ⩽ j ⩽ m.

Let

A =




√
2 0 1−

√
3√

2

0
√
3 1√

2
√
2 1+

√
3√

2


 .

By applying the product Ω[p,q]Ω[p′,q′] of two Givens rotations (picking appropriate values
for p, p′, q and q′, with p′ < p), find a factorisation of the matrix A ∈ R3×3 of the form
A = QR, where Q ∈ R3×3 is an orthogonal matrix, R ∈ R3×3 is an upper triangular
matrix for which the leading non-zero element in each row is positive, and every entry of
Q and R is written as a rational number multiplied by the square root of an integer.

Paper 2, Section II

17D Numerical Analysis

(a) Define the linear stability domain of a numerical method to solve the system of
equations

y′ = f(t,y).

What does it mean for the numerical method to be A-stable? Determine the linear
stability domains for the forward and backward Euler methods, and deduce whether
each is A-stable.

(b) What does it mean for a differential equation y′ = f(t,y) to be stiff? Illustrate your
answer with the example

y′ = My, M =

(
−10 10
81 −91

)
,

determining what step size h is required to maintain stability of the forward and
backward Euler methods, respectively, applied to this ODE.

(c) For the ODE y′ = My with a general matrix M, use the Milne device with the
forward and backward Euler methods to determine a local error estimate, and
describe how you would use that estimate to construct a stable integration scheme
that achieves a desired tolerance in a reasonably small number of steps.
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Paper 3, Section II

17A Numerical Analysis
For a function f ∈ C4[−1, 2] consider the following approximation of f ′′(−1):

f ′′(−1) ≈ η(f) = a−1f(−1) + a0f(0) + a1f(1) + a2f(2),

with the error
e(f) = f ′′(−1)− η(f).

We want to find the smallest constant c such that

|e(f)| ⩽ c maxx∈[−1,2]|f ′′′′(x)|,

where f ′′′′(x) is the fourth derivative of f .

State the necessary conditions on the approximation scheme η for the inequality
above to be valid with some c <∞. Hence determine the coefficients a−1, a0, a1, a2.

State the Peano kernel theorem.

Assuming that the Peano kernel is non-negative in x ∈ [−1, 2], use the Peano kernel
theorem to find the smallest constant c.
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Paper 1, Section I

7H Optimisation

(a) Find the dual problem of the following linear program:

minimise

n∑

i=1

aixi

subject to:

n∑

i=1

bixi ⩾ t

n∑

i=1

cixi ⩾ r

xi ⩾ 0 for 1 ⩽ i ⩽ n,

where {ai}ni=1, {bi}ni=1, {ci}ni=1, t and r are arbitrary real numbers.

(b) Using part (a) or otherwise, solve the following optimisation problem:

minimise 3x1 + 2x2 + 2x3 − 2x4

subject to: x1 + x2 − x4 ⩾ 7

x1 + x3 − 2x4 ⩾ 11

xi ⩾ 0 for 1 ⩽ i ⩽ 4.

You should find the minimum value of the objective function and the vector
(x1, x2, x3, x4) that attains this minimum value.

Paper 2, Section I

7H Optimisation
Consider the following optimisation problem:

minimise x1 log x1 − x2

subject to: x1 + x2 ⩽ c√
x2 ⩽ d

x1, x2 ⩾ 0.

At x1 = 0, the value of x1 log x1 is defined to be equal to 0, its limiting value.

(a) Use the Lagrange method to search for a solution when c = 3/e2 and d = 2/e, where
e is the base of the natural logarithm.

(b) Now use the Lagrange method to search for a solution when c = 3/e2 and d = 1/e.
Explain your observations.
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Paper 3, Section II

19H Optimisation

(a) For n > 1, consider a directed graph G with vertices V = {1, 2, . . . , n} and edge
set E. Following the usual convention, if (i, j) ∈ E, then G has a directed edge
from vertex i to vertex j. Each edge (i, j) ∈ E has an associated capacity Cij ⩾ 0.
Vertex 1 is designated as the source and vertex n is designated as the sink. State
and prove the max-flow min-cut theorem.

(b) Consider the directed graph with edge capacities as shown in the figure below, with
source s, sink t, and an intermediate vertex r:

<latexit sha1_base64="zrRAt3lkDBurcj3pI0P3+vsGM/M=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY4kXjxCIo8ENmR26IWR2dnNzKyREL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj27nffkSleSzvzSRBP6JDyUPOqLFS46lfLLlldwGyTryMlCBDvV/86g1ilkYoDRNU667nJsafUmU4Ezgr9FKNCWVjOsSupZJGqP3p4tAZubDKgISxsiUNWai/J6Y00noSBbYzomakV725+J/XTU1Y9adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWldl77pcaVRKtWoWRx7O4BwuwYMbqMEd1KEJDBCe4RXenAfnxXl3PpatOSebOYU/cD5/AOYljPs=</latexit>x

<latexit sha1_base64="cVkupCd8hWFVEYOhktPlTiKcNfI=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNKkcSLx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFS47pfLLlldwGyTryMlCBDvV/86g1ilkYoDRNU667nJsafUmU4Ezgr9FKNCWVjOsSupZJGqP3p4tAZubDKgISxsiUNWai/J6Y00noSBbYzomakV725+J/XTU1Y9adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWldl76ZcaVRKtWoWRx7O4BwuwYNbqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AICZjLg=</latexit>

5

<latexit sha1_base64="t9Jm4LpDFwWSuSmikUvZOrEwOVA=">AAAB5HicbVBNS8NAEJ3Urxq/qlcvi0XwVBIp2mPBi8cK9gPaUDbbSbt2swm7G6GE/gIvHhSv/iZv/hu3bQ7a+mDg8d4MM/PCVHBtPO/bKW1t7+zulffdg8Oj45OKe9rRSaYYtlkiEtULqUbBJbYNNwJ7qUIahwK74fRu4XefUWmeyEczSzGI6VjyiDNqrPRQH1aqXs1bgmwSvyBVKNAaVr4Go4RlMUrDBNW673upCXKqDGcC5+4g05hSNqVj7FsqaYw6yJeHzsmlVUYkSpQtachS/T2R01jrWRzazpiaiV73FuJ/Xj8zUSPIuUwzg5KtFkWZICYhi6/JiCtkRswsoUxxeythE6ooMzYb14bgr7+8STrXNf+mVq82G0UYZTiHC7gCH26hCffQgjYwQHiBN3h3npxX52PVWHKKiTP4A+fzBxSvi40=</latexit>

4

<latexit sha1_base64="H0dJp7NSzCwnDwZmTWffvwDBxTA=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNQY4kXjxCIo8ENmR2aGBkdnYzM2tCNnyBFw8a49VP8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzto4SxbDFIhGpbkA1Ci6xZbgR2I0V0jAQ2Ammdwu/84RK80g+mFmMfkjHko84o8ZKzeqgWHLL7hJkk3gZKUGGxqD41R9GLAlRGiao1j3PjY2fUmU4Ezgv9BONMWVTOsaepZKGqP10eeicXFllSEaRsiUNWaq/J1Iaaj0LA9sZUjPR695C/M/rJWZU81Mu48SgZKtFo0QQE5HF12TIFTIjZpZQpri9lbAJVZQZm03BhuCtv7xJ2jdlr1quNCulei2LIw8XcAnX4MEt1OEeGtACBgjP8ApvzqPz4rw7H6vWnJPNnMMfOJ8/gh2MuQ==</latexit>

6

<latexit sha1_base64="H0dJp7NSzCwnDwZmTWffvwDBxTA=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNQY4kXjxCIo8ENmR2aGBkdnYzM2tCNnyBFw8a49VP8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzto4SxbDFIhGpbkA1Ci6xZbgR2I0V0jAQ2Ammdwu/84RK80g+mFmMfkjHko84o8ZKzeqgWHLL7hJkk3gZKUGGxqD41R9GLAlRGiao1j3PjY2fUmU4Ezgv9BONMWVTOsaepZKGqP10eeicXFllSEaRsiUNWaq/J1Iaaj0LA9sZUjPR695C/M/rJWZU81Mu48SgZKtFo0QQE5HF12TIFTIjZpZQpri9lbAJVZQZm03BhuCtv7xJ2jdlr1quNCulei2LIw8XcAnX4MEt1OEeGtACBgjP8ApvzqPz4rw7H6vWnJPNnMMfOJ8/gh2MuQ==</latexit>

6

<latexit sha1_base64="u+qJ37HRyi+3J+2Mm93ddqBpl9o=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkaI8FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpwXMH5YpbdRcg68TLSQVyNAflr/4wZmmE0jBBte55bmL8jCrDmcBZqZ9qTCib0BH2LJU0Qu1ni0tn5MIqQxLGypY0ZKH+nshopPU0CmxnRM1Yr3pz8T+vl5qw7mdcJqlByZaLwlQQE5P522TIFTIjppZQpri9lbAxVZQZG07JhuCtvrxO2ldV77pau69VGvU8jiKcwTlcggc30IA7aEILGITwDK/w5kycF+fd+Vi2Fpx85hT+wPn8AehejO4=</latexit>

10

<latexit sha1_base64="kg0FFV3VrjOJfFbfbwLe9s1DzQc=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY4kXjxCIo8ENmR2aGBkdnYzM2tCNnyBFw8a49VP8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzto4SxbDFIhGpbkA1Ci6xZbgR2I0V0jAQ2Ammdwu/84RK80g+mFmMfkjHko84o8ZKzcqgWHLL7hJkk3gZKUGGxqD41R9GLAlRGiao1j3PjY2fUmU4Ezgv9BONMWVTOsaepZKGqP10eeicXFllSEaRsiUNWaq/J1Iaaj0LA9sZUjPR695C/M/rJWZU81Mu48SgZKtFo0QQE5HF12TIFTIjZpZQpri9lbAJVZQZm03BhuCtv7xJ2pWyd1OuNqulei2LIw8XcAnX4MEt1OEeGtACBgjP8ApvzqPz4rw7H6vWnJPNnMMfOJ8/fA2MtQ==</latexit>

2

<latexit sha1_base64="v5byeBmsPKeMUwlNTdw0XlrwwoA=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNEY4kXjxCIo8ENmR2aGBkdnYzM2tCNnyBFw8a49VP8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzto4SxbDFIhGpbkA1Ci6xZbgR2I0V0jAQ2Ammdwu/84RK80g+mFmMfkjHko84o8ZKzeqgWHLL7hJkk3gZKUGGxqD41R9GLAlRGiao1j3PjY2fUmU4Ezgv9BONMWVTOsaepZKGqP10eeicXFllSEaRsiUNWaq/J1Iaaj0LA9sZUjPR695C/M/rJWZU81Mu48SgZKtFo0QQE5HF12TIFTIjZpZQpri9lbAJVZQZm03BhuCtv7xJ2jdl77ZcaVZK9VoWRx4u4BKuwYMq1OEeGtACBgjP8ApvzqPz4rw7H6vWnJPNnMMfOJ8/g6GMug==</latexit>

7

<latexit sha1_base64="NkzigU/whPBn945O6vSZbum/3Us=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaVKEcSLx4hkUcCGzI7NDAyO7uZmTUhG77AiweN8eonefNvHGAPClbSSaWqO91dQSy4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS0eJYthkkYhUJ6AaBZfYNNwI7MQKaRgIbAeTu7nffkKleSQfzDRGP6QjyYecUWOlxnW/WHLL7gJknXgZKUGGer/41RtELAlRGiao1l3PjY2fUmU4Ezgr9BKNMWUTOsKupZKGqP10ceiMXFhlQIaRsiUNWai/J1Iaaj0NA9sZUjPWq95c/M/rJmZY9VMu48SgZMtFw0QQE5H512TAFTIjppZQpri9lbAxVZQZm03BhuCtvrxOWldl76ZcaVRKtWoWRx7O4BwuwYNbqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AH2RjLY=</latexit>

3

<latexit sha1_base64="kg0FFV3VrjOJfFbfbwLe9s1DzQc=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY4kXjxCIo8ENmR2aGBkdnYzM2tCNnyBFw8a49VP8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzto4SxbDFIhGpbkA1Ci6xZbgR2I0V0jAQ2Ammdwu/84RK80g+mFmMfkjHko84o8ZKzcqgWHLL7hJkk3gZKUGGxqD41R9GLAlRGiao1j3PjY2fUmU4Ezgv9BONMWVTOsaepZKGqP10eeicXFllSEaRsiUNWaq/J1Iaaj0LA9sZUjPR695C/M/rJWZU81Mu48SgZKtFo0QQE5HF12TIFTIjZpZQpri9lbAJVZQZm03BhuCtv7xJ2pWyd1OuNqulei2LIw8XcAnX4MEt1OEeGtACBgjP8ApvzqPz4rw7H6vWnJPNnMMfOJ8/fA2MtQ==</latexit>

2

<latexit sha1_base64="r6olBFY4nIrDJ2gU4SV9goCWpBM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNWHNz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6reTfW6eV2p1/I4inAG53AJHtxCHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDeomMtA==</latexit>

1

<latexit sha1_base64="cVkupCd8hWFVEYOhktPlTiKcNfI=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNKkcSLx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFS47pfLLlldwGyTryMlCBDvV/86g1ilkYoDRNU667nJsafUmU4Ezgr9FKNCWVjOsSupZJGqP3p4tAZubDKgISxsiUNWai/J6Y00noSBbYzomakV725+J/XTU1Y9adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWldl76ZcaVRKtWoWRx7O4BwuwYNbqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AICZjLg=</latexit>

5

<latexit sha1_base64="u+qJ37HRyi+3J+2Mm93ddqBpl9o=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkaI8FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpwXMH5YpbdRcg68TLSQVyNAflr/4wZmmE0jBBte55bmL8jCrDmcBZqZ9qTCib0BH2LJU0Qu1ni0tn5MIqQxLGypY0ZKH+nshopPU0CmxnRM1Yr3pz8T+vl5qw7mdcJqlByZaLwlQQE5P522TIFTIjppZQpri9lbAxVZQZG07JhuCtvrxO2ldV77pau69VGvU8jiKcwTlcggc30IA7aEILGITwDK/w5kycF+fd+Vi2Fpx85hT+wPn8AehejO4=</latexit>

10

<latexit sha1_base64="H0dJp7NSzCwnDwZmTWffvwDBxTA=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNQY4kXjxCIo8ENmR2aGBkdnYzM2tCNnyBFw8a49VP8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzto4SxbDFIhGpbkA1Ci6xZbgR2I0V0jAQ2Ammdwu/84RK80g+mFmMfkjHko84o8ZKzeqgWHLL7hJkk3gZKUGGxqD41R9GLAlRGiao1j3PjY2fUmU4Ezgv9BONMWVTOsaepZKGqP10eeicXFllSEaRsiUNWaq/J1Iaaj0LA9sZUjPR695C/M/rJWZU81Mu48SgZKtFo0QQE5HF12TIFTIjZpZQpri9lbAJVZQZm03BhuCtv7xJ2jdlr1quNCulei2LIw8XcAnX4MEt1OEeGtACBgjP8ApvzqPz4rw7H6vWnJPNnMMfOJ8/gh2MuQ==</latexit>

6

<latexit sha1_base64="W53lgNgmGcCxR3zmWj5JoRk4WSA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasKan3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W9m+p187pSr+VxFOEMzuESPLiFOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MHhSWMuw==</latexit>

8

<latexit sha1_base64="t9Jm4LpDFwWSuSmikUvZOrEwOVA=">AAAB5HicbVBNS8NAEJ3Urxq/qlcvi0XwVBIp2mPBi8cK9gPaUDbbSbt2swm7G6GE/gIvHhSv/iZv/hu3bQ7a+mDg8d4MM/PCVHBtPO/bKW1t7+zulffdg8Oj45OKe9rRSaYYtlkiEtULqUbBJbYNNwJ7qUIahwK74fRu4XefUWmeyEczSzGI6VjyiDNqrPRQH1aqXs1bgmwSvyBVKNAaVr4Go4RlMUrDBNW673upCXKqDGcC5+4g05hSNqVj7FsqaYw6yJeHzsmlVUYkSpQtachS/T2R01jrWRzazpiaiV73FuJ/Xj8zUSPIuUwzg5KtFkWZICYhi6/JiCtkRswsoUxxeythE6ooMzYb14bgr7+8STrXNf+mVq82G0UYZTiHC7gCH26hCffQgjYwQHiBN3h3npxX52PVWHKKiTP4A+fzBxSvi40=</latexit>

4

<latexit sha1_base64="Q0RbyGjG3v2dKVCiGCm+pFcK2io=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwB3pGM9g==</latexit>s
<latexit sha1_base64="ncEfr42h+bqFyl0EBXzfyvh/PTU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsN+3azSbsToQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNM7uZ+54lrI2L1gNOE+xEdKREKRtFKTRyUK27VXYCsEy8nFcjRGJS/+sOYpRFXyCQ1pue5CfoZ1SiY5LNSPzU8oWxCR7xnqaIRN362OHRGLqwyJGGsbSkkC/X3REYjY6ZRYDsjimOz6s3F/7xeimHNz4RKUuSKLReFqSQYk/nXZCg0ZyinllCmhb2VsDHVlKHNpmRD8FZfXiftq6p3U71uXlfqtTyOIpzBOVyCB7dQh3toQAsYcHiGV3hzHp0X5935WLYWnHzmFP7A+fwB4BWM9w==</latexit>

t

<latexit sha1_base64="NkzigU/whPBn945O6vSZbum/3Us=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaVKEcSLx4hkUcCGzI7NDAyO7uZmTUhG77AiweN8eonefNvHGAPClbSSaWqO91dQSy4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS0eJYthkkYhUJ6AaBZfYNNwI7MQKaRgIbAeTu7nffkKleSQfzDRGP6QjyYecUWOlxnW/WHLL7gJknXgZKUGGer/41RtELAlRGiao1l3PjY2fUmU4Ezgr9BKNMWUTOsKupZKGqP10ceiMXFhlQIaRsiUNWai/J1Iaaj0NA9sZUjPWq95c/M/rJmZY9VMu48SgZMtFw0QQE5H512TAFTIjppZQpri9lbAxVZQZm03BhuCtvrxOWldl76ZcaVRKtWoWRx7O4BwuwYNbqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AH2RjLY=</latexit>

3

<latexit sha1_base64="uvvbfj8q2flK51xBCY0PkuKzAbM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwB3Q2M9Q==</latexit>r

(i) Let the capacity of the edge from s to r be x. Find the maximum flow from
s to t when x = 4. Verify your answer by identifying a cut whose capacity
equals your answer.

(ii) Let δ∗(x) be the maximum flow from s to t, as a function of x. Derive a
formula for δ∗(x) when x ⩾ 0.

Part IB, 2024 List of Questions
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Paper 4, Section II

18H Optimisation

(a) Describe Newton’s method for minimising a function f : Rd → R. Denote by x∗ a
minimiser of f , and by xk the kth iterate in Newton’s method. Stating clearly any
assumptions f must satisfy, provide an upper bound on f(xk)− f(x∗).

(b) Suppose a ⩾ 1. Consider the following algorithm used by the ancient Babylonians
to approximate

√
a: set x0 ⩾ 1 and, for each k ⩾ 0, iteratively define

xk+1 =
1

2

(
xk +

a

xk

)
.

Prove that all the iterates lie in [1,∞). Derive the algorithm above as a consequence
of applying Newton’s method for minimising a suitable function f : [1,∞) → R.

(c) For a given a ⩾ 1, identify a range of values for x0 such that xk → √
a as k → ∞.

Derive an upper bound on |xk − √
a|. [Hint: You may find the result in part (a)

useful, as well as the equation x3 − 3ax+ 2a3/2 = (x−√
a)2(x+ 2

√
a).]

Part IB, 2024 List of Questions [TURN OVER]
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Paper 3, Section I

6A Quantum Mechanics
Consider a one-dimensional system described by a wavefunction ψ for which ⟨p̂⟩ = 0

and ⟨x̂⟩ = 0.

(i) Write down the commutation relation between x̂ and p̂.

(ii) Define the uncertainty ∆O of an observable Ô in terms of ⟨Ô⟩ and ⟨Ô2⟩.

(iii) Considering the one-parameter family of states defined by

ψs(x) = (p̂− isx̂)ψ(x),

where s ∈ R, derive the Heisenberg uncertainty relation between ∆x and ∆p.

Paper 4, Section I

4A Quantum Mechanics
Write down the time-independent Schrödinger equation for a particle of mass m

with wavefunction ψ(x) moving in a potential V (x).

Consider the one-dimensional potential V (x) = −V0 for |x| < a and V (x) = 0 for
|x| > a, for constant V0 > 0.

By integrating the Schrödinger equation over a small interval around x = a, analyse
the continuity of ψ(x) and ψ′(x) at x = a.

Show that

ψ(x) =

{
A exp(−η|x|) for |x| > a,
B cos(kx) for |x| < a,

is a solution of the time-independent Schrödinger equation, deriving two necessary
relationships between η and k in the process.

Draw a diagram in the (k, η) plane that indicates the locus of the lowest energy
level when k < π/(2a).

Part IB, 2024 List of Questions
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Paper 1, Section II

14A Quantum Mechanics
Muonium is an atom consisting of an electron of mass me and charge e in the

potential of an anti-muon (of opposite charge to the electron) of mass mµ ≫ me. You
may assume that the anti-muon is long-lived enough to form a bound state and that it
produces the same force field as a proton.

(i) In what ways (if any) should the quantum mechanical description of the electron in
muonium differ to that in the Hydrogen atom? Give reasons for your answer.

(ii) For fixed orbital angular momentum quantum number l, write down the equation
satisfied by the radial part of the electron wavefunction R(r). Show that it has
solutions of the form

R(r) ∝ rl exp

(
− r

a(l + 1)

)
,

where a is a constant that you should determine. Find the energy.

(iii) Atoms of muonium consistent with such solutions are prepared with energy

E = − e2

72πϵ0a
.

Show that the average of measurements of the electron-anti-muon spatial separation
in a large set of such muonium atoms is equal to ta, where t is a number that you
should find.

(iv) Taking one of the prepared muonium atoms with energy E, what is the numerical
probability that an immediate measurement of the total orbital angular momentum
yields ℏ?

[Hint: the time-independent Schrödinger equation of the Hydrogen atom is

− ℏ2

2mer2
∂

∂r

(
r2
∂ψ

∂r

)
+

1

2mer2
L̂2ψ − e2

4πϵ0r
ψ = Eψ.

The normalised energy eigenstates of the Hydrogen atom have the form

ψlm(r, θ, ϕ) = R(r)Ylm(θ, ϕ),

where Ylm are orbital angular momentum eigenstates satisfying

L̂2Ylm = ℏ2l(l + 1)Ylm, L̂3Ylm = ℏmYlm,

where l = 1, 2, . . . and m = 0, ±1, ±2, . . . ,±l.
You may assume that

∫∞
0 dt tle−t = l! and that

∫ π
0 dθ sin θ

∫ 2π
0 dϕ |Ylm|2 = 1. ]

Part IB, 2024 List of Questions [TURN OVER]



40

Paper 2, Section II

15A Quantum Mechanics

(i) Calculate the commutation relation between a position operator x̂ and its associated
momentum p̂x = −iℏ∂/∂x.

(ii) Write down the time-dependent Schrödinger equation for a quantum mechanical
system with Hamiltonian Ĥ and wavefunction ψ.

(iii) Calculate the rate of change of the expectation value of some operator Ô = Ô(t) in

terms of ⟨[Ô, Ĥ]⟩ and ⟨∂Ô∂t ⟩.

(iv) Express each of [x̂, p̂2x] and [x̂2, p̂x] in terms of a single operator.

(v) Consider the two-dimensional harmonic oscillator whose Hamiltonian is

Ĥ =
p̂2x + p̂2y
2m

+
mω2

2
(x̂2 + ŷ2).

Setting L̂ = x̂p̂y − ŷp̂x, calculate [L̂, Ĥ].

(vi) Changing variables to z = x+ iy, consider the two degenerate energy eigenstates

ψ = Az exp(−β|z|2) and ψ∗ = Az∗ exp(−β|z|2)

where A and β are positive real constants. At time t = 0, a state
√
5
3 ψ + 2

3ψ
∗ is

prepared. What is the expectation value of L̂ at a later time t > 0?
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Paper 4, Section II

15A Quantum Mechanics
A quantum mechanical particle moves in an inverted harmonic oscillator potential.

Its wavefunction ψ(x, t) evolves according to

iℏ
∂ψ

∂t
= −ℏ2

2

∂2ψ

∂x2
− 1

2
x2ψ.

(i) Show that there exists a solution of the form

ψ(x, t) = A(t) exp(−B(t)x2)

provided that
dA

dt
= −iℏAB

and
dB

dt
= − i

2ℏ
− 2iℏB2.

(ii) Show that B = ξ tan(ϕ+αt) solves the equation for B, where ξ and α are constants
that you should find and ϕ is a constant of integration.

(iii) Find A(t) in terms of cos(ϕ+αt). You need not calculate its normalisation explicitly.

(iv) Compute the expectation values of x̂2 and p̂2 as functions of B.

[Hint: You may use

∫∞
−∞ dx e−Cx2

x2∫∞
−∞ dx e−Cx2 =

1

2C
. ]
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Paper 1, Section I

6H Statistics

(a) Define what it means for a statistic to be sufficient. State the factorization criterion.

(b) What does it mean for a sufficient statistic to be minimal sufficient?

Now suppose X is a single sample from a N(0, σ2) distribution, where σ is the
parameter we wish to estimate.

(c) Prove that |X| is a sufficient statistic. Is |X| minimal sufficient?

(d) Suppose we instead have i.i.d. samples X1, X2, . . . , Xn ∼ N(0, σ2), where n ⩾ 2.
Is

∑n
i=1 |Xi| a sufficient statistic for estimating σ?

[Standard results can be quoted without proof.]

Paper 2, Section I

6H Statistics
After losing a large amount of money, an unlucky gambler questions whether the

game was fair and the die was really unbiased. The last 90 rolls of this die gave the
following results:

score on the die 1 2 3 4 5 6

number of times it occurred 20 15 12 17 9 17

(i) Suppose the gambler wishes to test the hypothesis that the die is fair. What are
the null and alternative hypotheses?

(ii) Describe Pearson’s test. What is the limiting distribution of the Pearson statistic
under the null hypothesis?

(iii) Compute the Pearson statistic for this test.

(iv) What is the asymptotic p-value of the test (written as a quantile of an
appropriate distribution)?

[Standard results can be quoted without proof, provided they are stated clearly.]
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Paper 1, Section II

18H Statistics
Suppose X1 and X2 are i.i.d. from a Uniform(θ, θ + 1) distribution. For testing

H0 : θ ⩽ 0 against H1 : θ > 0,

consider the following two tests:

Test 1: Reject H0 if X1 > 0.95;

Test 2: Reject H0 if X1 +X2 > C.

(a) Derive a formula for the probability density function of X1 + X2 and plot the
function.

(b) Find the value of C so that Test 2 has the same size as Test 1.

(c) Calculate the power of each test as a function of θ.

(d) Is either Test 1 or Test 2 uniformly most powerful for testing the hypotheses? Justify
your answer.
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Paper 3, Section II

18H Statistics
Suppose X1, . . . , Xn is an i.i.d. sample from a N(µ, 1) population, and we wish to

test the hypothesis
H0 : µ = 0 against H1 : µ ̸= 0.

(a) Define a level-α hypothesis test based on X̄ = 1
n

∑n
i=1Xi, and find an expression for

the p-value p(x̄) corresponding to a value X̄ = x̄ in terms of the standard normal
cumulative distribution function Φ.

Now consider a prior distribution on µ, defined as follows: with probability 1
2 , take µ = 0,

and with probability 1
2 , draw a value of µ from a N(0, τ2) distribution, where τ is known.

(b) What is the conditional probability density function of X̄|µ? Derive an expression
for the marginal probability density function m(x̄) of X̄ under the prior distribution
described above.

[Hint: The formula
∫∞
−∞ e−ax2−bxdx =

√
π
ae

b2/(4a), for a > 0, may be helpful.]

(c) Find an expression for the posterior probability q(x̄) that H0 is true, defined by
q(x̄) = P(µ = 0|X̄ = x̄).

(d) Suppose we fix n = 100 and τ = 1. Compare the probabilities p(x̄) and q(x̄)
obtained in parts (a) and (c):

(i) Which probability is larger when x̄ is close to 0?

(ii) Which probability is larger when |x̄| is large?

[You may use the Taylor series approximation 1 − Φ(x) ≈ e−x2/2

√
2πx

, which holds for

large values of x.]

[Standard results can be quoted without proof.]
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Paper 4, Section II

17H Statistics
Observations {(xi, Yi)}ni=1 are made according to the model

Yi = α+ βxi + ϵi,

where {xi}ni=1 are fixed constants in R and ϵi
i.i.d.∼ N(0, σ2), for a known value of σ.

(a) Derive expressions for maximum likelihood estimators α̂ and β̂ for α and β,
respectively.

Now suppose the model is reparametrized as

Yi = α′ + β′(xi − x̄) + ϵi,

where x̄ := 1
n

∑n
i=1 xi. Let α̂

′ and β̂′ denote maximum likelihood estimators for α′ and β′,
respectively.

(b) Show that β̂′ = β̂.

(c) Show that in general, α̂′ ̸= α̂. In fact, show that α̂′ = 1
n

∑n
i=1 Yi.

(d) What is the distribution of α̂′? Construct a 95% confidence interval for α′ based on
α̂′.

(e) Now suppose σ is unknown. Construct a 95% confidence interval for α′ in this
setting, and explain why it has the specified coverage.

[Standard results can be quoted without proof.]
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Paper 1, Section I

4C Variational Principles
Describe how to use the method of Lagrange multipliers to extremise a function

f(x, y, z) subject to the constraint g(x, y, z) = 0.

You need to make a rectangular cardboard box. The bottom of the box must be
three times thicker than the front and back. The sides of the box must be twice as thick
as the front and back. The box has no top. The volume of the box must be equal to
three. What are the lengths of the sides and height if you wish to minimise the amount
of cardboard used?

Paper 3, Section I

4C Variational Principles
Given a Lagrangian L(x, ẋ, t), what is the momentum p conjugate to x? What is

the Hamiltonian? Under what circumstances is energy conserved?

The dynamics of a particle with position x = (x, y, z) is governed by the Lagrangian

L = mc
√
ẋ · ẋ− V (x), (1)

where m and c are positive constants, and V (x) is a potential.

Determine the momentum p conjugate to x. Determine the Euler-Lagrange
equation.

Show that p·p is constant. Determine the Hamiltonian. Is it possible to reconstruct
the Lagrangian from the Hamiltonian?
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Paper 2, Section II

13C Variational Principles
A functional of y(x) takes the form

I[y] =

∫ x0

0
F (y′, y, x) dx .

Derive the Euler-Lagrange equation and explain why solutions to this equation, assuming
that they exist, extremise I[y] under the assumption that y(x) is fixed at each end.

The system is said to have free boundary conditions if ∂F/∂y′ = 0 at the end points.
Explain why the solutions to the Euler-Lagrange equations, if they exist, also extremise
I[y] if free boundary conditions are imposed at each end.

Consider the functional of y(x) and z(x) given by

J [y, z] =

∫ x0

0

[
y′ 2 + z′ 2 + 2yz

]
dx .

Find the most general solution to the Euler-Lagrange equations subject to the requirement
that y(0) = z(0) = 0. For which values of x0 are there solutions if we impose free boundary
conditions at x0? Find these solutions.

Paper 4, Section II

13C Variational Principles
Three scalar fields, ϕ(x, t), α(x, t), and β(x, t), are each a function of the spatial

coordinates x = (x1, x2, x3) and time t. The dynamics of these fields is governed by
extremising the functional

S[ϕ, α, β] =

∫ +∞

−∞

[
− β

∂α

∂t
− 1

2
(∇ϕ+ β∇α) · (∇ϕ+ β∇α)

]
dt d3x .

Write down the Euler-Lagrange equations for ϕ, α and β.

Define the vector field
u = ∇ϕ+ β∇α .

Show that the Euler-Lagrange equations can be written as

∇ · u = 0 and
∂α

∂t
+ u · ∇α = 0 and

∂β

∂t
+ u · ∇β = 0 .

Hence show that the vector field u obeys

∂ui
∂t

+ u · ∇ui = − ∂p

∂xi
,

where p = −1
2u ·u+f(ϕ̇, α̇, β) and f(ϕ̇, α̇, β) is a function that you should determine, and

where ϕ̇ and α̇ are the partial derivatives of ϕ and α with respect to t.

END OF PAPER
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