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SECTION I

1G Number Theory
Compute the continued fraction expansion of

√
11. Show that for all n > 0 the

convergents pn/qn satisfy

pn+1 + qn+1

√
11 =

{
α(pn + qn

√
11) if n is odd,

β(pn + qn
√
11) if n is even,

for real numbers α and β which you should determine.

2F Topics In Analysis
We say that a function f : X → X has a fixed point if there exists an x ∈ X with

f(x) = x.

(i) Use the intermediate value theorem to show that, if f : [0, 1] → [0, 1] is
continuous, it has a fixed point. Show also that, if 0, 1 ∈ f([0, 1]), then f
is surjective.

(ii) Suppose that A and B are homeomorphic subsets of R2. Show that, if
every continuous function g : A→ A has a fixed point, then so does every
continuous function f : B → B.

(iii) State Brouwer’s fixed point theorem for the closed unit disc D̄.

(iv) Show that the closed unit disc is not homeomorphic to the annulus

A = {(x, y) ∈ R2 : 1 6 x2 + y2 6 2}.

(v) Suppose that B is a subset of R2 containing at least two points. If every
continuous function g : B → B has a fixed point, does it follow that B is
homeomorphic to the closed unit disc? Give reasons.

3I Coding and Cryptography
(a) If C ⊆ Fn

2 is a linear code, define the dual code C⊥ and explain why it is also
linear. If C is cyclic, show directly that C⊥ is cyclic. Explain briefly how the generator
polynomials of C and C⊥ are related.

(b) Factorise X7 − 1 over the field F2 and hence list all the binary cyclic codes of
length 7. Identify versions of Hamming’s original code and its dual in your list. What are
the other cyclic codes of length 7? You should relate them to codes defined explicitly in
the course.

Part II, Paper 4
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4I Automata & Formal Languages

(i) Define what it means for a grammar to be regular.

(ii) Let G = (Σ, V, P, S) be a regular grammar and Ω = Σ∪V . Prove that if α ∈ Ω∗ and

S
G−→ α, then there are w ∈W and A ∈ V such that α = wA or α = w.

(iii) Let G = (Σ, V, P, S) be a regular grammar, A,B ∈ V , and w, v ∈ W. Prove that if

wA
G−→ vB, then there is some word u ∈W such that A

G−→ uB.

If G = (Σ, V, P, S) is a regular grammar and A is a variable, we call A accessible in G if

there is a word w1 ∈ Σ∗ such that S
G−→ w1A; we call A looping in G if there is a word

w2 ∈ Σ∗ such that A
G−→ w2A; we call A terminable in G if there is a word w3 ∈ Σ∗ such

that A
G−→ w3.

(iv) Let G be a regular grammar. Prove that if L(G) is infinite then there is a variable
that is accessible, looping, and terminable in G.

Part II, Paper 4 [TURN OVER]
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5J Statistical Modelling
Below is a simplified 1993 dataset of US cars. The columns list make, model, price

(in $1000), miles per gallon, number of passengers, length and width in inches, and weight
(in pounds). The data are displayed in R as follows (abbreviated):

> cars

make model price mpg psngr length width weight

1 Acura Integra 15.9 31 5 177 68 2705

2 Acura Legend 33.9 25 5 195 71 3560

3 Audi 90 29.1 26 5 180 67 3375

... ... ...

91 Volkswagen Corrado 23.3 25 4 159 66 2810

92 Volvo 240 22.7 28 5 190 67 2985

93 Volvo 850 26.7 28 5 184 69 3245

It is reasonable to assume that prices for different makes are independent. How would you
instruct R to model the logarithm of the price as a linear combination of an error term
and

(i) an intercept;

(ii) an intercept and all other quantitative properties of the cars;

(iii) an intercept, all other quantitative properties of the cars, and the make of the cars?

Suppose the fitted models are assigned to objects fit1, fit2, and fit3, respectively.
Suppose R provides the following analysis of variance table for these models:

> anova(fit1, fit2, fit3)

[...]

Res.Df RSS Df Sum of Sq F Pr(>F)

1 92 8584.0

2 87 3349.1 5 5234.9 69.7334 < 2.2e-16 ***

3 56 840.8 31 2508.3 5.3891 2.541e-08 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

What are your conclusions about the statistical models in fit1, fit2 and fit3 based
on this table? Explain how you can determine the number of unique car manufacturers
in this dataset from this table.

Part II, Paper 4
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6C Mathematical Biology
The concentration C(x, t) of a morphogen obeys the differential equation

∂C

∂t
= D

∂2C

∂x2
+ f(C),

in the domain 0 6 x 6 L, with boundary conditions C(0, t) = 0 and ∂C(L, t)/∂x = 0, with
D a positive constant and f(C) a nonlinear function of C with f(0) = 0 and f ′(0) > 0.
Linearising the dynamics around C = 0, and representing C(x, t) as a suitable Fourier
expansion, find the condition on L such that the system is linearly stable. Express your
answer in terms of D and f ′(0).

7E Further Complex Methods
The hypergeometric function F (a, b; c; z) is the solution of the hypergeometric

equation, i.e. the Fuchsian equation determined by the Papperitz symbol

P





0 1 ∞
0 0 a z

1− c c− a− b b





with F (a, b; c; z) analytic at z = 0 and satisfying F (a, b; c; 0) = 1.

Explain carefully the meaning of each of the elements appearing in the Papperitz
symbol, including any aspects that are required for it to correspond to the hypergeometric
equation.

Show that
F (a, c− b; c; z

z − 1
) = (1− z)aF (a, b; c; z),

stating clearly any general results for transforming Fuchsian differential equations or
manipulating Papperitz symbols that you use.

8D Classical Dynamics
What is meant by an adiabatic invariant of a mechanical system?

A particle of mass m and energy E moves between two fixed, parallel walls that
are a distance L apart. The particle travels freely in a direction perpendicular to the
walls except when it collides elastically with a wall at which point its velocity changes
instantaneously. Compute the action I =

∮
p dq and verify that T = dI/dE is the period

of oscillation.

Suppose that the distance between the walls is varied very slowly so that L(t)
depends on time. How does the energy of the particle depend on time? Give a brief
physical explanation for why the particle’s energy changes.

Part II, Paper 4 [TURN OVER]
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9B Cosmology
What is the flatness problem? By using the Friedmann and continuity equations,

show that a period of accelerated expansion of the scale factor a(t) in the early stages of
the universe can solve the flatness problem if ρ + 3P < 0, where ρ is the energy density
and P is the pressure. [Hint: it may be useful to compute d(ρa2)/dt.]

In the very early universe one can neglect the spatial curvature and the cosmological
constant. Suppose that in addition there is a homogenous scalar field φ with potential

V (φ) = m2φ2 ,

and the Friedmann equation is

3H2 =
1

2
φ̇2 + V (φ) ,

where H = ȧ/a is the Hubble parameter. The field φ obeys the evolution equation

φ̈+ 3Hφ̇+
dV

dφ
= 0 .

During inflation, φ evolves slowly after starting from a large initial value φi at t = 0. State
what is meant by the slow-roll approximation. Show that in this approximation

φ(t) = φi −
2√
3
mt

a(t) = aiexp

[
mφi√

3
t− 1

3
m2t2

]
= aiexp

[
φ2i − φ(t)2

4

]
,

where ai is the initial value of a.

Part II, Paper 4
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10D Quantum Information and Computation
[In this question you do not need to draw any circuits and you can assume that Alice can
perform a measurement on two qubits in the Bell basis.]

(a) Suppose that Alice and Bob share the quantum state

|ψ+
AB〉 =

1√
2

(|01〉+ |10〉),

and can communicate classically. Alice wants to send an arbitrary qubit state to Bob.
State the steps that Alice and Bob need to execute to achieve this goal.

(b) Suppose Alice, Bob and Charlie share the following state of three qubits:

|ΨABC〉 =
1√
2

(|000〉+ |111〉) ,

where the qubits A, B and C are with Alice, Bob and Charlie, respectively. Moreover,
Alice has the qubit state |α〉 = a |0〉 + b |1〉 , with a, b ∈ C and |a|2 + |b|2 = 1. She
now performs the Bell measurement on the two qubits in her possession. Depending on
the measurement outcome, she asks Bob and Charlie to perform the necessary correction
operations on their individual qubits, as is done in the standard teleportation protocol.
Show that the final joint state of Bob and Charlie at the end of this protocol is either the
state |ϕ1〉 := a |00〉+ b |11〉 or the state |ϕ2〉 := a |00〉 − b |11〉. Show that these states are
entangled if and only if a 6= 0 and b 6= 0.
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SECTION II

11G Number Theory
(a) Define the Legendre symbol

(
a
p

)
. State and prove Euler’s criterion. Deduce a

formula for
(−1

p

)
.

(b) Let A be a 2×2 matrix with integer entries. Explain why if p is a prime number
then

(I +A)p ≡ I +Ap (mod p).

Taking A =
(
0 −1
1 0

)
and p = 4k± 1, show that (−4)k ≡ 1 or 2 (mod p). Deduce a formula

for
(
2
p

)
.

(c) Let p be an odd prime number and

T =

p−1∑

a=1

a

(
a

p

)
.

(i) Show that if p ≡ 1 (mod 4) then T = 0.

(ii) Show that if p > 3 then T ≡ 0 (mod p).

(d) Show that if p ≡ 7 (mod 8) then the sum of the quadratic residues modulo p in
the interval (0, p/2) is (p2 − 1)/16.

Part II, Paper 4
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12F Topics In Analysis
Let C([0, 1]) denote the space of continuous real functions on [0, 1] equipped with

the uniform norm ‖ · ‖∞.

(a) Consider Rn+1 with the standard Euclidean norm ‖ · ‖, and let T be the map
T : Rn+1 → C([0, 1]) given by T (a) =

∑n
r=0 art

r. Let S be the map S : Rn+1 → R given
by S(a) = ‖Ta‖∞. Show that there exists a δ > 0 such that

|S(a)| > δ whenever ‖a‖ = 1.

Conclude that ‖T (a)‖∞ →∞ as ‖a‖ → ∞.

(b) If f ∈ C([0, 1]) and n > 0, show that there exists a (not necessarily unique)
‘best fit’ polynomial P of degree at most n such that

‖P − f‖∞ 6 ‖Q− f‖∞ whenever Q is a polynomial of degree at most n.

(c) State Chebychev’s equiripple criterion and show that it is a sufficient condition
for a polynomial to be best fit.

(d) Let g ∈ C([0, 1]), M = ‖g‖∞ and suppose that

0 = u0 < v0 < u1 < v1 < . . . < vm−1 < um < vm = 1

are such that

M > g(t) > −M for t ∈ [u2j , v2j ], (2j 6 m)

−M 6 g(t) < M for t ∈ [u2j+1, v2j+1], (2j + 1 6 m)

−M < g(t) < M for t ∈ [vj−1, uj ], (j 6 m).

Let wj = (vj−1 + uj)/2 and set Q(t) = (−1)m−1
∏m−1

j=1 (t − wj). Show that, if η > 0 is
sufficiently small, we have

‖ηQ− g‖∞ < M.

Deduce that Chebychev’s criterion is also a necessary condition for a polynomial to be
best fit.

Part II, Paper 4 [TURN OVER]
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13J Statistical Modelling
The data frame worldcup22 contains information about the matches played in a

sports competition, including for each team in the match the starting formations (indicated
by letters A-L), the expected goals (xg) and the actual goals. In the questions below we
will assume that the match results are independent.

> worldcup22

team1 team2 team1_xg team2_xg team1_form team2_form team1_goal team2_goal

1 Qatar Ecuador 0.3 1.2 I H 0 2

2 England IR Iran 2.1 1.4 E J 6 2

... ... ...

63 Croatia Morocco 0.7 1.2 E F 2 1

64 Japan France 3.3 2.2 F E 3 3

> fit1 <- glm(team1_goal ~ team1_form + team2_form, worldcup22,

family = poisson)

(i) Let Y denote the response vector and X denote the design matrix for fit1. Write
down the likelihood function that is maximized by the command above. [Recall
that if Y follows a Poisson distribution with mean µ, then P(Y = k) = µke−µ/k!,
k = 0, 1, . . . .]

(ii) Comment on the following abbreviated summary of fit1. Is there enough informa-
tion to conclude that the formation of team1 does not affect its goals? If not, what
is the name of the statistical procedure you can use to test this hypothesis?

> summary(fit1)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.890 0.581 3.3 0.001 **

team1_formB -0.672 0.595 -1.1 0.259

team1_formC -17.865 2446.075 0.0 0.994

team1_formD 0.595 1.293 0.5 0.645

team1_formE -0.361 0.441 -0.8 0.413

team1_formF -0.098 0.414 -0.2 0.812

team1_formG -1.120 1.089 -1.0 0.304

team1_formH -0.332 0.490 -0.7 0.498

team1_formI -1.855 1.104 -1.7 0.093 .

team1_formJ 0.285 0.830 0.3 0.731

team2_formK -18.831 3467.859 0.0 0.996

team2_formB -1.199 0.565 -2.1 0.034 *

team2_formC -1.792 1.080 -1.7 0.097 .

team2_formL -0.905 0.558 -1.6 0.105

team2_formE -1.482 0.478 -3.1 0.002 **

team2_formF -1.464 0.504 -2.9 0.004 **

team2_formH -0.728 0.494 -1.5 0.140

team2_formI -0.980 0.588 -1.7 0.095 .

team2_formJ -0.143 0.612 -0.2 0.816

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

[QUESTION CONTINUES ON THE NEXT PAGE]
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(iii) Expected goals (xg) is a new metric in sports analytics that computes the number
of goals a team should have scored based on the quality of the chances created.
State the following two hypotheses mathematically: (a) H1: team1 goal has
mean team1 xg; (b) H2: team1 goal follows a Poisson distribution with mean
team1 xg. Then name the result in probability theory that suggests team1 goal

should approximately follow a Poisson distribution.

(iv) An analyst fitted the following model to test H1. Does the model fit suggest evidence
against H1? Give one reason why we should be skeptical about the standard errors
in the table.

> fit2 <- lm(team1_goal ~ team1_xg - 1, worldcup22)

> summary(fit2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

team1_xg 1.15790 0.08643 13.4 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(v) The analyst then fitted the following model and computed the 95% confidence
interval for the coefficients. Explain why the observation that the confidence interval
for log(team1 xg) contains 1 does not directly imply that H2 cannot be rejected
at the 5% significance level.

> fit3 <- glm(team1_goal ~ log(team1_xg), worldcup22, family = poisson)

> confint(fit3)

2.5 % 97.5 %

(Intercept) -0.1387542 0.3836497

log(team1_xg) 0.6691166 1.3395731

Part II, Paper 4 [TURN OVER]
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14C Mathematical Biology
Consider a population subject to the following birth-death process. When the

number of individuals in the population is n, the probability of an increase from n to
n+1 per unit time is γ+βn and the probability of a decrease from n to n−1 is αn(n−1),
where α, β, and γ are constants.

Draw a transition diagram and show that the master equation for P (n, t), the
probability that at time t the population has n members, is

∂P

∂t
= αn(n+1)P (n+1, t)− [αn(n− 1) + γ + βn]P (n, t)+[γ + β(n− 1)]P (n−1, t). (1)

Show that 〈n〉, the mean number of individuals in the population, satisfies

d〈n〉
dt

= −α〈n2〉+ (α+ β)〈n〉+ γ.

Deduce that, in a steady state,

〈n〉 =
α+ β

2α
±

√
(α+ β)2

4α2
+
γ

α
− (∆n)2,

where ∆n is the standard deviation of n. Given the form of the expression above, when
is the choice of the minus sign not admissible?

Show that, under conditions to be specified, the master equation (1) may be
approximated by a Fokker-Planck equation of the form

∂P

∂t
=

∂

∂n
[g(n)P (n, t)] +

1

2

∂2

∂n2
[h(n)P (n, t)] .

Find the functions g(n) and h(n).

In the case α� γ and α� β, find the leading-order approximation to n∗ such that
g(n∗) = 0. Defining the new variable x = n − n∗, explain how an approximate form of
P (x) may be obtained in the neighbourhood of x = 0 in the steady-state limit, showing
clearly the dependence of P (x) on the properties of the functions g(n) and h(n) at n = n∗.
Deduce leading order estimates for 〈n〉 and (∆n)2 in terms of α, β and γ.

Compare your results to those obtained from the master equation above and give
justification of why the conditions for applicability of the Fokker-Planck equation hold in
this case.

Part II, Paper 4
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15D Classical Dynamics
What does it mean for a phase space coordinate transformation to be canonical?

Consider a coordinate transformation (q, p) 7→ (Q,P ) on the phase space of a system with
one degree of freedom. Show that if this transformation is defined in terms of a generating
function F (q, P ) via

Q =
∂F

∂P

∣∣∣∣
q

and p =
∂F

∂q

∣∣∣∣
P

then it is canonical.

Find the phase space coordinate transformation associated to the generating func-
tion

F (q, P ) =

∫ q

0

√
2P − u2 du .

Obtain Hamilton’s equations for Q and P in the case H(q, p) = 1
2(p2 + q2). Hence find

Q(t) and P (t) and check that these agree with the usual solution for a simple harmonic
oscillator.

A particle of energy E has Hamiltonian H(q, p) = 1
2(p2 + q2) + εq4, where 2q2ε� 1

for all q in the range−
√

2E 6 q 6
√

2E. By choosing an appropriately modified generating
function Fε(q, P ), show that

q(t)

p(t)
= tan(t− t0)− ε I(q0(t), E) (1 + tan2(t− t0)) + εq20(t) tan3(t− t0) +O(ε2),

where q0(t) =
√

2E sin(t− t0) and I(x, y) is defined by

I(x, y) =

∫ x

0

u4

(2y − u2)3/2 du .
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16H Logic and Set Theory
In this question we work in ZF, not ZFC. As usual, for cardinals κ and λ we write

κ 6 λ if there is an injection from K to L, where K and L are sets of cardinalities κ and
λ, respectively.

(a) Show that the assertion that 6 is a total ordering on cardinals (in other words,
that for any κ and λ we have κ 6 λ or λ 6 κ) is equivalent to the Axiom of Choice.

(b) Show that the Axiom of Choice implies that, for any infinite cardinal κ, we have
κ2 = κ.

(c) Suppose that κ and λ are non-zero cardinals such that κλ 6 κ+ λ. Prove that
there must exist either an injection or a surjection from K to L.

(d) Show that the assertion that for any infinite cardinal κ we have κ2 = κ is
equivalent to the Axiom of Choice. [Hint: for a given set X, you may wish to consider
the disjoint union of X with γ(X).]

[You may assume Hartogs’ Lemma, and you may use the equivalence of the Axiom
of Choice with any of its equivalents from the course.]

17H Graph Theory
(a) State Menger’s theorem relating the size of x-y separators in a graph to the

number of independent x-y paths.

(b) State Hall’s theorem and, assuming Menger’s theorem, prove Hall’s theorem.

(c) Let k > 1 and let [0, 1]3 = A1 ∪ · · · ∪ Ak and [0, 1]3 = B1 ∪ · · · ∪ Bk be two
partitions of the unit cube into sets of equal volume. Show there is a permutation σ of [k]
so that Ai ∩Bσ(i) 6= ∅, for all i ∈ [k].

(d) Let G be a 2k-connected graph that contains a K2k and let x1, . . . , xk, y1, . . . , yk
be distinct vertices in G. Show that there exist paths P1, . . . , Pk for which

V (Pi) ∩ V (Pj) = ∅,

for all i 6= j where, for each i, Pi is an xi-yi path.

[In parts (c) and (d) you may assume results from the course provided they are stated
clearly.]

Part II, Paper 4
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18I Galois Theory
(a) Define the discriminant of a monic polynomial.

Let K be a field with char(K) 6= 2, and let f ∈ K[T ] be a monic, separable
polynomial of degree n. Show that the Galois group of f is contained in An if and only if
the discriminant of f is a square in K.

Compute the Galois group of T 3 − 2T + 2 over Q and over Q(
√
−19).

[The discriminant of T 3 + aT + b is −4a3 − 27b2.]

(b) Let K be a field of characteristic 2, and f = T 3 + aT + b ∈ K[T ]. Let L be a
splitting field for f over K.

(i) Show that f is separable if and only if b 6= 0.

(ii) Assuming that f is separable, show that g = T 2 + bT + a3 + b2 splits
into distinct linear factors in L[T ]. By considering the action of the Galois
group G of f on the roots of g, or otherwise, show that G is contained in
A3 if and only if g splits into linear factors in K[T ].

Part II, Paper 4 [TURN OVER]
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19H Representation Theory
State Schur’s lemma.

What is a complex representation of a topological group G? What does it mean to
say a complex representation (ρ, V ) of G is unitary?

Explain why every complex representation of S1 is unitary. Deduce that every
complex representation of S1 is a direct sum of 1-dimensional representations.

Let G be the group of 3× 3 upper unitriangular real matrices

G :=







1 x z
0 1 y
0 0 1



∣∣∣∣∣∣
x, y, z ∈ R





under matrix multiplication. Let Z be the centre of G and Z0 the cyclic subgroup of Z
given by

Z0 =







1 0 z
0 1 0
0 0 1



∣∣∣∣∣∣
z ∈ Z



 6 Z =







1 0 z
0 1 0
0 0 1



∣∣∣∣∣∣
z ∈ R



 .

By considering elements of the form g−1h−1gh with g, h ∈ G, show that every 1-
dimensional representation of G has kernel containing Z.

Show that any complex representation (ρ, V ) of G/Z0 decomposes as a direct sum
of subrepresentations (ρi, Vi)i=1,...,d with the property that

Res
G/Z0

Z/Z0
ρi = θi idVi

for some distinct 1-dimensional representations θ1, . . . , θd of Z/Z0. By considering det ρi,
or otherwise, deduce that d = 1 and that θ1 is the trivial representation. Hence show that
G/Z0 does not have a faithful representation.

20H Number Fields
(a) State Minkowski’s lemma.

Let K = Q(
√
d), with d ∈ Q, d > 0, d not a square. Prove that there are infinitely

many α ∈ OK with N(α) < |DK |1/2, where DK is the discriminant of K.

(b) Determine the units in the ring of integers OK in the cases (i) K = Q(
√

10) and
(ii) K = Q(

√
−3). You must prove that your answers are correct.

(c) Let K = Q(ζ), where ζ5 = 1. Determine O∗
K as an abelian group. [You do not

have to describe explicit generators.]

Find explicit elements of O∗
K which generate a subgroup H of finite index (that is,

for which O∗
K/H is finite).
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21G Algebraic Topology
Suppose that (C, d) and (C ′, d′) are chain complexes, and that f, g : C → C ′ are

chain maps. Show that f induces a map f∗ : H∗(C)→ H∗(C ′). Define what it means for
f and g to be chain homotopic. Show that if f and g are chain homotopic, they induce
the same map on homology.

Define a chain complex (M(f), df ) as follows: M(f)i = Ci−1 ⊕ C ′i and the map
(df )i : M(f)i →M(f)i−1 is given by the matrix

(
di−1 0

(−1)ifi−1 d′i

)
.

Verify that (M(f), df ) is a chain complex. Show that there is a long exact sequence

. . .→ Hi(C)
(−1)i+1f∗−−−−−−→ Hi(C

′)→ Hi(M(f))→ Hi−1(C)
(−1)if∗−−−−−→ Hi−1(C ′)→ . . .

If f is chain homotopic to g, show that (M(f), df ) and (M(g), dg) are isomorphic as chain
complexes.

22F Linear Analysis
Below, H denotes a Hilbert space over C.

(a) Consider a sequence (xn) in H with the property that there exists an x ∈ H
such that for any y ∈ H, 〈xn, y〉 converges to 〈x, y〉 in C. Prove that the sequence (xn) is
bounded. [The uniform boundedness principle may be used without proof, provided it is
properly stated.]

(b) With (xn) and x as above, prove that there exists another sequence (x̃k) in H
such that ‖x̃k − x‖H → 0 and such that each x̃k is a convex combination of terms in (xn).

(c) Deduce that if C ⊂ H is closed and convex, and (xn) is a sequence in C as
in part (a), i.e. with the property that there exists x ∈ H such that for any y ∈ H,
〈xn, y〉 → 〈x, y〉, then in fact x ∈ C.

(d) Is the statement in part (c) still true when C is closed but not necessarily convex?
[You must either provide a proof if true or a detailed counterexample if untrue.]

23F Analysis of Functions
(a) Prove that the embedding H1(Rn) ↪→ L2(Rn) is not compact.

(b) Construct a bounded linear functional on L∞(Rn) that cannot be expressed as
f ∈ L∞(Rn) 7→

∫
f(x)g(x) dx for any g ∈ L1(Rn). [You may use theorems from the course

if you state them carefully.]

(c) Prove that Hn(Rn) embeds continuously into C0,α(Rn), for some α ∈ (0, 1).

(d) Let θ be the Heaviside function, defined by θ(x) = 1x>0, x ∈ R. Find the
Hardy–Littlewood maximal function Mθ.
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24G Algebraic Geometry
What does it mean for two irreducible varieties to be birational? Prove that

birational varieties have the same dimension.

LetK be a finitely generated field extension of C. Prove that there exists a projective
variety X over C whose function field is K.

Let X be the affine plane curve V(f) ⊂ A2, where

f(x, y) = y2 − x(x− 1)2.

For what values of d is X birational to a smooth projective plane curve of degree d?

Construct an affine variety X of dimension 2 that is birational to A2, and whose set
of singular points is an irreducible subvariety of dimension 1.

25G Differential Geometry
(a) Given a compact orientable surface with smooth boundary, define the area

element dA, Euler characteristic χ, and geodesic curvature kg of the boundary, explaining
briefly why the first two are well defined. State the Gauss–Bonnet theorem for the surface.
[You need not consider the case of corners.]

(b) Let S be a compact orientable surface without boundary, and let γ : I → S
be a smooth closed curve on S, parametrised by arc length, which separates S into
two surfaces with boundary, S1 and S2, such that S is the union S = S1 ∪ S2 where
∂S1 = ∂S2 = S1 ∩ S2 = γ(I). Suppose there exists an isometry φ : S1 → S2, and
moreover, for each x, y ∈ γ(I), an isometry φx,y : S → S such that φx,y(γ(I)) = γ(I) and
such that φx,y(x) = y. Show that γ is a geodesic.

(c) In the above problem, suppose we drop the assumption of the existence of the
isometry φ. Is γ still necessarily a geodesic?

(d) Alternatively, suppose we drop the assumption of the existence of the isometries
φx,y. Is γ still necessarily a geodesic?

26K Probability and Measure
(a) Let (Yn : n ∈ N) be an infinite sequence of i.i.d. random variables such that

E|Y1| =∞. Show that lim supn→∞ |Y1 + · · ·+ Yn|/n =∞ almost surely.

(b) Show that one can find (Yn : n ∈ N) as in part (a) but such that (Y1+ · · ·+Yn)/n
converges weakly to some random variable Z.

[You may use theorems from lectures provided you state them clearly.]
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27J Applied Probability
(a) Let d > 1 and let λ : Rd 7→ R be a non-negative measurable function such that∫

A λ(x)dx < ∞ for all bounded Borel sets A. Define a non-homogeneous spatial Poisson
process on Rd with intensity function λ.

(b) Assume that the positions (x, y, z) ∈ R3 of stars in space are distributed
according to a Poisson process on R3 with constant intensity λ. Show that their distances
from the origin g(x, y, z) =

√
x2 + y2 + z2 form another (non-homogeneous) Poisson

process on R+. Find its intensity function. Find the density function for the distribution
of the distance of the closest star from the origin.

(c) An art gallery has ten rooms, and visitors are required to view them all in
sequence. Visitors arrive at the instants of a non-homogeneous Poisson process on R+

with intensity function λ(x). The ith visitor spends time Zi,j in the jth room, where the
random variables Zi,j for i > 1, 1 6 j 6 10 are i.i.d. random variables, independent of the
arrival process. Let t > 0 and let Vj(t) be the number of visitors in room j at time t.
Show for fixed t that Vj(t) for 1 6 j 6 10 are independent random variables. Find their
distributions.

[You may quote any result from the lectures that you need, without proof, provided
it is clearly stated.]

Part II, Paper 4 [TURN OVER]



20

28K Principles of Statistics
Suppose X ∼ f takes values in X , and h is a reference density on X from which it

is possible to generate i.i.d. samples.

(a) State the steps of the importance sampling algorithm and explain why it can be
used to approximate E[g(X)], where g is a function defined on X .

Now consider the following algorithm:

1. Generate Y1, . . . , Ym i.i.d. from h. Let

qi =
f(Yi)/h(Yi)∑m
j=1 f(Yj)/h(Yj)

, ∀1 6 i 6 m.

2. Let X∗ be a random variable generated from the discrete distribution on
{Y1, . . . , Ym}, such that P(X∗ = Yk) = qk for all 1 6 k 6 m.

(b) Show that X∗ converges in distribution to f , i.e., for all t ∈ R, we have

P(X∗ 6 t)
a.s.→ F (t),

as m→∞, where F is the cumulative distribution function corresponding to f .

(c) Suppose F is continuous. Prove that the convergence in part (b) is uniform:

sup
t∈R
|P(X∗ 6 t)− F (t)| a.s.→ 0,

as m→∞.

[You may quote any result from the lectures that you need, without proof.]
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29K Stochastic Financial Models
Consider the following two-period market model. There is a single risky stock with

prices (Sn)n∈{0,1,2} given by

7

6
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��>>>>>>>> 5
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where in each period the price is equally likely to go up as to go down.

(a) Suppose that the interest rate r = 1/6. Find an arbitrage (ϕn)n∈{1,2}.

For the rest of the problem, suppose r = 1/8.

(b) Find the time-0 no-arbitrage price of a European put option maturing at T = 2
with strike K = 5. How many shares of the stock should be held in the first period to
replicate the payout of the put?

(c) Find the time-0 no-arbitrage price of a European call option maturing at T = 2
with strike K = 5.

(d) Now find the time-0 no-arbitrage price of an American put option maturing at
T = 2 with strike K = 5. What is an optimal exercise policy?
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30J Mathematics of Machine Learning
(a) Let (X1, Y1), . . . , (Xn, Yn) ∈ R× R be input–output pairs with n > 4. Describe

the optimisation problem that a regression tree algorithm using a squared error loss
splitting criterion would take to find the first split point.

(b) Assuming that the inputs are sorted so that X1 < · · · < Xn, show that the
above may be solved in O(n) computational operations.

(c) Now write down the squared error loss empirical risk minimiser f̂m : R→ R over
F : {x 7→ α + xβ : α ∈ R, β ∈ R}, when trained only on data (X1, Y1), . . . , (Xm, Ym) for
m > 2. [You need not derive it.]

(d) Denote by ĝm : R → R the equivalent of f̂m in part (c) when instead training
only on (Xm+1, Ym+1), . . . , (Xn, Yn) for m 6 n− 2. Show carefully how minimising

m∑

i=1

(Yi − f̂m(Xi))
2 +

n∑

i=m+1

(Yi − ĝm(Xi))
2

over m = 2, . . . , n− 2 may be performed in O(n) computations.

31E Asymptotic Methods
Justifying your steps carefully, use the method of steepest descent to find the first

term in the asymptotic approximation of the function:

I(x) =

∫

C

1

z2 + 16
ex cosh z dz , as x→ ∞ ,

where x ∈ R and the integral is over the contour

C = {z ∈ C : z = p+ iq , q = 2 arctan p , p ∈ R},

taken in the direction of increasing p.
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32A Dynamical Systems
For the map xn+1 = F (xn, λ) := λxn(1 − x2n) with λ > 0 and xn ∈ [0, 1], show the
following:

(i) There is an upper limit on λ if points are not to be mapped outside the domain [0, 1].
Find this value.

(ii) For λ < 1 the origin is the only fixed point and is stable.

(iii) If λ > 1, then the origin is unstable and a new fixed point x∗ exists. This new fixed
point x∗ is stable for 1 < λ < 2 and unstable for λ > 2.

(iv) For λ close to but larger than 2, and with Xn = xn− x∗ and 0 < µ = λ− 2� 1, the
map can be locally represented as

Xn+1 = −Xn + αµXn + βX2
n + γX3

n +O(µ2), (∗)

where α, β and γ are constants that you should evaluate in terms of appropriate
derivatives of F . Hence show that the 2-cycle born in the bifurcation at λ = 2 has
points

x± = x∗ ±
√ −αµ
γ + β2

.

[You do not need to substitute the expressions you found for α, β and γ into this
formula.]

(v) The 2-cycle is stable for λ > 2, with λ− 2 small.

Part II, Paper 4 [TURN OVER]



24

33B Principles of Quantum Mechanics
(a) A composite system is made of two sub-systems with total angular momenta

j1 and j2, respectively. Let J = {Jx, Jy, Jz} be the angular momentum operator of the
composite system and |j,m〉 a basis of eigenstates of J2 and Jz.

(i) Write J and the associated ladder operators J± in terms of the angular
momentum operators J1,2 of each sub-system.

(ii) State the possible values of j in terms of j1 and j2 and specify under what
conditions it is possible to have j = 0.

(iii) Write down all the states of definite j and m that have m > j1 + j2− 1, in
terms of the states of the sub-systems |j1,m1〉 and |j2,m2〉.

(iv) Given a pure state, define what it means for the state to be a product state
and what it means for the state to be an entangled state. Specify whether
each of the states in (iii) is a product state or an entangled state.

(b) Let j = j1 + j2. For each of the two states of the system |j, j〉 and |j, j − 1〉
compute the reduced density matrix of subsystem 1 and the associated entanglement
entropy. Comment on the value of the entanglement entropy when j1 = j2.

(c) Explain why, if it exists, the state with j = 0 must be of the form

|0, 0〉 =

j1∑

m=−j1

αm |j1,m〉1 |j1,−m〉2 .

By considering J+ |0, 0〉, determine a relation between αm+1 and αm, and hence find αm.

[ Units in which ~ = 1 have been used throughout. The states |j,m〉 obey

J± |j,m〉 =
√

(j ∓m)(j ±m+ 1) |j,m± 1〉 .]
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34D Applications of Quantum Mechanics
(a) A scalar particle of mass m and charge e is moving in three dimensions in a

background electromagnetic field with vector potential A(x, t) and zero scalar potential.
The Hamiltonian is given as

Ĥ =
1

2m
(−i~∇+ eA) · (−i~∇+ eA) .

Specialise to the case of a constant, homogeneous magnetic field B = ∇ ×A = (0, 0, B)
in the z-direction. Suppose further that the x and y coordinates of the particle are
constrained to lie in a rectangular region R of the x-y plane with sides of length Rx

and Ry, and that the particle has vanishing momentum in the z-direction. By solving the
Schrödinger equation in a suitable gauge with periodic boundary conditions in the x- and
y-directions, find the energy levels of the system and give the degeneracy of each level.
[You may use without proof any results about the spectrum of the quantum harmonic
oscillator you may need, and you may assume that Rx and Ry are large compared to other
length scales in the problem.]

(b) An electron is a particle of mass m, charge e and spin 1/2. It is described
by a two-component wave function ~Ψ ∈ C2 with energy eigenstates obeying a matrix
Schrödinger equation

Ĥ ~Ψ = E~Ψ ,

where

Ĥ = Ĥ I2 +
e~
2m

B · σ ,

where Ĥ is the Hamiltonian for the spinless particle given above, I2 is the (2 × 2)-unit
matrix and σ = (σ1, σ2, σ3) is a three-component vector whose entries are the Pauli
matrices σi, for i = 1, 2, 3.

Find the energy levels of a single electron in a constant, homogeneous magnetic field
B = (0, 0, B) under the same conditions as in part (a). Give the degeneracy of each energy
level.

Now consider N non-interacting electrons occupying these energy levels. Find the
ground-state energy Egs of the system as a function of N , identifying any thresholds
which occur. Sketch the graph of Egs against N . [Hint: Recall that electrons are identical
fermionic particles obeying the Pauli exclusion principle.]
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35A Statistical Physics
(a) Give Clausius’ statement of the second law of thermodynamics and Kelvin’s

statement of the second law of thermodynamics. Show that these two statements are
equivalent.

Throughout the rest of this question you should consider a classical ideal gas and
assume that the number of particles is fixed.

(b) Write down the equation of state for an ideal gas. Write down an expression for
its internal energy in terms of the heat capacity at constant volume CV .

(c) Describe the meaning of an adiabatic process. Using the first law of thermody-
namics, derive the relationship between p and V for an adiabatic process occurring in an
ideal gas.

(d) Consider a cycle involving an ideal gas and consisting of the following four
reversible steps:

A→ B: Adiabatic compression;

B → C: Expansion at constant pressure with heat in Q1;

C → D: Adiabatic expansion;

D → A: Cooling at constant volume with heat out Q2.

(i) Sketch this cycle in the (p, V )-plane and in the (T, S)-plane. Derive equations
for the curves DA and BC in the (T, S)-plane.

(ii) Derive an expression for the efficiency, η = W/Q1, where W is the work out, in
terms of the temperatures TA, TB, TC , TD at points A,B,C,D, respectively.
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36A Electrodynamics
Consider a dielectric medium whose electromagnetic properties are described by the

electric displacement D, the magnetisation H, the electric field E and the magnetic field
B.

(a) Write down the Maxwell equations for these four fields in the presence of a free
charge density ρ and a free current density J.

(b) Hence establish the identity

E · ∂D
∂t

+ H · ∂B
∂t

+ ∇ · (E×H) = −E · J.

(c) Consider a linear dielectric medium with the constitutive relations

Di = εijEj , Bi = µijHj

where εij and µij are symmetric matrices, independent of t, representing the anisotropic
dielectric response of the material, and the summation convention applies here and below.
For a volume V enclosed by the surface S, derive the integral relation

∂

∂t

∫

V

1

2
(εijEiEj + µijHiHj)dV +

∫

S
(E×H) · dS = −

∫

V
E · J dV.

In the absence of free currents, interpret the above relation in terms of an energy density
ε and an energy flux N, clearly identifying each.

(d) Consider a linear dielectric medium with

Di = εijEj , Bi = µδijHj ,

where µ and εij are independent of space and time, and δij is the Kronecker delta.
Assuming plane waves

E(x, t) = e sin(k · x− ωt), B(x, t) = b sin(k · x− ωt)

in this medium, show that Maxwell’s equations in the absence of free charges and currents
imply that the wave vector k, the frequency ω and polarisation e must satisfy

[k× (k× e)]i + ω2µεijej = 0.

(e) Show that the energy flux N identified above, applied to the situation in part
(d), points in the direction of wave propagation when the polarisation is an eigenvector of
the matrix εij .
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37B General Relativity
(a) Consider a linearized gravitational plane wave of the form

h̄µν = Hµνe
ikρxρ

where Hµν is independent of xα, h̄µν = hµν − 1
2hηµν is the trace-reversed perturbation to

the Minkowski metric ηµν , and we are using Lorentz gauge ∂µh̄µν = 0.

(i) What restrictions are there on kµ and Hµν? Justify your answers.

(ii) Derive the residual gauge symmetry remaining in Hµν , even after imposing
Lorentz gauge.

[You may use: Gµν = −1
2∂

ρ∂ρh̄µν + ∂ρ∂(µh̄ν)ρ − 1
2ηµν∂

ρ∂σh̄ρσ.]

(b) Suppose that LIGO detects the merger of two black holes, each of which is about
30 solar masses, from an event which takes place approximately a few billion lightyears
away.

(i) Estimate the frequency (in Hz) of the gravitational wave source, from the
perspective of a hypothetical observer close to the binary system and at
rest with respect to it, during the last orbit of the black holes before they
merge. In solving this problem you may use the (Newtonian) Kepler’s law:

T 2 =
4π2

GM
r3.

Here T is the period and for purposes of estimation you may take r =
6MG/c2, the general relativistic formula for the inner-most stable circular
orbit for a test particle in a Schwarzschild geometry. As these assumptions
are inexact, do not keep more than one significant figure.

[You may use: c ≈ 3.0 × 108 m/s, G ≈ 6.7 × 10−11 m3/(kg s2), and the
solar mass M� ≈ 2.0 × 1030 kg.]

(ii) Write down a Big Bang metric suitable for calculations in our universe,
which is spatially flat. You may leave the scale factor a(t) as an undeter-
mined function (where t is the proper time).

Let te be the time of emission, and to be the time of detection. Write down
a formula for the frequency of the gravitational wave as it is observed by
LIGO, from the perspective of Earth’s local reference frame. [For purposes
of solving this problem, you may treat the Earth and the binary black hole
system as both being at rest relative to the cosmological frame of reference.]
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38C Fluid Dynamics II

Consider a two-dimensional wake of constant width 2h in an otherwise uniform
horizontal flow of speed U . The unperturbed velocity u = uex, where ex is a unit vector
in the x-direction, is given by

u =





U, y > h
0, −h < y < h
U, y < −h.

The two shear layers at y = ±h are perturbed symmetrically so that at time t their
location is y = ±[h+ η(x, t)]. The flow is assumed to be irrotational everywhere, the fluid
is inviscid and the effects of gravity may be ignored.

(a) Sketch the unperturbed flow and the shape of the deformed shear layers.

(b) State the equation satisfied by the velocity potential φ and all the boundary
conditions applicable to the three fluid domains (y < −h − η(x, t), −h − η(x, t) < y <
h+ η(x, t) and y > h+ η(x, t)).

(c) What are the conditions on η and ∂η/∂x necessary in order to linearise the
equations and boundary conditions? State the linearised versions of the boundary
conditions on φ and its derivatives valid under those conditions.

(d) Justify why a full description of the linearised problem is provided by considering
solutions of the form

η(x, t) = Re {η0 exp(ikx+ σt)} ,
where Re is the real part.

(e) Solve for the dispersion relation linking σ and k with the parameters of the
problem. [Hint: The specified symmetry of the perturbation may allow simplification of
the algebra.] Deduce the conditions on k under which the wake flow is unstable.

(f) In the limit hk � 1, interpret the result for σ in light of what you know about
the Kelvin-Helmholtz instability.
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39C Waves
For adiabatic motion of an ideal gas, the pressure p is given in terms of the density

ρ by a relation of the form

p(ρ) = p0

(
ρ

ρ0

)γ

, (†)

where p0, ρ0 and γ are positive constants, with γ > 1. For such a gas, you are given that
the compressive internal energy per unit volume W can be expressed as

W (ρ) =
p(ρ)

γ − 1
.

(a) For one-dimensional motion with speed u, write down expressions for the mass
flux and the momentum flux. Using the expressions for the energy flux u(p+W + 1

2ρu
2)

and the mass flux, deduce that if the motion is steady then

γ

γ − 1

p

ρ
+

1

2
u2 = C, (?)

for some constant C.

(b) A one-dimensional shock wave propagates at constant speed along a tube
containing the gas. Upstream of the shock the gas is at rest with pressure p0 and density ρ0.
Downstream of the shock the pressure is maintained at the constant value p1 = (1 + β)p0
with β > 0. Show that

ρ1
ρ0

=
2γ + (γ + 1)β

2γ + (γ − 1)β
, (‡)

assuming that (?) holds throughout the flow.

(c) For small β, show that the density ratio (‡) from part (b) satisfies approximately
the adiabatic relation (†), correct to O(β2).
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40C Numerical Analysis
(a) Define the Rayleigh quotient of a matrix A ∈ Rn×n at a vector x ∈ Rn. Describe

the method of Rayleigh quotient iteration to compute an eigenvalue of a matrix.

In the remainder of the question A ∈ Rn×n and λ ∈ R is a simple eigenvalue of A.
u,v ∈ Rn, with ‖u‖2 = ‖v‖2 = 1, are respectively the left and right eigenvectors of A
associated with the eigenvalue λ. We define s(λ) = 1/|uTv| to be the sensitivity of the
eigenvalue λ.

When A is to be regarded as depending on a parameter t the notation A(t) will be
used, with corresponding use of λ(t), u(t) and v(t).

(b) Let E ∈ Rn×n be a perturbation matrix and let λ(t) be an eigenvalue of
A(t) = A(0) + tE with t ∈ R. Assuming λ(t) is differentiable at t = 0, show that

|λ′(0)| 6 ‖E‖2
|u(0)Tv(0)| , (1)

where ‖E‖2 is the operator norm of E.

[Hint: consider u(0)TA(t)v(t).]

(c) What can you say about the sensitivity s(λ) if A is a symmetric matrix? More
generally, what can you say if A is a normal matrix?

(d) Let

A =




λ1 1
λ2 1

. . . 1
λn


 ,

where λ1 = 1, and λi = 1 − 1/i for i > 2. Show that for the eigenvalue λ = λ1 = 1, the
sensitivity s(λ) is at least n!.

(e) Consider applying Rayleigh quotient iterations to compute the eigenvalue λ of
a matrix A. Upon termination of the algorithm, we obtain ṽ ∈ Rn, ‖ṽ‖2 = 1 and λ̃ ∈ R
such that

‖Aṽ − λ̃ṽ‖2 = ε

where ε is the machine precision. Show that |λ̃− λ| . εs(λ).

[Hint: construct a perturbation matrix E such that (A + E)ṽ = λ̃ṽ and use the
approximation |λ(1)− λ(0)| ≈ |λ′(0)|.]
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