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SECTION I

1G Number Theory

(a) Prove that for n > 1 we have

22n

2n+ 1
6
(

2n

n

)
6 (2n)

√
2n

∏

p62n, p prime

p.

[The formula for the exact power of p dividing n! may be quoted without proof.]

(b) Deduce that
∑

p6x, p prime log p > 1
2x for all x sufficiently large.

(c) A positive integer n is called decisive if every integer 1 < a < n coprime to n is in
fact prime. Prove that there are only finitely many decisive numbers.

2F Topics In Analysis
State Runge’s theorem on polynomial approximation.

Which of the following statements are true and which false? Give reasons.

(i) Let E = {x+ iy : x, y > 0} and Ω be an open set containing E. Then, if
f : Ω → C is analytic, we can find a sequence of polynomials converging
uniformly on E to f .

(ii) Let E = {x+ iy : x, y > 0} and Ω be an open set containing E. Then, if
f : Ω → C is analytic, we can find a sequence of polynomials converging
pointwise on E to f .

(iii) Suppose Ω is open, K1, K2 are compact subsets of Ω, f : Ω → C is analytic
and there exist polynomials Pj,n with Pj,n → f uniformly on Kj . Then
there exist polynomials Pn with Pn → f uniformly on K1 ∪K2.

(iv) Let I = {x + iy : 1 > x > 0, y = 0}. If f : I → C is continuous, then we
can find polynomials Pn such that Pn → f uniformly on I.

3I Coding and Cryptography
Let C be a binary linear [n,m, d]-code.

Define (i) the parity check extension C+ of C and (ii) the punctured code C−

(assuming n > 2). Show that C+ and C− are both linear.

What is the shortening C ′ of C (assuming n > 2)? When is C ′ a linear code?

For the changes to C defined in (i) and (ii), describe the effect of both these changes
on the generator and parity check matrices. For the case of (ii) you may assume that
d > 2 and you puncture in the last place.

Part II, Paper 3
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4I Automata & Formal Languages

(a) Let G = (Σ, V, P, S) be a formal grammar and let Ω = Σ ∪ V . Define L(G).

[You do not need to define the binary relation
G−→ on Ω∗.]

(b) Define what it means for two grammars to be equivalent.

(c) Define what it means for two grammars to be isomorphic.

(d) Fix Σ = {a, b, c} and consider the following pairs of grammars with start symbol S
and given by their respective sets of productions P0 and P1; for each pair, determine
whether they are equivalent or non-equivalent. Justify your answers.

(i) P0 = {S → Aa, S → Sb, A→ Ab, A→ a, B → Aa, B → b},
P1 = {S → Sb, C → Da, C → b, D → Db, D → a, S → Da}.

(ii) P0 = {S → AB, A→ Aa, A→ a, B → Bb, B → b, AB → c},
P1 = {S → XabY, X → Xa, X → a, Y → Y b, Y → b, XY → c}.

(iii) P0 = {S → aAa, A→ bAb, A→ b},
P1 = {S → aY a, Y → ZZ, Z → aZa, Z → bZY, Z → Y Z, Y → bY b, Y → b}.

[You may assume that isomorphic grammars are equivalent.]

5J Statistical Modelling
Write down the density function of a one-parameter exponential family with natural

parameter θ and sufficient statistic Y . Define the deviance D(θ1, θ2) from θ1 to θ2, and
show that it is equal to

D(θ1, θ2) = 2{(θ1 − θ2)µ1 −K(θ1) +K(θ2)},

where µ1 is the mean parameter corresponding to θ1 and K(·) is the cumulant function of
the exponential family.

Derive the deviance from the Poisson distribution with mean µ1 to the Poisson
distribution with mean µ2, and find the second order Taylor approximation of the deviance
as µ2 → µ1. [Hint: Recall that if Y follows a Poisson distribution with mean µ, then
P(Y = k) = µke−µ/k!, k = 0, 1, . . . .]
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6C Mathematical Biology
A gene product with concentration g is produced by a chemical S of concentration

s, is autocatalysed and degrades linearly according to the kinetic equation

dg

dt
= f(g, s) = s+ k

g2

1 + g2
− g,

where k > 2 is a constant.

First consider the case s = 0. Show that there are two positive steady states, and
determine their stability. Sketch the reaction rate f(g, 0).

The system starts in the steady state g = 0 with s = 0. The value of s is then
increased to the value s1, held at this value for a long time, and then reduced to zero. Show
that, if s1 is greater than a value sc(k), a biochemical switch can be achieved to a state
g = g∗ > 0 whose value you should determine. Give a clear mathematical specification of
the value sc(k). [An explicit formula is not needed.]

For the case k � 1, use a suitable approximate form of f(g, s) to show that
sc(k) ' Ck−1 where C is a constant that you should derive.

7E Further Complex Methods
Consider the differential equation

d2w

dz2
+ p(z)

dw

dz
+ q(z)w = 0.

State the conditions on p(z) and q(z) for the point z = z0, with z0 finite, to be (i)
an ordinary point and (ii) a regular singular point. Derive the corresponding conditions
for z0 = ∞.

Determine the most general forms of p(z) and q(z) for which z = 0 and z = ∞ are
regular singular points and all other points are ordinary points. Give the corresponding
general form of the solution.

Deduce the further restriction on the form of p(z) and q(z) if z = 0 is the only
regular singular point and all other points are ordinary points.

8D Classical Dynamics
Consider a 3-dimensional system with phase space coordinates (q,p).

(a) Define the Poisson bracket {f, g} of two smooth functions on phase space.

(b) Show that f(q,p) is conserved along a particle’s trajectory if and only if
{f(q,p), H} = 0, where H is the Hamiltonian.

(c) Derive a constraint satisfied by a function f(q,p) given that {f(q,p),q ·p} = 0.
Show that any smooth function obeying f(λq, λ−1p) = f(q,p), where λ is a real constant,
satisfies this constraint.
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9B Cosmology
The equilibrium number density of fermions of mass m at temperature T and

chemical potential µ is

n =
4πgs
h3

∫ ∞

0

p2dp

exp
[
E(p)−µ
kB T

]
+ 1

,

where gs is the degeneracy factor, E(p) = c
√
p2 +m2c2, c is the speed of light, kB is

the Boltzmann constant, p is the magnitude of the particle momentum and h is Planck’s
constant. For a non-relativistic gas with pc � mc2 and kBT � mc2 − µ, show that the
number density becomes

n = gs

(
2πmkBT

h2

)3/2

exp

[
µ−mc2

kBT

]
. (?)

[You may assume that
∫∞
0 dxx2 e−x

2/α =
√
πα3/2/4 for α > 0.]

Before recombination, equilibrium is maintained between neutral hydrogen, free
electrons, protons and photons through the interaction

p+ e− ↔ H + γ .

Using the non-relativistic number density (?), deduce Saha’s equation relating the
electron and hydrogen number densities,

n2e
nH
≈
(
2πmekBT

h2

)3/2

exp

[
−Ebind

kBT

]
,

where Ebind = (mp + me − mH)c
2 is the hydrogen binding energy. State clearly any

assumptions made.
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10D Quantum Information and Computation

(a) Given two positive integers N and a which are coprime to each other (with
1 < a < N), define the order of amodN .

(b) For such a pair of integers (a,N), the modular exponential function f : Z→ ZN ,
is defined as f : k 7→ ak modN , where ZN := {0, 1, . . . , N − 1}. Prove that f is a periodic
function and determine its period (clearly stating any theorem that you use).

(c) Suppose that we would like to factorise N = 33 and we pick a = 10. Following
the argument presented in the lecture for Shor’s algorithm, show how the order of amodN
can be used to factorise N . Find the order of amodN by hand and hence factorise N .

(d) Recall that Shor’s algorithm for factoring an integer N involves an application
of the quantum Fourier transform on m qubits and a subsequent measurement of these
m qubits which yields an integer c, where 0 6 c < 2m. Suppose we want to factor the
number N = 21; we pick a = 8, m = 9 and get the measurement result c = 256. Show
how you can find the order of amodN from this measurement result. [You should clearly
state any results that you use from the lectures.]

Part II, Paper 3
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SECTION II

11G Number Theory
Explain what it means for a positive definite integral binary quadratic form to be

reduced. Let d < 0 be an integer with d ≡ 0 or 1 (mod 4). Define the class number h(d)
and prove that 1 6 h(d) <∞.

Let q be a prime number with q ≡ 3 (mod 8). Show that h(−8q) > 2. Further show
that if h(−8q) = 2 then a prime number p greater than q is represented by x2 + 2qy2 if
and only if p ≡ ±1 (mod 8) and p is a quadratic residue mod q.

12I Automata & Formal Languages
Let Σ be an alphabet and W the set of words over Σ. Let D = (Σ, Q, δ, q0, F ) be a

deterministic automaton.

(i) Define L(D), the set of words accepted by the automaton D, precisely defining all
auxiliary functions needed for your definition.

(ii) State the pumping lemma for the language L(D). Specify the pumping number
precisely in terms of D.

[No proof is required.]

(iii) Let Σ = {a, b}. Consider the regular language

L := {wak ; w ∈ Σ∗ with |w| 6 10 and k > 0}.

Show that the minimal deterministic automaton for L has at least ten states.

Let A ⊆W. Define an equivalence relation on W by

v ∼A w :⇐⇒ for all u, we have vu ∈ A if and only if wu ∈ A.

(iv) Let A ⊆ W\{ε}. Show that A is a regular language if and only if the relation ∼A

has finitely many equivalence classes.
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13C Mathematical Biology
Consider the reaction-diffusion system in one spatial dimension −∞ < x <∞,

∂u

∂t
= D

∂2u

∂x2
+ f(u) + ρ(u− v), (1)

ε
∂v

∂t
=

∂2v

∂x2
+ u− v, (2)

where D > 0 is the activator diffusion constant, ρ > 0 is a constant, and 0 < ε � 1 so
that the inhibitor v is a fast variable relative to the activator u. The nonlinear function
f(u) is taken to have the properties f(0) = 0 and f ′(0) = −r with 0 6 r 6 1.

(a) Setting ε = 0, show that the inhibitor dynamics can be solved to express the
Fourier amplitude v̂(k, t) of the inhibitor in terms of the Fourier amplitude û(k, t) of the
activator.

(b) Using the relation found in part (a), and linearising around the state u = 0, find
the dynamics of perturbations around u = 0 and thus the growth rate σ(k) as a function
of the wavenumber k.

(c) From the result in (b), show that the threshold of a pattern-forming instability
lies along a curve in the r − ρ plane given by

ρc(r) =
(√

r +
√
D
)2
, (3)

along which the critical wavenumber is

kc =
( r
D

)1/4
. (4)
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14B Cosmology
Small density perturbations δk(t) in pressureless matter inside the cosmological

horizon obey the following Fourier evolution equation

δ̈k + 2
ȧ

a
δ̇k −

4πGρ̄c
c2

δk = 0 ,

where the overdot indicates differentiation with respect to time t, a(t) the scale factor of
the universe, G is Newton’s constant, c the speed of light, k is the co-moving wavevector
and ρ̄c is the background density of the pressureless gravitating matter.

(a) Let teq be the time of matter-radiation equality. Show that during the matter-
dominated epoch, δk behaves as

δk(t) = A(k)

(
t

teq

)2/3

+B(k)

(
t

teq

)−1

,

where A(k) and B(k) are functions of k only.

(b) For a given wavenumber k ≡ |k|, show that the time tH at which this mode
crosses inside the horizon, i.e. c tH ≈ 2πa(tH)/k, is given by

tH
t0
≈





(
k0
k

)3
, tH > teq

1√
1 + zeq

(
k0
k

)2

, tH < teq

where t0 is the age of this universe, k0 ≡ 2π/(c t0), and the matter-radiation equality
redshift is given by 1 + zeq = (t0/teq)2/3.

(c) Assume that early in the radiation era there is no significant perturbation growth
in δk and that primordial perturbations from inflation are scale-invariant with a constant
amplitude at the time of horizon crossing given by 〈δk(tH)2〉 ≈ V −1C/k3, where C is
a constant and V is a volume. Use the results in parts (a) and (b) to project these
perturbations forward to t0 � tH , and show that the power spectrum of perturbations
today (at t = t0) is given by

P (k) ≡ V 〈δk(t0)
2〉 =





Ck
k40
, k < keq

Ckeq
k40

(
keq
k

)3
, k > keq

where keq is the wavenumber of modes that entered the horizon at matter-radiation
equality.
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15D Quantum Information and Computation
Consider the following quantum circuit C:

H Z

H

(a) Suppose the state |0〉 |0〉 is sent through the circuit. What is the state at the
output? Suppose each of the two qubits are measured in the computational basis. What
is the distribution of measurement outcomes?

(b) Let V denote the unitary operator corresponding to the circuit C. Draw the
quantum circuit corresponding to the inverse operator V −1.

(c) The SWAP gate for two qubits is defined as SWAP |x〉 |y〉 = |y〉 |x〉, where
x, y ∈ {0, 1}. Show that the SWAP gate can be implemented as a combination of CNOT
gates and draw the corresponding quantum circuit.

(d) Let U be a unitary operator with eigenstate |ψ〉 such that U |ψ〉 = eiθ |ψ〉.
Consider the following quantum circuit:

|0〉 H H

|ψ〉 U

Write down the final state at the end of the algorithm. What is the probability that the
outcome 1 is observed when the first register is measured in the computational basis?
Suppose we are promised that either U |ψ〉 = |ψ〉 or U |ψ〉 = − |ψ〉, but we have no other
information about U and |ψ〉. Show that the above circuit can be used to determine which
of these is the case with certainty.

Part II, Paper 3
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16H Logic and Set Theory
In this question we work in a fixed model V of ZFC.

(a) Prove that every set has a transitive closure. [If you apply the Axiom of
Replacement to a function-class F , you must explain clearly why F is indeed a function-
class.]

(b) State the Axiom of Foundation and the Principle of ε-Induction, and show that
they are equivalent (in the presence of the other axioms of ZFC).

(c) We say that a set x is reasonable if every member of TC({x}) is countable.
Which of the following are true and which are false? Justify your answers.

(i) A set is reasonable if and only if TC({x}) is countable.

(ii) The reasonable sets are all members of Vα, for some α.

(iii) The reasonable sets form a model of ZFC.

[In (c) you may assume any results from the course.]

17H Graph Theory
(a) Let r > 2. Prove Turán’s theorem in the form: if G is an n vertex graph that

does not contain a Kr+1 then

e(G) 6
(

1 − 1

r

)
n2

2
.

(b) For t 6 n − 1, show that if G is a connected n vertex graph with δ(G) > t/2
then G contains a path Pt of length t.

(c) For graphs G,H define the Ramsey number r(G,H) to be the minimum n such
that every red-blue colouring of the edges of Kn contains either a red copy of G or a blue
copy of H. For s > 2, t > 1, show that

r(Ks, Pt) > (s− 1)t+ 1.

(d) Show further that for s > 2, t > 1 we have

r(Ks, Pt) = (s− 1)t+ 1.
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18I Galois Theory
(a) Show that a finite subgroup of the multiplicative group of a field is cyclic.

(b) What is a primitive n-th root of unity? Show that if K contains a primitive
m-th root of unity and a primitive n-th root of unity, then it contains a primitive N -th
root of unity, where N is the least common multiple of m and n.

(c) Define the cyclotomic polynomials Φn and show that they have integer coeffi-
cients. Show also that the reduction of Φn modulo a prime p is separable if p does not
divide n.

(d) Let K be a field of characteristic zero, L a splitting field for Φn over K, and let
G = Gal(L/K) be its Galois group. Write down an injective homomorphism from G into
(Z/nZ)×, and show that it is surjective if and only if Φn is irreducible over K.

(e) Let L be a splitting field for Φn over Q. Show that the number of roots of unity
in L is n if n is even, and 2n if n is odd. [You may assume that Φn is irreducible over
Q.]

19H Representation Theory
(a) State and prove Burnside’s lemma. Deduce that if a finite group G acts 2-

transitively on a set X then the corresponding permutation representation CX decomposes
as a direct sum of two non-isomorphic irreducible representations.

(b) Let G = Sn act naturally on the set X = {1, . . . , n}. For each non-negative
integer r, let Xr be the set of all r-element subsets of X equipped with the natural
action of G, and πr be the character of the corresponding permutation represention. If
0 6 l 6 k 6 n/2, show that

〈πk, πl〉G = l + 1.

Deduce that πr−πr−1 is a character of an irreducible representation for each 1 6 r 6 n/2.

What happens for r > n/2?

20G Algebraic Topology
Consider the set X ⊂ S3 given by X = {(x1, x2, x3, x4) ∈ S3 : |x4| 6 1

2} and its
boundary ∂X = {(x1, x2, x3, x4) ∈ S3 : |x4| = 1

2}. Define Y and ∂Y to be the image of
X and ∂X in RP3 = S3/ ∼, where x ∼ −x. Show that Y is homotopy equivalent to RP2.
Compute H∗(RP3). [You may assume RP3 admits a triangulation containing Y and ∂Y
as subcomplexes, and may use H∗(RP2) if you state it precisely.]

Let f : ∂Y → ∂Y be the identity map, and define Z to be the space obtained by
identifying two copies of Y along their boundary: Z = Y ∪f Y . Compute H∗(Z) and
π1(Z, z0), where z0 ∈ Z. The universal covering space of Z is homeomorphic to a familiar
space. What is it?
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21F Linear Analysis
Recall that a topological space X is called normal if for any pair of non-empty

disjoint closed subsets A,B ⊂ X, there is a pair of disjoint open subsets U1, U2 ⊂ X so
that A ⊂ U1 and B ⊂ U2. Also recall that the Urysohn lemma states that in a normal
topological space X, for any pair of non-empty disjoint closed subsets A,B ⊂ X, there is
an f : X → [0, 1] continuous so that f = 0 on A and f = 1 on B.

(a) State and prove the Tietze extension theorem. [You may use the Urysohn
lemma.]

(b) Consider a normal topological space X, and A ⊂ X a non-empty closed subset
that can be realised as a countable intersection of open sets. Show that there exists
f : X → [0, 1] continuous so that f vanishes on A and on A only.

(c) Consider a normal topological space X, and A,B ⊂ X a pair of non-empty
disjoint closed subsets that can both be realised as countable intersections of open sets.
Show that there exists f : X → [0, 1] continuous so that f vanishes on A and on A only,
and is equal to 1 on B and on B only.

22F Analysis of Functions
(a) Let U ⊂ Rn be bounded and open, and let m2 > 0. Given f ∈ L2(U), define

what it means for u to be a weak solution to

−∆u+m2u = f in U

u = 0 on ∂U.

Show that for any f ∈ L2(U) there is a unique weak solution u and let Tf = u. Show
that T : L2(U) → L2(U) defines a compact operator. [You may use any theorems from
the course if you state them carefully.]

(b) Let U ⊂ Rn be bounded and open, and let (uk) ⊂ L2(U) be a sequence such
that uk ⇀ u weakly in L2(U). Assume that supk

∫
{|p|>t}(|ûk(p)|2 + |û(p)|2) dp → 0 as

t→∞. Show that then uk → u in L2(U).

(c) Given f ∈ Hr(Rn), assume that u ∈ L2(Rn) satisfies

∆2022u+ u = f on Rn

in distributional sense. For which n is u a function that solves the equation in the classical
sense? [You may cite any theorems from the course.]
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23F Riemann Surfaces
State the uniformisation theorem.

Write down a list of all Riemann surfaces uniformised by C and C∞, and prove that
your list is complete. [You may assume that, if a Riemann surface R is uniformised by
a Riemann surface X, then R is conformally equivalent to the quotient of X by a group
of conformal equivalences of X acting freely and properly discontinuously. You may also
assume standard facts about the groups of conformal equivalences of C and C∞.]

Prove that any domain D ⊆ C with a complement containing more than one point
is uniformised by the open unit disc D.

Suppose there is a holomorphic embedding C∗ → R, where R is a compact Riemann
surface. Prove that R is conformally equivalent to the Riemann sphere.

24G Algebraic Geometry
[In this question all algebraic varieties are over C.]

State Hilbert’s Nullstellensatz for affine varieties. Suppose that I is a homogeneous
ideal such that V(I) ⊂ Pn is empty. What are the possibilities for I?

Let V be a smooth quadric hypersurface in P3. Construct a pair of disjoint, smooth
and projective curves lying on V . Deduce that V is not isomorphic to P2.

Let W be a smooth projective curve. Prove that every rational map from W to
a projective variety is a morphism. Give an example showing that if W is singular, this
statement can fail.

Construct an algebraic variety Z ⊂ P2 × P1 and a surjective morphism π : Z → P1

such that there exists a point p ∈ P1 whose preimage π−1(p) is a smooth projective curve of
genus 1, and another point q ∈ P1 such that π−1(q) has exactly 3 irreducible components.
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25G Differential Geometry
(a) Let S ⊂ R3 be an oriented surface. Define the Gaussian curvature K(p)

and mean curvature H(p) of S at p. Prove that these are Euclidean invariants, i.e. if
E : R3 → R3 is a proper Euclidean motion and S̃ = E(S) and K̃, H̃ denote the
Gaussian and mean curvature of S̃ (with a choice of orientation that you should describe),
respectively, then K̃(E(p)) = K(p), H̃(E(p)) = H(p). Do the Gaussian and mean
curvatures depend on the orientation?

(b) Show that there is no Euclidean motion taking a piece of the cylinder to a piece
of the plane, and infer that for a general surface S, the property K = 0 identically does not
imply that there is a Euclidean motion taking S to a piece of the plane. Exhibit similarly
two surfaces each with K = 1 identically, no respective pieces of which are related by a
Euclidean motion, and similarly two surfaces each with K = −1 identically.

(c) Let R ⊂ R3 be a compact submanifold of dimension 3 with connected boundary
S = ∂R. Note that S ⊂ R3 is an orientable surface and can be oriented by the unique
normal vector N pointing towards R. Now let S̃ ⊂ R be a surface (without boundary).
Suppose p ∈ S ∩ S̃. Show that H̃(p) > H(p), where H and H̃ denote the mean curvature
of S and S̃, respectively, where both surfaces are (locally) oriented at p by the N described
above. Is it necessarily the case that K̃(p) > K(p)? Justify your answer.

26K Probability and Measure
(a) State (without proof) Birkhoff’s ergodic theorem. Show that convergence in that

theorem holds in L1(µ), whenever µ is a probability measure. [You may use convergence
results for integrals without proof, provided they are clearly stated.]

(b) Now consider (0, 1] equipped with its Borel σ-algebra B and Lebesgue measure
µ. For A ∈ B, a ∈ (0, 1] \Q, and

θ(x) = x+ a mod 1, x ∈ (0, 1],

determine the µ-almost everywhere limit of Sn(1A)/n as n→∞, where

Sn(1A) = 1A + 1A ◦ θ + . . . 1A ◦ θn−1.

[You may use without proof that θ is ergodic.]

(c) If A = (a, b] for 0 < a < b < 1, show that convergence in the last limit in fact
occurs everywhere on (0, 1]. [Hint: Use your result from (b) with Ak = (a+ k−1, b− k−1]
for all k large enough.]
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27J Applied Probability
(a) Define M/M/1 and M/M/∞ queues and state (without proofs) their stationary

distributions, as well as all the necessary conditions for their existence. State Burke’s
theorem for an M/M/∞ queue.

(b) Calls arrive at a telephone exchange as a Poisson process of constant rate λ,
and the lengths of calls are independent exponential random variables of parameter µ.
Assuming that infinitely many telephone lines are available, set up a Markov chain model
for this process.

Show that for large t the distribution of the number of lines in use at time t is
approximately Poisson with mean λ/µ.

Let Xt denote the number of lines in use at time t, given that n are in use at time 0.
Find EsXt for any s ∈ [−1, 1]. Hence or otherwise, identify the distribution of Xt.

[You may use without proof that the probability generating function of a Poisson(λ)
random variable is eλ(s−1).]

(c) Compute the expected length of the busy period for an M/M/1 and an M/M/∞
queue. (The busy period B is the length of time between the arrival of the first customer
and the first time afterwards that all servers are free).

[You may quote any result from the lectures that you need, without proof, provided
it is clearly stated.]

28K Principles of Statistics
Consider a classification problem where data are drawn from two different distribu-

tions N(µ0,Σ0) or N(µ1,Σ1), where µ0, µ1 ∈ Rp and Σ0,Σ1 ∈ Rp×p are positive definite
matrices.

Let π0 ∈ (0, 1) and π1 = 1− π0.
(a) Define the Bayes classifier δπ0 , and show that the decision boundary is linear

when Σ0 = Σ1, and otherwise quadratic.

(b) Show that for any (Σ0,Σ1), the classifier described in (a) is the unique Bayes
rule for the prior (π0, π1).

(c) Show that there exists some π∗ ∈ (0, 1) such that the Bayes classifier corres-
ponding to the prior (π∗, 1− π∗) is minimax. Is the prior least favorable?

[You may quote any result from the lectures that you need, without proof.]
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29K Stochastic Financial Models
Let (Wt)t>0 be a Brownian motion, and let a and b be positive constants.

(a) Let B0 = 0 and Bt = tW1/t for t > 0. Show that (Bt)t>0 is a Brownian motion.
[You may use without proof a characterisation of Brownian motion as a Gaussian process.
You may also use without proof the fact that Wt/t→ 0 almost surely as t→∞.]

(b) Prove that P(sup06s6t(Ws − as) 6 b) = P(supu>1/t(Wu − bu) 6 a).

(c) Use the reflection principle and the Cameron–Martin theorem to show that

P( sup
06s6t

(Ws − as) 6 b) = P(Wt − at 6 b)− e−2abP(Wt − at 6 −b).

(d) Let T = sup{t > 0 : Wt − at > b} with the convention that sup ∅ = 0. Find
P(T 6 t) in terms of the standard normal distribution function Φ.
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30E Asymptotic Methods
A stationary Schrödinger equation in one dimension has the form

ε2
d2ψ

dx2
= −(E − V (x))ψ , for x ∈ R , (∗)

where ε > 0 is assumed to be very small and the potential V (x) is given by

V (x) =

{
1
4 |x| for |x| 6 4√
|x| − 1 for |x| > 4

.

The connection formula for the approximate energies E of bound states ψ in (∗) is

1

ε

∫ b

a
(E − V (x))1/2 dx = (n+

1

2
)π . (∗∗)

(a) State the appropriate values of a, b and n.

(b) For E > 0 define

f(E) =

∫ b

a
(E − V (x))1/2 dx,

with a, b as in (a). Find and sketch f , and deduce that for each n and ε, (∗∗) has a unique
solution E = En.

(c) Show that for n fixed and ε sufficiently small, En can be determined explicitly
and give an expression for it.

(d) Show that as n→∞ with ε fixed, En satisfies

En ∼ cnα ,

and determine the values of c and α .
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31A Dynamical Systems
Consider the dependence of the system

ẋ = (a2 − x)(a− y2) (1)

ẏ = x− y (2)

on the parameter a. Find the fixed points and plot their location on the (a, x)-plane.
Hence, or deduce, that there are bifurcations at a = 0 and a = a∗ > 0 which is to be
determined.

Investigate the bifurcation at a = 0 by making the substitutions X = x−a2 and Y = y−a2.
Find the extended centre manifold in the form Y (X, a) correct to second order. Find the
evolution on the extended centre manifold and hence determine the stability of the fixed
points.

Use a plot to show which branches of the fixed points in the (a, x)-plane are stable
and which are unstable and state, without calculation, the type of bifurcation at a∗.
Hence sketch the structure of the (x, y) phase plane close to the bifurcation at a∗ where
|a− a∗| � 1 in the cases i) a < a∗ and ii) a > a∗.

32E Integrable Systems
(a) Compute the group of transformations generated by the vector field

V = t∂t + x∂x ,

and hence, or otherwise, calculate the second prolongation of the vector field V and show
that V generates a group of Lie symmetries of the wave equation utt − uxx = 0.

Use the group of symmetries you have just found for the equation utt − uxx = 0 to
obtain a group invariant solution for this equation.

(b) Compute the group of transformations generated by the vector field

4t2∂t + 4tx∂x − (x2 + 2t)∂u

and verify that they give rise to a group of Lie symmetries of the equation ut = uxx + u2x.
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33B Principles of Quantum Mechanics
(a) Consider a composite system of several distinguishable particles. Describe

how the multiparticle state is constructed from single-particle states. For the case of
two identical particles, describe how considering the interchange symmetry leads to the
definition of bosons and fermions.

(b) Consider two non-interacting, identical particles, each with spin 1. The single
particle, spin-independent Hamiltonian H(Xi,Pi) has non-degenerate eigenvalues En and
wavefunctions ψn(xi) where i = 1, 2 labels the particle and n = 0, 1, 2, 3, . . . . In terms of
these single-particle wavefunctions and single-particle spin states |1〉, |0〉 and |−1〉, write
down all of the two-particle states and energies for (i) the ground states and (ii) the first
excited states.

(c) For the system in part (b), assume now that En is a linear function of n. Find
the degeneracy of the N th energy level of the two-particle system for: (i) N even and (ii)
N odd.

34D Applications of Quantum Mechanics
Let Λ be a Bravais lattice in three dimensions with primitive vectors a1, a2, a3.

Define the reciprocal lattice Λ∗ and show that it is a Bravais lattice.

An incident particle of mass m and wavevector k scatters off a crystal which consists
of identical atoms located at the vertices of a finite subset S of the lattice Λ,

S = {l = l1a1 + l2a2 + l3a3 : li ∈ Z, −Li/2 6 li 6 +Li/2 for i = 1, 2, 3},

where L1, L2 and L3 are positive even integers. After scattering the particle has wavevector
k′ with |k| = |k′| = k and the scattering angle θ, with 0 6 θ 6 π, is defined by
k · k′ = k2 cos θ. Show that the resulting scattering amplitude is proportional to

∆
(
k− k′

)
:=

∑

l∈S
exp

(
i(k− k′) · l

)
.

For L1, L2, L3 � 1, show that this quantity is strongly peaked for wavevectors k and k′

obeying k− k′ = q for some q ∈ Λ∗.

Consider the case where Λ is a body centered cubic lattice with primitive vectors

a1 =
a

2
(ex + ey + ez) , a2 =

a

2
(ex − ey + ez) , a3 = a ez ,

where a > 0 and ex, ey and ez are, respectively, unit vectors in the x-, y- and z-directions.
For scattering at fixed energy E = ~2k2/2m with ka� 1, find the smallest non-zero value
of the scattering angle θ for which the scattering amplitude has a strong peak (i.e. a peak
such as you found in the previous part of the question).
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35A Statistical Physics
(a) State the formula for the Bose-Einstein distribution for the mean occupation

numbers nr of discrete single-particle states r with energies Er > 0 in a gas of identical
ideal Bosons in terms of β = 1/kBT and the chemical potential µ. Write down expressions
for the total particle number N and the total energy E when the single-particle states can
be treated as continuous with energies E > 0 and density of states g(E).

(b) Consider the bosonic vibrational modes (phonons) in a two-dimensional crystal
with dispersion relation ω = C|k|α, where ω is the frequency, k is the wavevector, and
C > 0 and 0 < α < 2 are constants. The crystal is square with area A.

(i) Show that the density of states is

g(ω) = Bωb ,

where B and b are constants that you should determine. [You may assume
that the phonons have two polarizations.]

(ii) Calculate the Debye frequency ωD by identifying the number of single-
phonon states with the total number of degrees of freedom 2n, where n is
the number of atoms in the crystal. Find the Debye temperature TD.

(iii) Derive an expression for the total energy, leaving your answer in integral
form with the integral over x = β~ω.

(iv) Now consider the case α = 1/2. Calculate the heat capacity at constant
volume CV in the limit T � TD. Show that CV ∼ T d in the limit T � TD,
where d is a real number that you should determine. Comment on these
two results.
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36A Electrodynamics
The retarded four-potential Aµ(x, t) = (φ/c,A) due to a charge density Jµ(x′, t′) is

Aµ(x, t) =
µ0
4π

∫
Jµ(x′, t′)
|x− x′| d

3x′,

where the integral is over all space.

(a) Explain briefly the physical meaning of the above expression and why causality
requires t′ = tret, where tret = t− |x− x′|/c.

(b) Consider a particle of charge q moving along the worldline yµ = (ct,y(t)) and
let R(t) = x − y(t) be the vector from the location of the charge at time t to the field
point x. Explain why the implicit equation

tret +
R(tret)

c
= t,

determining the retarded potential, can have only one solution.

(c) Hence, or otherwise, obtain the Lienard-Wiechert potentials

φ(x, t) =
q

4πε0

1

R− v
c ·R

and A(x, t) =
µ0
4π

qv

R− v
c ·R

for the charge, where v = dy/dt is the particle velocity. Clearly specify the time at which
the right hand sides are to be evaluated.

(d) For a charge moving without acceleration, show by explicit computation that
the resulting potentials satisfy the gauge-fixing condition

1

c2
∂φ

∂t
+∇ ·A = 0.
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37B General Relativity
(a) Let M be the mass of a star and consider a photon with impact parameter b

which passes near the star. In this problem, by following the steps below, you will derive
the general relativistic formula for the total angle δφ by which the photon bends.

The general relativistic formulae for equatorial null orbits in the Schwarzschild
metric (in units where c = G = 1) are:

1

2
ṙ2 + V (r) =

1

2
E2, V (r) =

1

2

(
1− 2M

r

)
L2

r2
,

where dot is derivative with respect to proper time, and L = r2φ̇ is the angular momentum.

(i) Write down the geodesic equation for the trajectory of the photon, para-
meterized by the φ coordinate. Switch to an inverse radial coordin-
ate y = 1/r. By differentiating the geodesic equation by φ, show that
y′′ + y = 3My2. Here ′ denotes d/dφ.

(ii) Solve this equation in the flat space regime (M = 0), for a trajectory for
which r →∞ at φ = 0, π.

(iii) Using perturbation theory in M identify a differential equation for ∆y, the
first order perturbation of y due to nonzero M .

(iv) Find the homogeneous and particular solutions for ∆y.

(v) Taking r →∞ at φ = 0, show that the leading order result for the bending
of the light ray is:

|δφ| ≈ 4M

b
.

(b) In Nordström’s theory of gravitation, the metric is required to take the form

gµν = φ2ηµν ,

where ηµν is the Minkowski metric and φ > 0 is a dynamical scalar field which approaches
the value 1 far from any isolated gravitating system.

Write down the equation satisfied by an affinely parameterised geodesic of the metric
gµν . What can you deduce about the bending of light rays around a star of mass M in
Nordström’s theory? Is this result compatible with observations?
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38C Fluid Dynamics II
A two-dimensional lubrication flow occurs between two rigid surfaces in a fluid that

has otherwise uniform pressure p0. The bottom surface at y = 0 moves in the horizontal
direction with velocity u = Uex while the top surface at y = h(x) moves towards y = 0
with velocity u = −V ey, with ex and ey being unit vectors in the x- and y-directions
respectively. Both surfaces are of length L in the x direction. Consider the instant when
both occupy the region 0 < x < L.

(a) State all conditions involving h, U , V and L ensuring that the flow between the
two surfaces is in the lubrication limit.

(b) Solve for the flow in the x direction between the two surfaces.

(c) Use conservation of mass to derive an expression for the pressure gradient
between the two surfaces as a function of x.

[Hint: You may find it convenient to introduce the notation 〈f〉 to denote the mean
value of a function f over the range 0 6 x 6 L.]

(d) In the particular case U = 0, show that the pressure gradient is necessarily zero
somewhere between the two surfaces.

(e) Find the value of U such that the force in the x direction on the bottom surface
is zero at the instant considered.
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39C Waves
(a) The function φ(x, t) satisfies the equation

∂φ

∂t
+ U

∂φ

∂x
+

1

9

∂9φ

∂x9
= 0,

where U > 0 is a constant.

(i) Find the dispersion relation for waves of frequency ω and wavenumber k.

(ii) Sketch both the phase velocity cp and the group velocity cg as functions of
k.

(iii) Do wave crests move faster or slower than a wave packet?

(b) Suppose that φ(x, 0) is real and given by a Fourier transform as

φ(x, 0) =

∫ ∞

−∞
A(k)eikxdk.

(i) Use the method of stationary phase to obtain an approximation for φ(V t, t)
for fixed V > U and large t.

(ii) If the initial condition is now restricted further to be even, so that φ(x, 0) =
φ(−x, 0), deduce an approximation for the sequence of times at which
φ(V t, t) = 0.

(iii) What can be said about φ(V t, t) if V < U? [Detailed calculation is not
required in this case.]

[ Hint: You may assume that
∫∞
−∞ e

−au2 du =
√

π
a for Re(a) > 0, a 6= 0.]
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40C Numerical Analysis
Let A be an n × n real symmetric positive definite matrix and consider the linear

system of equations Ax = b, with b,x ∈ Rn. Let F (x) = (1/2)xTAx− bTx.

(a) Define the steepest descent method with exact line search to minimize F . Show
that for the 2× 2 linear system

A =

(
1 0
0 γ

)
, b = 0 ∈ R2 (γ > 1), (1)

with the starting point x(0) = (γ, 1), the k-th iterate of this method satisfies

‖x(k) − x∗‖2
‖x(0) − x∗‖2

=

(
κ− 1

κ+ 1

)k

(2)

where κ is the condition number of A that you should define.

Define the conjugate gradient method. If the conjugate gradient method is applied
to this example, at most how many iterations will be needed to reach x∗?

(b) Return to the case of general n×n A as specified at the beginning of the question.
The heavy-ball method to minimize F (x) is defined by the following iterations

x(k+1) = x(k) − α∇F (x(k)) + β(x(k) − x(k−1)), (3)

for some constants α, β > 0, with the initial point x(0) = 0. Show that r(k) ∈ Kk(A,b)
where r(k) = b− Ax(k) is the residual at the kth iterate, and Kk(A,b) is the kth Krylov
subspace of A with respect to b.

(c) Let e(k) = x∗−x(k) be the error for the iterates of the heavy-ball method. Show
that we can find a matrix M of size 2n× 2n such that

(
e(k+1)

e(k)

)
= M

(
e(k)

e(k−1)

)
.

Your matrix M should be explicit, and depend only on A, α and β. Assuming A is
diagonal, show that M can be made block diagonal with 2 × 2 blocks by an appropriate
permutation of its rows and columns (i.e. there is a permutation matrix P such that
PMP T is block diagonal).

(d) Compute the spectral radius of M for the particular A and b given in (1) and
the choice α = 1/γ and β = (1−

√
1/γ)2. Compare your result with the rate in (2) when

γ � 1. [ Hint: To simplify the algebra you may find it helpful to write α in terms of β. ]

END OF PAPER
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