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SECTION I

1F Linear Algebra
Let V be a finite-dimensional real vector space. What is a non-degenerate bilinear

form on V ?

If B1(−,−) is a non-degenerate bilinear form on V and B2(−,−) is a bilinear form
on V , which may be degenerate, show that there is a linear map α : V → V such that

B2(v, w) = B1(v, α(w)) for all v, w ∈ V.

Show that
{w ∈ V : B2(v, w) = 0 for all v ∈ V } = Ker(α).

[You may use any results on dual vector spaces provided they are clearly stated.]

2G Analysis and Topology
Let (fn) be a sequence of continuous real-valued functions on a topological space X.

Assume that there is a function f : X → R such that every x ∈ X has a neighbourhood
U on which (fn) converges to f uniformly. Show that f is continuous at every x ∈ X.
Further show that (fn) converges to f uniformly on every compact subset of X.

3G Complex Analysis
Define what it means for two domains in C to be conformally equivalent.

For each of the following pairs of domains, determine whether they are conformally
equivalent. Justify your answers.

(i) C \ {0} and {z ∈ C : 0 < |z| < 1};

(ii) C and {z ∈ C : Im(z) > 0};

(iii) {z ∈ C : Im(z) > 0, |z| < 1} and {z ∈ C : Im(z) > 0}.
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4D Quantum Mechanics
(a) Prove Ehrenfest’s theorem in one-dimensional quantum mechanics:

d

dt
〈Ô〉ψ =

i

~
〈[Ĥ, Ô]〉ψ + 〈∂Ô

∂t
〉ψ,

where Ô is a Hermitian operator, Ĥ is the Hamiltonian and

〈Ô〉ψ =

∫
ψ∗(x, t)Ôψ(x, t)dx

is the expectation value of the operator Ô in a state determined by the wave function
ψ(x, t).

(b) Using Ehrenfest’s theorem prove that

m
d

dt
〈x̂〉ψ = 〈p̂〉ψ,

d

dt
〈p̂〉ψ = −〈dU

dx
〉ψ,

d

dt
〈Ĥ〉ψ = 0,

where U(x) is the scalar potential. Compare with similar expressions in classical
mechanics.

5D Electromagnetism
Consider a system of electric charges distributed in such a way that there is a charge

−Q at the point (x, y, z) = (0, 0, d), a charge +NQ, with N a positive integer, located
at the origin of coordinates and a charge −MQ for a positive integer M at the point
(0, 0,−d).

(a) Compute the electric potential at a distance r and expand in powers of 1/r.
Identify the monopole, dipole and quadrupole terms in the expansion.

(b) For which values of N and M do monopole and/or dipole terms cancel? If the
monopole term cancels, what can be said about the limits for which d→ 0 but either Qd
or Qd2 are constants?

(c) For the case where the monopole and dipole terms cancel, compute the force on
a particle of charge −Q located at r = (x, 0, 0). Is the force attractive or repulsive?
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6B Numerical Analysis
Consider the inner product

〈g, h〉 =

∫ b

a
g(x)h(x)w(x) dx (∗)

on C[a, b], where w(x) > 0 for x ∈ (a, b). Define ‖g‖2 = 〈g, g〉. Let Q0, Q1, Q2, . . . be
orthogonal polynomials with respect to the inner product (∗), and let f ∈ C[a, b].

(a) Prove that the polynomial p∗n ∈ Pn that minimises the squared distance ‖f−p‖2
among all p ∈ Pn is given by

p∗n(x) =

n∑

k=0

〈f,Qk〉
〈Qk, Qk〉

Qk(x).

(b) Hence, show that

‖f‖2 = ‖f − p∗n‖2 + ‖p∗n‖2.

7H Markov Chains
Consider the Markov chain in the figure below.
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(a) Let g(i) = Ei[T0] be the expected time to get absorbed in state 0 starting from state
i. Find g(1), g(2) and g(3).

(b) Suppose the Markov chain is initialised in state 1. What is the probability it will
visit 3 before getting absorbed in 0?

(c) Suppose the Markov chain is initialised in state 1. What is the expected number of
visits to state 3 before the chain gets absorbed in 0?
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SECTION II

8F Linear Algebra
If V and W are finite-dimensional vector spaces and γ : V → W is a linear map,

what is the matrix representation of γ with respect to bases B of V and C of W?

If α, β : V → V are linear maps, what does it mean to say that they are conjugate?
How is this interpreted in terms of matrices representing α and β with respect to a basis
B of V ?

Let V be a vector space and β : V → V be a linear isomorphism. Write L(V, V ) for
the vector space of linear maps from V to V , and define a function by

φβ : L(V, V ) −→ L(V, V )

α 7−→ β−1αβ.

Show that φβ is a linear isomorphism, and that if β is conjugate to β′ then φβ is conjugate
to φβ′ .

Assuming that V is a 2-dimensional complex vector space, determine the Jordan
Normal Form of φβ in terms of that of β.

9E Groups, Rings and Modules
State and prove Eisenstein’s criterion. Show that if p is a prime number then

f(X) = Xp−1 +Xp−2 + . . .+X2 +X +1 is irreducible in Z[X]. Let ζ ∈ C be a root of f .
Prove that Z[ζ] ∼= Z[X]/(f). [Any form of Gauss’ lemma may be quoted without proof.]

Now let p = 3. Show that Z[ζ] is a Euclidean domain. Prove that if n is even then
there is exactly one conjugacy class of matrices A ∈ GLn(Z) such that A2 + A + I = 0.
What happens if n is odd? You should carefully state any theorems that you use.
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10G Analysis and Topology
Define the notions of compact space, Hausdorff space and homeomorphism.

Let X be a topological space and R be an equivalence relation on X. Define the
quotient space X/R and show that the quotient map q : X → X/R is continuous. Let Y be
another topological space and f : X → Y be a continuous function such that f(x) = f(y)
whenever xRy in X. Show that the unique function F : X/R → Y with F ◦ q = f is
continuous.

Show that the quotient of a compact space is compact. Give an example to show
that the quotient of a Hausdorff space need not be Hausdorff.

Let f : X → Y be a continuous bijection from the compact space X to the Hausdorff
space Y . Carefully quoting any necessary results, show that f is a homeomorphism.

Let X = [0, 1]2 be the closed unit square in R2. Define an equivalence relation R on
X by (x1, y1)R(x2, y2) if and only if one of the following holds:

(i) x1 = x2 and y1 = y2, or

(ii) {x1, x2} = {0, 1} and y1 = y2, or

(iii) y1 = y2 ∈ {0, 1}.

Show that the quotient space X/R is homeomorphic to the unit sphere S2 =
{(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.
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11E Geometry
(a) Show that the Möbius maps commuting with z 7→ 1/z are of the form

z 7→ az + b

bz + a

where a, b ∈ C with |a|2 − |b|2 6= 0. Which of these maps preserve the unit disc?

(b) Write down the Riemannian metric on the disc model D of the hyperbolic
plane. Describe the geodesics passing through O and prove that they are length
minimising curves. Deduce that every geodesic is part of a circle or line preserved by
the transformation z 7→ 1/z. [You may assume that the maps in part (a) that preserve
the unit disc are isometries.]

(c) Let P ∈ D be a point at a hyperbolic distance ρ > 0 from O. Let ` be the
hyperbolic line passing through P at right angles to OP . Show that ` has Euclidean
radius 1/ sinh ρ and centre at a distance 1/ tanh ρ from O.

(d) Consider a hyperbolic quadrilateral with three right angles, and angle θ at the
remaining vertex v. Show that

cos θ = tanh a tanh b

where a and b are the hyperbolic lengths of the sides incident with v.
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12B Complex Methods
Let B : [0,∞) → Rn×p be a n × p matrix-valued function. The Laplace transform

L{B} of B is defined componentwise on the matrix element functions of B.

(a) Show that if A is a constant n × n matrix and B : [0,∞) → Rn×p is an n × p
matrix-valued function, then L{AB} = AL{B}.

(b) Consider the ODE given by

y′(t) = Ay(t) + g(t), y(0) = y0 ∈ Rn, t > 0, (∗)

where A is a constant n×n matrix, and g : [0,∞)→ Rn is a vector-valued function whose
Laplace transform G(s) = L{g}(s) exists for all but one s ∈ C. Show that

Y (s) = (sI −A)−1(y0 +G(s)),

and that
L{etA}(s) = (sI −A)−1,

for all s that are not eigenvalues of A, where Y = L{y} is the Laplace transform of the
solution y of (∗). You may assume that y exists and is the unique solution to the ODE
for all t > 0 with solution y(t) = etAy0 when g = 0.

(c) Consider the ODE

y′(t) =

[
1 2
2 1

]
y(t) +

[
e2t

−2t

]
, y(0) =

[
1
−2

]
, t > 0.

Determine the integer values n ∈ N such that limt→∞ e−nty(t) exists and is a finite and
nonzero vector in R2.
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13C Variational Principles

(a) Consider a functional of the form

L[u, v] =

∫∫

Ω
f(x, y, u, v, ux, uy, vx, vy) dxdy,

where u and v are functions of x and y [we use the notation ab to denote the partial
derivative ∂a/∂b]. Assuming small variations u → u + δu and v → v + δv and using
integration by parts, derive the two Euler–Lagrange equations satisfied by u and v in
Ω associated with an extremum of L (you may ignore all contributions from boundary
terms).

(b) An elastic material deforms in two dimensions with a displacement field
u(x) = [u(x, y), v(x, y)], that minimises the total elastic energy

J =

∫∫

Ω

[
1

2
µ(∇u : ∇uT ) +

1

2
(λ+ µ)(∇ · u)2

]
dxdy

where ∇u is the displacement gradient tensor, defined as

∇u =

(
ux vx
uy vy

)
,

where µ and λ are two material constants and where we use the notation A : B to refer
to the trace of the matrix product AB.

(i) Show that

J =

∫∫

Ω

[(
λ

2
+ µ

)
(u2
x + v2

y) +
µ

2
(u2
y + v2

x) + (λ+ µ)uxvy

]
dxdy.

(ii) Derive the two Euler–Lagrange equations satisfied by u and v and show
that they can be combined into a single equation for u.

(iii) In the one-dimensional limit where v = 0, ∂u/∂y = 0 with boundary
conditions u(0) = 0, u(L) = ∆, show that the solution to the equation
obtained in (ii) is linear in x.
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14A Methods
(a) Using Fourier transforms with respect to x, express in integral form the general

solution θ(x, t) to the (unforced) heat equation with initial data Θ(x) and diffusivity
D > 0:

∂θ

∂t
= D

∂2θ

∂x2
; θ(x, 0) = Θ(x).

[You may quote the convolution theorem for Fourier transforms without proof.]

(b) By constructing an appropriate Green’s function, express in integral form the
general solution θf (x, t) to the forced heat equation with homogeneous initial data:

∂θf
∂t
−D∂

2θf
∂x2

= f(x, t); θf (x, 0) = 0,

for some function f(x, t).

(c) Now consider the combined problem:

∂θc
∂t
−D∂

2θc
∂x2

= −Aδ
(
x+ 2

√
D
)
δ(t− 1); θc(x, 0) = δ

(
x− 2

√
D
)
,

where A is a positive real constant. Determine θc(x, t), and hence deduce that θc(0, 2) = 0
if

A =

√
e

2
.

[The following convention is used in this question:

f̃(k) =

∫ ∞

−∞
f(x)e−ikx dx and f(x) =

1

2π

∫ ∞

−∞
f̃(k)eikx dk.

You may also quote the transform pair

g(x, t) =
1√

4πDt
exp

(
− x2

4Dt

)
; g̃(k, t) = e−Dk

2t,

as well as any relevant properties of the δ-function without proof.]
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15D Quantum Mechanics
(a) Using the canonical commutation relations [x̂i, p̂j ] = i~δij with i, j = 1, 2, 3, show

that the angular momentum operators L̂i = εijkx̂j p̂k satisfy the commutation relations:

[L̂i, L̂j ] = i~εijkL̂k, [L̂i, x̂j ] = i~εijkx̂k, [L̂i, p̂j ] = i~εijkp̂k.

Using these relations show that [L̂2, L̂i] = 0 where L̂2 = L̂iL̂i. Show further that for
a spherically symmetric system [L̂2, Ĥ] = 0, where the Hamiltonian Ĥ takes the form

Ĥ = p̂2

2m + U(r̂). Can the operators Ĥ, L̂2, L̂3 be simultaneously diagonalised? Justify
your answer.

(b) Consider the Schrödinger equation for the Hydrogen atom in which the potential

energy is U(r) = − q2

r . Concentrating on the wave function with zero eigenvalues for both

L̂3 and L̂2, the equation for the radial component of the wave function, R(r), reduces to:

R′′ +
2

r
R′ +

(
β

r
− γ2

)
R = 0,

where β = 2mq2

~2 and γ2 = −2mE
~2 , with E denoting the energy.

(i) Considering the r →∞ limit, explain why R ∼ e−γr.

(ii) Consider then the series solution

R(r) = f(r)e−γr, f(r) =
∑

n

anr
n.

Derive the recurrence relation

an =
2γn− β
n(n+ 1)

an−1,

then argue why the energy is quantised and determine the ground state
energy.

(iii) Using the ground state wave function R(r) = Ce−γr, determine the
normalisation factor C and estimate the expectation value of the radius
〈r〉R. Compare with the Bohr radius.
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16C Fluid Dynamics

(a) A body of fluid has a free surface given by z = η(x, y, t) in Cartesian coordinates
and the fluid velocity is denoted by u = (u, v, w). Applying the kinematic boundary
condition at the free surface, derive the relationship between the value of w at the free
surface and Dη/Dt.

(b) An inviscid fluid is confined in a box with sides at x = 0, L and y = 0, L.
The fluid is semi-infinite in the −z direction and is bounded above by a free surface at
z = η(x, y, t). The fluid is forced to oscillate by applying a prescribed variation in the air
pressure just above the free surface,

p(x, y, t) = p0 cos (πx/L) cos (2πy/L) cos(ωt),

with ω a prescribed constant frequency.

(i) Assuming irrotational flow and small-amplitude motion of the interface,
state the equation satisfied by the velocity potential φ in the fluid and
state all the boundary conditions.

(ii) Show that a separable solution for φ of the form

φ = Z(z) cos (πx/L) cos (2πy/L)F (t)

is consistent with the dynamic boundary condition and that it satisfies the
boundary conditions at x = 0, L and y = 0, L.

(iii) Solve for the function Z(z).

(iv) Using the kinematic boundary condition, show that the shape of the
interface is of the form

η(x, y, t) = cos (πx/L) cos (2πy/L)H(t),

and derive the relationship between H(t) and F (t).

(v) Use the dynamic boundary condition to solve for H(t) and F (t).

(vi) Deduce that the amplitudes H and F do not remain bounded for a specific
value of the frequency ω which you should determine, and briefly interpret
this phenomenon physically.
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17H Statistics
An ecologist takes data {(xi, yi)}ni=1, where xi > 0 is the size of an area and yi ∈ N

is the number of moss plants in the area. For fixed {xi}ni=1, we model the data by
Yi ∼ Poisson(θxi), where the Yi are independent of each other.

(a) Write down a linear model relating the yi to the xi. Derive a formula for the
least squares estimator θ̂LS . Is the estimator biased?

(b) Compute the maximum likelihood estimator θ̂MLE . Is the estimator biased?

(c) Compare the variances of θ̂LS and θ̂MLE .

(d) Suppose we wish to test the hypotheses H0 : θ = 1 versus H1 : θ = 2. Describe
a hypothesis test with test statistic θ̂MLE , which has approximate size 0.05 when

∑n
i=1 xi

is large. Describe a hypothesis test with test statistic θ̂LS , which has approximate size
0.05 when each xi is large. [Hint: A Poisson(λ) distribution may be approximated by a
N (λ, λ) distribution when λ is large.]

18H Optimisation
Let A be the m× n payoff matrix of a two-person, zero-sum game. What is Player

I’s optimization problem?

Write down a sufficient condition that a vector p ∈ Rm is an optimal mixed strategy
for Player I in terms of the optimal mixed strategy for Player II and the value of the game.

If m = n and A is an invertible, symmetric matrix such that A−1e > 0, where
e = (1, 1, . . . , 1)> ∈ Rm, show that the value of the game is (e>A−1e)−1.

Consider the following game: Players I and II each have three cards labelled 1, 2,
and 3. Each player chooses one of their cards, independently of the other player, and
places it in the same envelope. If the sum of the numbers in the envelope is smaller than
or equal to 4, then Player II pays Player I the sum (in £), and otherwise Player I pays
Player II the sum. (For instance, if Player I chooses card 3 and Player II chooses card 2,
then Player I pays Player II £5.) What is the optimal strategy for each player?

END OF PAPER
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